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In this paper, we consider the following Kirchhoff-type problems involving critical exponent
− (a + b􏽒Ω|∇u|2dx)Δu + V(x)u � μu2∗ − 1 + λg(x, u), x ∈ Ω
u> 0, x ∈ Ω
u � 0, x ∈ zΩ

⎧⎪⎨

⎪⎩
. .e existence and multiplicity of positive solutions for

Kirchhoff-type equations with a nonlinearity in the critical growth are studied under some suitable assumptions on V(x) and
g(x, u). By using the mountain pass theorem and Brézis–Lieb lemma, the existence and multiplicity of positive solutions
are obtained.

1. Introduction

We consider the following nonlinear boundary value
problem for second-order impulsive differential equations:

− a + b􏽚
Ω

|∇u|2dx􏼒 􏼓Δu + V(x)u � μu2∗− 1 + λg(x, u), x ∈ Ω,

u> 0, x ∈ Ω,

u � 0, x ∈ zΩ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

whereΩ ⊂ RN(N≥ 3) is a smooth bounded domain and zΩ
is a smooth boundary of Ω. λ, μ> 0, a, b≥ 0, a + b> 0.
V ∈ C(Ω,R) and g ∈ C(Ω × R,R). 2∗ � 2N/(N − 2) is the
critical Sobolev exponent for the embedding
H1

0(Ω)↪ Lp(Ω). Moreover, V(x) and g(x, u) satisfy some
conditions which will be given later.

Over the past decades, the following Kirchhoff equation:

− a + b􏽚
Ω

|∇u|2dx􏼒 􏼓Δu � g(x, u), x ∈ Ω,

u � 0, x ∈ zΩ,

⎧⎪⎨

⎪⎩
(2)

has been extensively considered. With various assumptions
about the nonlinearity g(x, u), the existence andmultiplicity
of solutions for system (2) are obtained by variational
methods, see [1–5] and the references therein.

To our best knowledge, system (2) is related to the
stationary analogue of the equation

ρ
z2u

zt2
−

P0

h
+

E

2L
􏽚

L

0

zu

zx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

dx􏼠 􏼡
z2u

zx2 � 0, (3)

which was proposed by Kirchhoff in [6]. In fact, (3) is an
extension and generalization of the classical D’Alembert
wave equation in some ways. .is model is widely used in
many fields, such as non-Newtonian mechanics, cosmo-
physics, elastic theory, and electromagnetics. It is worth
noting that equation (2) has a nonlocal term 􏽒

L

0 |zu/zx|2dx.
Only after Lions [7] proposed an abstract functional analysis
framework about the following equation:

utt − a + b􏽚
Ω

|Du|
2

􏼒 􏼓Δu � g(x, u), (4)
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problem (4) received much attention, and we refer the
readers to [8–15] for more details and the references therein.
More precisely, Bisci and Pizzimenti [13] studied the exis-
tence of infinitely many solutions for a class of Kirchhoff-
type problems involving the p-Laplacian by using variational
methods. In [15], Bisci considered the existence of (weak)
solutions for some Kirchhoff-type problems on a geodesic
ball of the hyperbolic space and the main technical approach
is based on variational and topological methods. In [16], the
authors firstly used the variation method to study the ex-
istence of positive solution of the Kirchhoff-type problems
with the Sobolev critical exponent. After that, there are many
works on the existence and multiplicity of solutions for
Kirchhoff-type problems with the Sobolev critical exponent
(one can see [17–21] and the references therein).

In [17], the author considered the following Kirchhoff-
type elliptic equation:

− a + b􏽚
Ω

|∇u|2dx􏼒 􏼓Δu � μg(x, u) + u5, u> 0, x ∈ Ω,

u � 0, x ∈ zΩ,

⎧⎪⎨

⎪⎩

(5)

and by using the variation method, the existence of positive
solutions of system (5) is obtained. To our best knowledge, a
nonlinear elliptic boundary value problem has a critical
term, which is a difficulty to prove the existence of solutions
for the problem. .e difficulty is caused by the lack of
compactness of the embedding H1

0(Ω)↪L2∗(Ω), which
makes the PS condition cannot be checked directly. In [16],
the authors make the parameter μ large enough to make a
critical value below a certain level. In [17], under the AR
condition, the authors restored the compactness of the
embedding by using the second concentration compactness
lemma, which is an extension of the work in [8].

In [18], the authors used the variational method to
consider system (5) with μ � 1 and the existence and
multiplicity of solutions for the system are obtained.

Moreover, problems on the unbounded domain RN

have also been widely studied by some researchers, for
example, [22–26]. More precisely, in [25], Liu and He used
the variant version of fountain theorem to get the existence
of infinitely many high energy solutions of the system. In
[26], the authors studied the concentration behavior of
positive solutions. For more information about this
problem, we refer the readers to [11, 20, 27, 28] and the
reference therein.

Motivated by the above facts, we want to consider the
positive solutions of system (1). By using the mountain pass
theorem and Brézis–Lieb lemma, the existence and multi-
plicity of positive solutions of system (1) are obtained.

To show our main results, we introduce some conditions
on nonlinearity g(x, u) and V(x).

(V1) V(x) is 1-periodic in each of xi(i � 1, 2, . . . , N),
and there exists a positive constant V0 such that

V(x)≥V0 > 0, x ∈ Ω. (6)

(F1) If s≤ 0, then g(x, s) ≡ 0; if s≥ 0, then g(x, s)≥ 0.

(F2)

lim
s⟶0+

g(x, s)

s
� 0,

lim
s⟶+∞

g(x, s)

s5
� 0,

x ∈ Ω.

(7)

(F3) ∀(x, s) ∈ Ω × R+, there is

g(x, s)s − 4G(x, s)≥ − aλ1s
2
, (8)

where G(x, s) � 􏽒
s

0 g(x, t)dt and λ1 > 0 is the first ei-
genvalue of − Δ in H1

0(Ω).
(G1) g(x, u) � f(x)uq− 1(2≤ q< 2∗).
f(x) ∈ L(2∗− q)/2∗(Ω) and f(x)≥ 0, f(x) ≡ 0.
(G2) V(x) ∈ L2(Ω). In addition, V(x)> 0 is bounded
in Ω.

In the next section, we will present our main results.

Theorem 1. Let N � 3 and λ � μ � 1. If (V1) and (F1) −

(F3) hold, then system (1) has a positive ground state solution.

Remark 1. In [17], the author used a condition which is
stronger than (F3), that is,

(F3)′ .ere exists a constant θ ∈ (4, 6), such that

g(x, s)s − θG(x, s)≥ 0, ∀(x, s) ∈ Ω × R+. (9)

Theorem 2. Let N � 4 and 0< μ< bS2. If (G1) and (G2)

hold, then there exists a constant λ∗ > 0 (we will give in the
proof of4eorem 2 in Section 3) such that ∀λ> λ∗, and system
(1) has at least two positive solutions.

Remark 2. In reference [21], the authors considered system
(1) as f(x) ≡ 1, 1< q< 2, V(x) � 0, and μ � 1. Underlying
the condition λ< λ0 (a constant the authors given in their
paper), two positive solutions are obtained. However, our
results are very different from those in [21]. In our paper,
2≤ q< 2∗, and if λ> λ∗ (a constant we give in the proof of
.eorem 2) is sufficiently large, two positive solutions are
obtained. Besides, in [21], N � 3; in our paper, for N � 4, the
multiple solutions of higher dimensional space are obtained.

Remark 3. When a � 1, b � 0, and V(x) � 0, system (1)
degenerates to a classical semilinear elliptic problem. .e-
orem 2 can be the generalization of the corresponding results
in [8] of Kirchhoff-type problems.

.e reminder of this paper is organized as follows. In
Section 2, some preliminary results are presented. .e proof
of main results will be given in Section 3.

2. Preliminaries

In this paper, we make some notations as follows:
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(i) .e space H1
0(Ω) (denoted by E) is equipped with

the norm ‖u‖ � (􏽒Ω|∇u|2dx)1/2, and we also define
the equivalent norm by ‖u‖E � (􏽒Ω(|∇u|2 +

V(x)u2)dx)1/2. In addition, Lp(Ω)(1≤p< +∞) is a
Lebesgue space with the norm |u|p � (􏽒Ω|u|pds)1/p.

(ii) .e sequence xn􏼈 􏼉 in H1
0(Ω) is a (PS)c sequence if

I(xn)⟶ c and I′(xn)⟶ 0 as n⟶∞. We say
that if the functional satisfies (PC)c condition for
any (PS)c sequence, it has a convergent
subsequence.

(iii) C, C1, C2, . . . , denote various positive constants.
(iv) u+(x) � max u(x), 0{ } and u− (x) � max − u(x), 0{ }.
(v) o(1) shows when n⟶∞, o(1)⟶ 0.
(vi) Let S be the best Sobolev constant, that is,

S ≔ inf
u∈H1

0(Ω)\ 0{ }

‖u‖2

|u|22∗
. (10)

Now, we give the energy functional corresponding to
problem (1), that is,

I(u) �
a

2
‖u‖

2
+

b

4
‖u‖

4
+
1
2

􏽚
Ω

V(x)u
2dx − λ􏽚

Ω
G(x, u)dx

−
μ
2∗

􏽚
Ω

u
+

( 􏼁
2∗dx.

(11)

It is obvious that I ∈ C1(E, R) and has the following
derivative:

I′(u), v􏼊 􏼋 � a + b‖u‖
2

􏼐 􏼑􏽚
Ω
∇u · ∇v dx + 􏽚

Ω
V(x)uv dx

− λ􏽚
Ω

g(x, u)v dx − μ􏽚
Ω

u
+

( 􏼁
2∗− 1

v dx.

(12)

Using the continuity of g(x, u) and V(x), it shows
that u ∈ E is a critical point of I, if it is a solution of
problem (1).

Lemma 1. Let N � 3 and λ � μ � 1. If (V1), (F1), and (F2)
are satisfied, then the following hold:

(1) 4ere exist constants ρ, α> 0, such that

I(u)≥ α, ∀u ∈ H
1
0(Ω), ‖u‖ � ρ. (13)

(2) 4ere exists u ∈ E such that

I(u)< 0 (‖u‖> ρ). (14)

Proof. From (F1) and (F2), it shows that there has a constant
C1 > 0 such that

|G(x, s)|≤
aλ1
4

|s|
2

+ C1|s|
6
, ∀(x, s) ∈ Ω × R. (15)

By (10), (15), (V1), and Sobolev inequality, it follows that

I(u)≥
a

2
‖u‖

2
+

b

4
‖u‖

4
+
1
2

􏽚
Ω

V(x)u
2

− 􏽚
Ω

G(x, u)dx

−
1
6

􏽚
Ω

|u|
6dx, ≥

a

2
‖u‖

2
−

a

4
‖u‖

2
− C1|u|

6
−
1
6
|u|

6

≥
a

4
‖u‖

2
− C2‖u‖

6
.

(16)

(1) Taking ρ> 0 small enough, there exists a constant
α> 0 such that

I(u)≥ α, ∀u ∈ H
1
0(Ω), ‖u‖ � ρ. (17)

(2) If we take v0 ∈ H1
0(Ω) and v0 ≡ 0, then one gets the

following:

I tv0( 􏼁 �
a

2
t
2

v0
����

����
2

+
b

4
t
4

v0
����

����
4

+
1
2
t
2
􏽚
Ω

V(x)v
2
0

− 􏽚
Ω

G x, tv0( 􏼁dx −
1
6
t
6
􏽚
Ω

v
+
0( 􏼁

6dx

≤
t2

2
max a, 1{ } v0

����
����
2
E

+
b

4
t
4

v0
����

����
4
E

−
1
6
t
6
􏽚
Ω

v
+
0( 􏼁

6dx.

(18)

Since ‖·‖ and the ‖·‖E are equivalent, then

I tv0( 􏼁≤C3
t2

2
max a, 1{ } v0

����
����
2

+ C4
b

4
t
4

v0
����

����
4

−
1
6
t
6
􏽚
Ω

v
+
0( 􏼁

6dx.

(19)

It is obvious that

I tv0( 􏼁⟶ − ∞ (t⟶ +∞). (20)

.erefore, we can find a positive constant t0, and
‖t0v0‖> ρ, such that

I t0v0( 􏼁< 0. (21)

Let u � t0v0 and the conclusion is satisfied. □

Lemma 2. Let N � 3 and λ � μ � 1. V(x) satisfies (V1) and
g(x, u) satisfies (F1)—(F3). Suppose

Λ �
ab

4
S
3

+
b3

24
S
6

+
aS

6
���������
b2S4 + 4aS

√
+

b2

24
S
4 ���������

b2S4 + 4aS
√

,

c ∈ (0,Λ),
(22)

then I satisfies the (PS)c condition.
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Proof. By (F1) and (F2), there exists a constant C5 > 0, such
that ∀(x, s) ∈ Ω × R, and it has

1
5

g(x, s)s − G(x, s)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤
1
30

|s|
6

+ C5. (23)

Suppose un􏼈 􏼉 is a (PS)c sequence, c ∈ (0,Λ),
I un( 􏼁⟶ c, I′ un( 􏼁⟶ 0 (n⟶∞). (24)

.e next work is to prove the boundness of un􏼈 􏼉. Clearly,
one has

1 + c + o(1) un

����
����≥ I un( 􏼁 −

1
5

I′ un( 􏼁, un􏼊 􏼋

�
a

2
−

a

5
􏼒 􏼓 un

����
����
2

+
b

4
−

b

5
􏼠 􏼡 un

����
����
4

+
1
2

−
1
5

􏼒 􏼓􏽚
Ω

V(x)u
2
ndx

+
1
5

−
1
6

􏼒 􏼓􏽚
Ω

u
+
n( 􏼁

6dx

+ 􏽚
Ω

1
5

g x, u
+
n( 􏼁u

+
n − G x, u

+
n( 􏼁􏼔 􏼕dx

≥
3
10

a un

����
����
2

+
b

20
un

����
����
4

− C5|Ω|.

(25)

.at is to say ‖un‖ is bounded in E. Going necessary to a
subsequence, it has

un⇀u, u ∈ H1
0(Ω),

un⟶ u, u ∈ Lp(Ω) 1≤p< 2∗ � 6( 􏼁,

un(x)⟶ u(x), a.e. x ∈ Ω.

⎧⎪⎪⎨

⎪⎪⎩

(26)

By (V1) and (F2), one has

􏽚
Ω

g x, uu( 􏼁undx⟶ 􏽚
Ω

g(x, u)u dx (n⟶∞),

􏽚
Ω

G x, uu( 􏼁dx⟶ 􏽚
Ω

G(x, u)dx (n⟶∞),

􏽚
Ω

V(x)u
2
ndx⟶ 􏽚

Ω
V(x)u

2dx (n⟶∞).

(27)

Let vn � un − u, then we can claim ‖vn‖⟶ 0 as
n⟶∞. Otherwise, there exist a subsequence (for con-
venience, we still denote it by vn) such that

lim
n⟶∞

vn

����
����
2

� l, (28)

where l> 0; then

un

����
����
2

� vn

����
����
2

+‖u‖
2

+ o(1). (29)

By using Brézis–Lieb lemma in [29], it has

􏽚
Ω

u
+
n( 􏼁

6
� 􏽚
Ω

v
+
n( 􏼁

6
+ 􏽚
Ω

u
+

( 􏼁
6

+ o(1). (30)

Because I′(un)⟶ 0 in (E)∗, one has

I′ un( 􏼁, un􏼊 􏼋 � a un

����
����
2

+ b un

����
����
4

+ 􏽚
Ω

V(x)u
2
ndx

− 􏽚
Ω

g x, un( 􏼁undx − 􏽚
Ω

u
+
n( 􏼁

6dx � o(1),

(31)

which shows that

al + a‖u‖
2

+ bl
2

+ b‖u‖
4

+ 2bl‖u‖
2

+ 􏽚
Ω

V(x)u
2dx

− 􏽚
Ω

g(x, u)u dx − 􏽚
Ω

v
+
n( 􏼁

6dx − 􏽚
Ω

u
+

( 􏼁
6dx � o(1).

(32)

It also has

lim
n⟶∞

I′ un( 􏼁, u􏼊 􏼋 � a‖u‖
2

+ bl‖u‖
2

+ b‖u‖
4

+ 􏽚
Ω

V(x)u
2dx − 􏽚

Ω
g(x, u)u dx

− 􏽚
Ω

u
+

( 􏼁
6dx � 0.

(33)

Combining (32), (33), and (10), one gets

al + bl
2

+ bl‖u‖
2

� 􏽚
Ω

v
+
n( 􏼁

6dx + o(1) �
vn

����
����
6

S3
+ o(1)

≤
l3

S3
+ o(1),

(34)

which implies that

al + bl
2

+ bl‖u‖
2 ≤

l3

S3
. (35)

By (35),

l≥
bS3 +

������������������
b2S6 + 4 a + b‖u‖2􏼐 􏼑S3

􏽱

2
≥

bS3 +
����������
b2S6 + 4aS3

√

2
.

(36)

As I(un)⟶ c(n⟶∞), we have

c �
a

2
un

����
����
2

+
b

4
un

����
����
4

+
1
2

􏽚
Ω

V(x)u
2
ndx − 􏽚

Ω
G x, un( 􏼁dx

−
1
6

􏽚
Ω

u
+
n( 􏼁

6dx + o(1)

�
a

2
l +

a

2
‖u‖

2
+

b

4
‖u‖

4
+

b

4
l
2

+
bl

2
‖u‖

2
+
1
2

􏽚
Ω

V(x)u
2dx

− 􏽚
Ω

G(x, u)dx −
1
6

􏽚
Ω

v
+
n( 􏼁

6dx −
1
6

􏽚
Ω

u
+

( 􏼁
6dx + o(1).

(37)

From (34) and (37), it has
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I(u) �
a

2
‖u‖

2
+

b

4
‖u‖

4
+
1
2

􏽚
Ω

V(x)u
2dx − 􏽚

Ω
G(x, u)dx

−
1
6

􏽚
Ω

u
+

( 􏼁
6dx

� c −
a

3
l +

b

12
l
2

+
bl

3
‖u‖

2
􏼠 􏼡

≤ c −
a

3
bS3 +

����������
b2S6 + 4aS3

√

2
−

b

12
bS3 +

����������
b2S6 + 4aS3

√

2
􏼠 􏼡

2

−
bl

3
‖u‖

2

� c − Λ −
bl

3
‖u‖

2 < −
bl

3
‖u‖

2
.

(38)

From the above inequality, it has

I(u) +
bl

3
‖u‖

2 < 0. (39)

On the other hand, from (F3) and (33), which deduce
bl

3
‖u‖

2
+ I(u) �

bl

3
‖u‖

2
+

a

2
‖u‖

2
+

b

4
‖u‖

4
+
1
2

􏽚
Ω

V(x)u
2dx

− 􏽚
Ω

G(x, u)dx −
1
6

􏽚
Ω

u
+

( 􏼁
6dx

�
bl

3
‖u‖

2
+

a

4
‖u‖

2
−

bl

4
‖u‖

2
+
1
4

􏽚
Ω

V(x)u
2dx

+ 􏽚
Ω

1
4

g(x, u)u − G(x, u)􏼒 􏼓dx

+
1
12

􏽚
Ω

u
+

( 􏼁
6dx

≥
bl

12
‖u‖

2
+

a

4
‖u‖

2
−

aλ1
4

􏽚
Ω

u
2dx

+
1
12

􏽚
Ω

u
+

( 􏼁
6dx

≥
bl

12
‖u‖

2
+

1
12

􏽚
Ω

u
+

( 􏼁
6dx≥ 0,

(40)

which is a contradiction with (39).
So l � 0, that is to say, un⟶ u in E as n⟶∞. .us, I

satisfies the (PS)c condition. □

Lemma 3. Let N � 4 and a, b> 0. If (G1) and (G2) are
satisfied, then there exists a positive constant μ∗ � bS2 > 0,
such that for every μ ∈ (0, μ∗), the functional I(u) satisfies the
(PS) condition in H1

0(Ω).

Proof. If un􏼈 􏼉 ⊂ H1
0(Ω) is a (PS)c sequence of I, that is,

I un( 􏼁⟶ c, I′ un( 􏼁⟶ 0(n⟶∞). (41)

As N � 4, and by (4) and Hölder inequality, one has

I(u) �
a

2
‖u‖

2
+

b

4
‖u‖

4
+
1
2

􏽚
Ω

V(x)u
2dx −

μ
4

􏽚
Ω

u
+

( 􏼁
4dx

−
λ
q

􏽚
Ω

f(x) u
+

( 􏼁
qdx≥

a

2
‖u‖

2
+

b

4
‖u‖

4
−
μ
4

S
− 2

‖u‖
4

−
λ
q
|f|4/4− qS

− q/2
‖u‖

q
.

(42)

Choose μ∗ � bS2 and 2≤ q< 2∗ � 4. For every
μ ∈ (0, μ∗), (42) implies that the functional I is coercive and
bounded in H1

0(Ω) for all λ> 0..erefore, the sequence un􏼈 􏼉

is bounded in H1
0(Ω). It means that there exists a subse-

quence and we still denote it by un􏼈 􏼉 for simplicity, such that

un⇀ u, u ∈ H1
0(Ω),

un⟶ u, u ∈ Lp(Ω) 1≤p< 2∗ � 4( 􏼁,

un(x)⟶ u(x), a.e. x ∈ Ω.

⎧⎪⎪⎨

⎪⎪⎩

(43)

.e following is to prove un⟶ u(n⟶∞) in H1
0(Ω).

Let wn � un − u. By (43), one has

un

����
����
2

� wn

����
����
2

+‖u‖
2

+ o(1), (44)

un

����
����
4

� wn

����
����
4

+ 2 wn

����
����
2
‖u‖

2
+ wn

����
����
4

+ o(1). (45)

And by Brézis–Lieb’s lemma in [29], one obtains

􏽚
Ω

u
+
n( 􏼁

4dx � 􏽚
Ω

w
+
n( 􏼁

4dx + 􏽚
Ω

u
+

( 􏼁
4dx + o(1), (46)

and we can claim that

lim
n⟶∞

􏽚
Ω

V(x)u
2
ndx � 􏽚

Ω
V(x)u

2dx, (47)

lim
n⟶∞

􏽚
Ω

f(x) un( 􏼁
+

( 􏼁
qdx � 􏽚

Ω
f(x) u

+
( 􏼁

qdx. (48)

In fact, by the Sobolev imbedding theorem, there exists a
constant C> 0, such that |un|4≤C<∞. ∀ε> 0,∃δ > 0, for any
S ⊂ Ω with meas(S)< δ and by Hölder inequality, one has

􏽚
S
V(x)u

2
ndx≤ |V|2 un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
4 ≤ εC

2
, (49)

􏽚
S
f(x) u

+
n( 􏼁

qdx≤ |f|4/4− q un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

4 < εC
q
. (50)

In view of the absolute continuity of the integrals
􏽒

S
|V(x)|2dx and 􏽒

S
|f(x)|4/(4− q)dx, it means that

lim
meas(S)⟶0

􏽚
S
|V(x)|

2dx � 0, (51)

lim
meas(S)⟶0

􏽚
S
|f(x)|

4/(4− q)dx � 0. (52)
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By (49)–(52), it follows that 􏽒
S
V(x)u2

ndx≤ εC2 and
􏽒

S
f(x)(u+

n )qdx≤ εCq. .us, by Vitali’s theorem [30], (47)
and (48) hold. Similarly, one obtains

lim
n⟶∞

􏽚
Ω

u
+
n( 􏼁

3
u dx � 􏽚

Ω
u

+
( 􏼁

4dx, (53)

lim
n⟶∞

􏽚
Ω

V(x)unu dx � 􏽚
Ω

V(x)u
2dx, (54)

lim
n⟶∞

􏽚
Ω

f(x) u
+
n( 􏼁

q− 1
u dx � 􏽚

Ω
f(x) u

+
( 􏼁

qdx. (55)

By (41) and (53)–(55), one gets

I′ un( 􏼁, un􏼊 􏼋 � a un

����
����
2

+ b un

����
����
4

+ 􏽚
Ω

V(x)u
2
ndx

− μ􏽚
Ω

u
+
n( 􏼁

4dx − λ􏽚
Ω

f(x) u
+
n( 􏼁

qdx � o(1)

(56)

lim
n⟶∞

I′ un( 􏼁, u􏼊 􏼋 � a‖u‖
2

+ b wn

����
����
2
‖u‖

2
+ b‖u‖

4

+ 􏽚
Ω

V(x)u
2dx − μ􏽚

Ω
u

+
( 􏼁

4dx

− λ􏽚
Ω

f(x) u
+

( 􏼁
qdx � 0.

(57)

By (44)–(48) and (57), it follows that

a wn

����
����
2

+ a‖u‖
2

+ b wn

����
����
4

+ b‖u‖
4

+ 2b wn

����
����
2
‖u‖

2

+ 􏽚
Ω

V(x)u
2dx − μ􏽚

Ω
w

+
n( 􏼁

4dx − μ􏽚
Ω

u
+

( 􏼁
4dx

− λ􏽚
Ω

f(x) u
+

( 􏼁
qdx � o(1).

(58)

Combining (57) and (58), one can get

a wn

����
����
2

+ b wn

����
����
4

+ b wn

����
����
2
‖u‖

2
− μ􏽚
Ω

w
+
n( 􏼁

4dx � o(1).

(59)

From (10), it can be deduced that

􏽚
Ω

w
+
n( 􏼁

4dx≤􏽚
Ω

wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
4dx≤ S

− 2
wn

����
����
4
. (60)

Let ‖wn‖ � l. Consequently, from (59) and (60), one gets

al
2

+ bl
2
‖u‖

2
+ bl

4 ≤ μS
− 2

l
4
. (61)

Choosing μ∗ � bS2 > 0, ∀μ ∈ (0, μ∗), inequality (61)
implies l � 0. .us, un⟶ u in H1

0(Ω). .is completes the
proof of Lemma 3. □

3. Proof of Main Results

Now we will prove .eorem 1 and .eorem 2.

Proof of4eorem 1. Combining Lemma 1 with Lemma 2, we
can say that it exists u ∈ E, such that

I(u) � c,

I′(u) � 0.
(62)

Let W � 􏼈u ∈ E\ 0{ }, I′(u) � 0􏼉 and m � infu∈WI(u).
.en, W≠∅, m≤ c. By (F1) and (F2), there exists a constant
C6 > 0, such that

|g(x, s)s|≤
aλ1
2

|s|
2

+ C6|s|
6
, ∀(x, s) ∈ Ω × R. (63)

By Sobolev inequality, ∀u ∈W, one has

a‖u‖
2

+ b‖u‖
4

+ 􏽚
Ω

V(x)u
2dx � 􏽚

Ω
g(x, u)u dx + 􏽚

Ω
u

+
( 􏼁

6dx

≤
aλ1
2

􏽚
Ω

|u|
2dx + C6􏽚

Ω
|u|

6dx

+ 􏽚
Ω

u
+

( 􏼁
6dx

≤
a

2
‖u‖

2
+ C7‖u‖

6
.

(64)

It is easy to know

a

2
‖u‖

2
+ b‖u‖

4 ≤C7‖u‖
6
. (65)

.e above inequality can deduce that there exists a
constant C> 0, such that

‖u‖≥C, ∀u ∈M. (66)

We claim that if C8 > 0, such that

􏽚
Ω

u
+

( 􏼁
6dx≥C8, ∀u ∈M. (67)

Otherwise, we assume that un ∈M, such that

lim
n⟶∞

􏽚
Ω

u
+
n( 􏼁

6dx � 0. (68)

.en,

lim
n⟶∞

􏽚
Ω

u
+
n( 􏼁

2dx � 0. (69)

In addition, we can calculate

aC
2 ≤ a un

����
����
2

+ b un

����
����
4

+ 􏽚
Ω

V(x)u
2
n � 􏽚
Ω

g x, u
+
n( 􏼁u

+
ndx

+ 􏽚
Ω

u
+
n( 􏼁

6dx

≤
aλ1
2

􏽚
Ω

u
+
n( 􏼁

2dx + C6 + 1( 􏼁􏽚
Ω

u
+
n( 􏼁

6⟶ 0,

(70)

which is a contradiction. .erefore, the assertion is estab-
lished. .erefore, ∀u ∈M, we have
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I(u) � I(u) −
1
4

I′(u), u􏼊 􏼋

�
a

4
‖u‖

2
+
1
4

􏽚
Ω

V(x)u
2dx + 􏽚

Ω

1
4

g(x, u)u − G(x, u)􏼒 􏼓dx

+
1
12

􏽚
Ω

u
+

( 􏼁
6dx

≥
aλ1
4

􏽚
Ω

u
2dx −

aλ1
4

􏽚
Ω

u
2dx +

1
12

􏽚
Ω

u
+

( 􏼁
6dx≥

1
12

C8,

(71)

which implies m> 0; by the definition of m, we can get a
(PS)m sequence. By using Lemma 1 and Lemma 2, there
exists u ∈ E, such that

I(u) � m,

I′(u) � 0.
(72)

By I′(u), u−􏼊 􏼋 � 0, where u− � max − u, 0{ }, we can get
u− � 0, so u � u+. .en, by strong maximum principle, it
implies u> 0. □

Proof of 4eorem 2. It is divided into two steps to prove
.eorem 2. Firstly, we claim that system (1) has a positive
global minimizer solution u1. In fact, from the proof of
Lemma 3, it can be known that the functional I is coercive
and bounded, so m � infu∈H1

0(Ω)I(u) is defined. By (G2),
V(x) is bounded inΩ, so there exists a constant M0 > 0, such
that

|V(x)| ≤M0. (73)

By Hölder inequality, (10), and the above inequality, one
gets

I(u) �
a

2
‖u‖

2
+

b

4
‖u‖

4
+
1
2

􏽚
Ω

V(x)u
2dx −

μ
4

􏽚
Ω

u
+

( 􏼁
4dx

−
λ
q

􏽚
Ω

f(x) u
+

( 􏼁
qdx≤

a

2
‖u‖

2
+

b

4
‖u‖

4

+
1
2
M0|Ω|

1/2
S

− 1
‖u‖

2
−
λ
q

􏽚
Ω

f(x) u
+

( 􏼁
qdx.

(74)

Choosing ‖u0‖ � 1, from (74), one has

I u0( 􏼁≤
2a + b + 2M0|Ω|1/2S− 1

4
−
λ
q

􏽚
Ω

f(x) u
+

( 􏼁
qdx< 0,

(75)

for all λ> λ∗ � q(2a + b + 2M0|Ω|1/2S− 1)/4􏽒Ωf(x)(u+)qdx.
.erefore, m< 0. By Lemma 2.3 and .eorem 4.4 in [31],
there exists u1 ∈ H1

0(Ω) such that I(u1) � m< 0. Letting v �

u−
1 in (12), it follows that u1 > 0. .us, u1 is a nonzero and

nonnegative solution of system (1). Moreover, by the strong
maximum principle, it has u1 > 0. .at is to say, u1 is a
positive global minimizer solution of system (1), such that
I(u1) � m< 0.

Secondly, we will prove that system (1) has another
positive solution. As 0< q< 2∗ � 4, it is easy to know 0 is a
local minimum point of functional I in H1

0(Ω). Defining c as
follows: c � infc∈Γmaxt∈[0,1]I(c(t)), where

Γ � c ∈ C [0, 1], H
1
0(Ω)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌 c(0) � 0, c(1) � u1􏼚 􏼛. (76)

It is obvious that c> 0. By the mountain pass lemma in
[32], there exists u2 ∈ H1

0(Ω), such that I(u2) � c> 0 and
I′(u2) � 0. Similarly, taking v � u−

2 in (12), we can get u2 is
also a nonzero and nonnegative solution of system (1). By
the strong maximum principle, it has u2 > 0, such that
I(u2) � c> 0. .is proves .eorem 2. □
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