
Research Article
Research on Two-Stage Joint Optimization Problem of Green
Manufacturing and Maintenance for Semiconductor Wafer

Jun Dong1,2 and Chunming Ye 1

1Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
2Henan Institute of Technology, Xinxiang, Henan 453000, China

Correspondence should be addressed to Chunming Ye; yechm@usst.edu.cn

Received 25 October 2019; Revised 17 December 2019; Accepted 31 December 2019; Published 24 January 2020

Academic Editor: Francisco R. Villatoro

Copyright © 2020 Jun Dong and Chunming Ye. *is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

*is paper proposes a two-stage joint optimization problem of green manufacturing and maintenance for semiconductor wafer
(TSGMM-SW) considering manufacturing stage, inspection, and repair stage simultaneously, which is a typical NP-hard problem
with practical research significance and value. Aiming at this problem, a green scheduling model with the objective of minimizing
makespan, total carbon emissions, and total preventive maintenance (PM) costs is constructed, and an improved hybrid
multiobjective multiverse optimization (IHMMVO) algorithm is proposed in this paper. *e joint optimization of green
manufacturing and maintenance is realized by designing synchronous scheduling and maintenance strategy for wafer
manufacturing and equipment PM.*e diversity of the population is expanded and the optimization performance of IHMMVO is
improved by designing the initial population fusion strategy and subpopulation evolution strategy. In the experimental phase, we
perform the simulation experiments of 900 test cases randomly generated from 90 parameter combinations. *e IHMMVO
algorithm is compared with other existing algorithms to verify the effectiveness and feasibility for TSGMM-SW.

1. Introduction

*e concept of industry 4.0 refers to the fourth industrial
revolution to realize intelligent manufacturing through the
Internet of things, big data analysis, and other technical
means, which is led by intelligent factories, intelligent
production, and intelligent logistics. It is bound to have new
higher requirements for the high-tech electronic informa-
tion industry. As a pillar industry of the national economy,
semiconductor industry has a very important strategic po-
sition. Wafer fabrication is one of the most complex pro-
cesses in semiconductor manufacturing system. It needs to
form the required circuit layer on wafer surface through
various physical and chemical operations such as oxidation,
deposition, injection, sputtering, photolithography, and
cleaning. Its essence is reentry. Wafers may repeatedly visit
some equipment at different processing stations. *e
manufacturing process can be viewed as the reentrant hybrid
flow shop scheduling (RHFS) problem.*e general job shop

scheduling problem (JSP) is that there are multiple machines
with different functions in the processing system.*e jobs to
be processed include multiple operations. Each operation is
processed on one machine, and the processing routes of jobs
are different from each other.*ere are sequence constraints
between operations belonging to the same job. RHFS
problem is that there are multiple processing stations in the
processing system. All jobs have the same process con-
straints among each station and need to reentry the stations
several times in the same order. At least one station has more
than one machine. Jobs can be processed by any machine on
the corresponding station. *e RHFS problem is large in
scale and high in complexity, and it belongs to the NP-hard
problem [1]. *erefore, there is practical value and signif-
icance of designing a new intelligent optimization algorithm
to solve it.

*e development of global economy has also brought
many environmental problems, among which greenhouse
gas emissions, especially carbon dioxide emissions, have
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attracted the attention of scholars at home and abroad.
Manufacturing industry is one of the main sources of carbon
dioxide emissions. It is imperative to achieve energy saving
and emission reduction in manufacturing industry and
develop sustainable manufacturing. Once the semiconduc-
tor wafer manufacturing factories are established, they run
24 hours a day and 365 days a year. Machines will produce a
degradation effect due to long-term continuous production,
which will prolong processing time of jobs and increase
machine energy consumption, resulting in a corresponding
increase in carbon emissions. In addition, the equipment of
semiconductor wafer manufacturing factories is generally
expensive. If there is a breakdown for maintenance, it is
difficult to find alternative processing equipment quickly,
which will delay the production process of whole semi-
conductor production line and cause enormous economic
losses for enterprises. *erefore, it is necessary to perform
PM on the equipment of semiconductor wafer manufacturing
factories. After PM,machines can restore its processing ability
to a certain extent, reduce the frequency of random break-
down, shorten processing time, and reduce energy con-
sumption and carbon emissions of machines so as to make
some contribution to achieve green production.

Inspired by the idea of multiverse theory, Mirjalili et al.
[2] designed a new heuristic algorithm, multiverse optimizer
(MVO) algorithm.*e algorithm involves fewer parameters,
simpler structure, and stronger search ability. It has been
applied in parameter optimization [3], image processing [4],
and flexible job shop scheduling [5]. However, its applica-
tion in RHFS problem is few. *is paper carries out the
research on TSGMM-SW, which only considers PM in the
manufacturing stage. *e contributions of this paper are as
follows:

(1) *e TSGMM-SW model is proposed for the first
time, which is more in line with the actual situation
of semiconductor wafer manufacturing line and can
achieve the balance among makespan, total carbon
emissions, and total PM costs.

(2) IHMMVO algorithm was designed for the first time
to solve the problem, which is a combination of
NSGA-II and MVO algorithm. *e improved op-
erations of the algorithm mainly include synchro-
nous scheduling and maintenance strategy, initial
population fusion strategy, subpopulation evolution
strategy, etc.

(3) A large number of comparison experiments were
performed on different scale test cases by IHMMVO
and other existing algorithms, respectively. *e effec-
tiveness and feasibility of IHMMVO were verified.

*e remainder of this paper is organized as follows. *e
related research literature is introduced in Section 2. *e
description and model of TSGMM-SW are introduced in
Section 3. Section 4 states the IHMMVO algorithm in detail.
Section 5 presents experimental results and analysis. Section
6 is a discussion to explain the main limitations and im-
plications of the study. Section 7 provides the conclusions
and future work directions.

2. Literature Review

In recent years, experts and scholars at home and abroad are
also continually conducting related discussion and research
in the field of semiconductor manufacturing. Kim and Lee
[6] used the input, output, and production quantity as the
scheduling coordination factors to update manufacturing
lead time and available WIP (work in process) level, which
realized the synchronization of semiconductor production
plan and scheduling decision. Bitar et al. [7] started the
research on unrelated parallel machine resource scheduling
problem in semiconductor lithography workshop. Jamrus
et al. [8] solved the flexible job shop scheduling problem in
semiconductor manufacturing under uncertain processing
time, with the objective of optimizing makespan. Jia et al. [9]
addressed the problem on reentrant batch-processing ma-
chines with incompatible job families in the semiconductor
wafer fabrication system. Hur et al. [10] studied the machine
setting, batch allocation, and batch sequence problems in the
semiconductor manufacturing system, which had certain
practical significance. Foumani et al. [11–14] started the
research on scheduling, production and inspection of ro-
botic cells in the flow shop environment. It is well known
that robotic cells are specifically designed for semiconductor
wafer fabrication. Tirkel [15] proposed an approach for
establishing a quantitative model to design the efficiency of
in-line inspection in semiconductor wafer. Ulrich et al. [16]
presented an automated and cycle time optimized path
planning algorithm for robot-based inspection systems. To
the best of our knowledge, most of the research on the
semiconductor manufacturing is limited to the study of its
manufacturing stage in the current literature, ignoring its
inspection and repair stage, which has a certain degree of
limitations. In the actual wafer processing process, wafers
are manufactured layer by layer. *e defects caused by a
manufacturing layer will be covered by a new layer because
they are not inspected and repaired in time [17]. As a result,
the final wafer testing phase cannot track the error link, so
the wafer cannot be repaired in an effective time, which
increases the proportion of defective products. *e specific
approaches and optimization objectives of the above typical
literature are shown in Table 1.

In recent years, heuristic algorithms have played a
greater advantage in solving RHFS combinatorial optimi-
zation problems and have shown strong competitiveness.
Mousavi et al. [18] studied a biobjective hybrid flow shop
scheduling problem, in which they considered reentrant
lines, setup times, and position-dependent learning effects.
Shen et al. [19] and Ying et al. [20] solved the reentrant
hybrid flow shop scheduling problem with the makespan
and the total tardiness criteria. Zhang and Chen [21]
addressed a production scheduling problem originating
from a real rotor workshop. Given its specific characteristics,
the problem was formulated as a reentrant hybrid flow shop
scheduling problem with machine eligibility constraints.
Sangsawang et al. [22] designed a two-stage RHFS problem
with blocking constraints, aiming at minimizing makespan.
Chamnanlor et al. [23] studied the RHFS problem with
time window constraints, which often occurred in the
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manufacturing system producing the slider parts of hard
disk drives. *e above literature provides a good reference
for the research of RHFS problem, but most of them involve
only one stage of RHFS problem. *e specific approaches
and optimization objectives of the above typical literature
are shown in Table 2.

*ere have been many studies on green manufacturing.
Yin et al. [24] established a low-carbon mathematical
scheduling model with machine speed as an independent
decision variable and designed the corresponding encoding
and decoding method and crossover mutation operator. *e
validity of the model and method for low-carbon job shop
scheduling problem was illustrated by an engineering ex-
ample. Liu et al. [25] proposed a method for calculating
carbon footprint of products and a multiobjective model for
minimizing production cycle and carbon footprint, which
can effectively provide carbon labels for future life cycle
products of manufacturing enterprises. Sihag and Sangwan
[26] established a multiobjective mathematical model for
optimizing carbon emissions and processing time in turn-
eries, which could select the best cutting parameters for
manufacturing enterprises, reduce carbon emissions, and
improve processing efficiency. For single-machine sched-
uling and multivehicle routing problems, Wang et al. [27]
designed a mathematical programming model with the
objective of minimizing total carbon emissions. Experiments
on an enterprise case and 20 simulation cases verified the
effectiveness of the proposed algorithm in guiding green
manufacturing. Foumani and Smith-Miles [28] put forward
a mixed integer linear model aiming at optimizing pro-
duction time and carbon emissions on the basis of con-
sidering three common carbon emission reduction policies
of flow shop. He considered the impact of carbon emissions
reduction policy on the economic competitiveness of
manufacturing industry from the perspective of environ-
mental policymakers. Wang and Feng [29] constructed the
green degree evaluation system of equipment manufacturing
industry and also proposed policy recommendations for the
green degree of China’s equipment manufacturing industry
from the perspectives of improving relevant policies, tech-
nological upgrading and environmental protection input,

applying legal policy systems, and increasing financial
support. Zhang et al. [30] provided a general model and
overall framework of green manufacturing for industrial
enterprises. According to the needs and conditions, enter-
prises could construct and formulate a clear plan for the
implementation of green manufacturing that conforms to
their actual situation of enterprises. *e specific approaches
and optimization objectives of the above typical literature
are shown in Table 3.

In a literature about PM research, Liu et al. [31] proposed
a comprehensive decision-making model, which considered
the coordination of preventive maintenance and single ma-
chine scheduling. *e problem of maintenance shortage or
overage caused by only considering PM was avoided. Huang
et al. [32] designed cluster particle swarm optimization al-
gorithm to shorten the manufacturing cycle and effectively
reduce energy consumption aiming at the problem of cleaner
production by adding deteriorating maintenance operations
to flow shop with two-stage multiprocessors. Ladj et al. [33]
addressed the PM problem of a single multifunctional ma-
chine based on health management. Xiao et al. [34] built a
joint optimization model with the objective of minimizing the
total costs, including production costs, PM costs, mainte-
nance costs of unexpected breakdown, and delay costs.
Optimal PM interval and allocation strategy for each job can
be obtained by solving this problem. Golpı̂ra and Tirkolaee
[35] introduced an original concept entitled “stable mainte-
nance tasks scheduling,” which incorporated robust opti-
mization concept into the maintenance and repair tasks
scheduling problem. Goli et al. [36] addressed a novel robust
flow shop scheduling problem with outsourcing option where
jobs could be either scheduled for inside or outsourced to one
of the available subcontractors. Capacity limitation for inside
resource, just-in-time delivery policy, and uncertain pro-
cessing time were the key assumptions of the proposedmodel.
*e specific approaches and optimization objectives of the
above typical literature are shown in Table 4.

In summary, the current literature rarely uses MVO al-
gorithm to solve the scheduling optimization integration
problem, and it also rarely optimized makespan, total PM
costs, and total carbon emissions simultaneously. In addition,

Table 1: Typical literature about semiconductor manufacturing research.

Literature Approaches Objectives

Kim and Lee [6] Iterative algorithm Realize the synchronization of production plan and
scheduling decision

Bitar et al. [7] Memetic algorithm Minimize weighted flow time, maximize the number of
processed products

Jamrus et al. [8] Hybrid algorithm combining particle swarm optimization
with Cauchy distribution and genetic algorithm Minimize makespan

Jia et al. [9] Improved combined scheduling algorithm Minimize total weight tardiness

Hur et al. [10] Greedy random adaptive search algorithm Maximize weighted throughput during the 2–5 day
planning period

Foumani et al.
[11–14] *eoretical analysis, theorem proving and heuristic method Optimize the scheduling, production and inspection

problems of robotic cells in flow shop environment
Tirkel [15] Quantitative model and sensitivity analysis Modelling the efficiency of in-line inspection

Ulrich et al. [16] Probabilistic roadmap method applied on all measurement
poses and A∗ search algorithm Finding the optimal path between measurement poses
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most of them study the RHFS problem about one stage. *e
research of this paper fills the gap. *e TSGMM-SW model
established in this paper studies the two-stage reentrant hybrid
flow shop scheduling problem in wafer manufacturing pro-
cess. *at is, when wafers are processed one layer through all
stations in manufacturing stage, they enter into the inspection
and repair stage immediately. *e wafers undergo inspection
and repair in time to improve the qualification rate. In ad-
dition, the model can achieve the balance among makespan,
total PM costs, and total carbon emissions.

3. Problem Description and
Model Establishment

3.1. Description of TSGMM-SW. TSGMM-SW consists of
two stages: the first stage is the manufacturing stage of

semiconductor wafers and the second stage is the inspection
and repair stage, in which each stage is an independent
RHFS problem. *e problem can be described as that n jobs
need to be processed. job i Among them, needs to processed
Li layers (re-entry number). Besides, the re-entry number of
each job can be different. *ere are s stations in the first
stage, and station l has ml(ml ≥ 1) parallel machines that can
be chosen. Besides, at least one station has more than one
parallel machine. In the second stage, there are two stations,
one is the inspection station and the other is the repair
station, and each job needs to reenter Li

′ times. All of the jobs
pass through each station in the same sequence of processing
constraints, and each job is processed Li(s + 2Li

′) times in
total [17]. It is assumed that there is infinite capacity of buffer
between continuous processing stations. *e processing
process is uninterrupted. Each wafer can restart processing

Table 3: Typical literature about green manufacturing research.

Literature Approaches Objectives

Yin et al. [24] Multiobjective genetic algorithm
based on simplex lattice Optimize productivity, energy efficiency, and noise reduction

Liu et al. [25] Improved fruit fly algorithm Minimize makespan and energy consumption
Sihag and Sangwan
[26] Multiobjective genetic algorithm Minimize makespan and carbon emissions

Wang et al. [27] Hybrid tabu search algorithm Minimize carbon emissions
Foumani and Smith-
Miles [28] CPLEX Minimize makespan and carbon emissions

Wang and Feng [29] Improved particle swarm algorithm Measure the green degree

Zhang et al. [30] System engineering method Improve the green rate of manufacturing technology and manufacturing
process and reduce the environmental impact rate of resources

Table 4: Typical literature about PM research.

Literature Approaches Objectives
Liu et al. [31] Genetic algorithm Minimize the production costs and tardiness costs

Huang and Yu [32] Cluster particle swarm
algorithm Minimize makespan

Ladj et al. [33] Improved genetic algorithm Minimize the total interventions costs

Xiao et al. [34] Stochastic key genetic
algorithm Minimize the total costs

Golpı̂ra and Tirkolaee
[35] CPLEX Minimize the total costs of the maintenance and maximize the stability/robustness

of the schedule
Goli et al. [36] CPLEX Minimize the total-weighted time and the total costs of outsourcing

Table 2: Typical literature about RHFS research.

Literature Approaches Objectives

Mousavi et al. [18] Improved genetic algorithm Minimize makespan and
tardiness

Shen et al. [19] Improved teaching-learning-based algorithm Minimize makespan and
tardiness

Ying et al. [20] Iterative greedy algorithm Minimize makespan and
tardiness

Zhang and Chen
[21] Improved discrete differential evolution algorithm Minimize tardiness

Sangsawang et al.
[22]

Combining adaptive genetic algorithm based on fuzzy logic controller with particle swarm
optimization based on Cauchy distribution Minimize makespan

Chamnanlor et al.
[23] Hybrid optimization algorithm based on genetic algorithm and ant colony algorithm Minimize makespan
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the next layer after the inspection and repair stage. *e PM
fixed costs are same for all machines in each station. Figure 1
shows the schematic diagram of TSGMM-SW problem.

Semiconductor wafer fabrication factories cannot keep
machines in working state all the time; jobs to be processed
have to wait for the process of the previous operation to be
completed or the selected machine to be idle. *e longer the
waiting time is, the greater the change of the production
environment will occur. *e machine will produce degra-
dation effect, and the actual processing time of jobs will
gradually increase.*e actual processing time of machines is
calculated by the following equation:

Tijlk � Tijlk × tω
τ

, (1)

where Tijlk is the actual processing time of oij, Tijlk is the
standard processing time of oij, tω is the waiting time before
processing oij, and τ is degradation factor, assuming that the
degradation factor of machines with the same serial number
at each station is the same. In practical production appli-
cations, the two-parameter Weibull distribution tends to
describe the failure rule of machines [37]. *e failure rate
function of machines is,

p(t) �
m

β
t

β
 

m− 1

exp −
t

β
 

m

 , (2)

where m> 0 and β> 0, m denotes shape parameters, and β
denotes scale parameter.

*e reliability R of machines at runtime t is shown in the
following equation [38]:

R � exp −
z

β
  

m

, (3)

where Z denotes the service age.
According to equation (4), the service age when R

reaches the threshold value is calculated.

z0 � β − InR0( 
1/m

, (4)

where R0 is the minimum reliability threshold value of
machines. During the processing, as long as service age of
machines is not less than Z0, the machine needs to perform
PM at any time.

After PM, the machines cannot completely restore to
their original state. *e initial service age of machines after
PM is shown in the following equation:

Zk � Z′ 1 − pk( , (5)

where Zk is the service age of machine k after PM, Z′ is
actual service age of machine k before PM, and pk is service
age regression factor of machine k.

3.2. Model of TSGMM-SW

3.2.1. Model Description. TSGMM-SW studied in this
paper aims at minimizing makespan (Cmax), total carbon
emissions (TCT), and total PM costs (TCost). (Cmax) is
the completion time of the last job in the inspection and
repair stage. TCT is the sum of carbon emissions gen-
erated from the manufacturing stage and the inspection
and repair stage. *is paper only considers PM in
manufacturing stage, so TCost is the sum of PM costs in
manufacturing stage. Among them, TCT is the green
indicator. *e consumption of coolant, the loss of raw
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Figure 1: Schematic diagram of TSGMM-SW problem.
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materials, and the carbon emissions from the power
consumption of equipment switches are not related to
workshop scheduling. So, this paper only considers the
carbon emissions generated from power consumption
during processing and idling of equipment. Also, the
carbon emissions generated from lubricants used by
equipment are considered too. *e relevant parameters
in TSGMM-SW model are shown in Table 5.

*e objective functions and constraints are shown as
below:

f1 � min Cmax( , (6)

f2 � min(TCT), (7)

f3 � min(TCost), (8)

where

Cmax ≥Ci, i � 1, 2, . . . , n, (9)

TCT � TCPM + TCPR + TCIM + TCIR
+ TCRM + TCRR,

(10)

TCost � 
s

l�1


ml

k�1
GCostlk + tplk × VCostlk(  , (11)

TCPM � 
s

l�1


ml

k�1


n

i�1


ni− 2Li
′

j�1
rijlkFePWlkTijlk, (12)

TCPR � 
s′

l′�1



mi
′

k′�1



n

i�1


2Li
′

j�1
rijl′k′FePWl′k′Tijl′k′ , (13)

TCIM � 
s

l�1


ml

k�1
FePIlkTIlk, (14)

TCIR � 
s′

l′�1



ml
′

k′�1

FePIl′k′TIl′k′ , (15)

TCRM � 

s

l�1


ml

k�1

tclosel,k − topenl,k

TRlk

URlkFR, (16)

s.t.

TCRR � 
s′

l′�1



ml
′

k′�1

tclosel′,k′ − topenl′ ,k′

TRl′k′
URl′k′FR, (17)

rijlk Sij + Tijlk ≤ ri,j+1,l∗ ,k∗Si,j+1, ∀i, j, l, l
∗ and l≠ l

∗
, (18)



ml

k�1
rijlk � 1, ∀i, j, l, (19)

G × 2 − rijlk − rghlk  + G × 1 − Zij,gh,lk  + Sgh − Sij 

≥Tijlk, ∀i, g, j, l, h, k, i≤g, Oij ∈ Ul, Ogh ∈ Ul,

(20)

G × 2 − rijlk − rij∗l∗k∗  + G × 1 − Zij,ij∗,l∗k∗  + Sij∗ − Sij 

≥Tijlk, ∀i, j, j
∗
, l, l
∗
, k, k
∗
, j< j
∗
, Oij ∈ Ul, Oij∗ ∈ Ul.

(21)

Equations (6)–(8) are three objective functions.
Equation (9) is the definition of makespan. Equation (10)
is the definition of the total carbon emissions. Equation
(11) is the definition of the total PM costs. Equations (12)
and (13) indicate the total carbon emissions generated
from machines processing in manufacturing stage and in
inspection and repair stage, respectively. Similarly,
equations (14) and (15) indicate the total carbon emissions
generated from machines in idle state in manufacturing
stage and in inspection and repair stage, respectively.
Equations (16) and (17) indicate the total carbon emis-
sions generated from the use of lubricants in
manufacturing stage and in inspection and repair stage,
respectively. Equation (18) ensures the completion time of
Oij must be earlier than the start time of Oij+1. Equation
(19) ensures any operation can be processed on only one
machine in the corresponding station. Equations (20) and
(21) ensure each machine in any station can only process
at most one operation at the same time. Equations
(18)–(21) are the constraints in the manufacturing stage,
and they are similar to those in the inspection and repair
stage; the value range of stations is [1, 2].

3.2.2. Model Complexity Analysis. Under the premise that
the model structure is determined, the computational com-
plexity is related to the number of decision variables and
constraints. *e TSGMM-SW model involves two stages,
namely, themanufacturing stage and the inspection and repair
stage. *e number of its decision variables is 

s
l�1ml(

n
i�1Li +

1) + 
2
l′�1ml′(

n
i�1Li
′ + 1). *e number of constraints in the

manufacturing stage is ns2(
n
i�1ni + 

n
i�1(ni/2)(ni − 1)

(
s
l�1ml)

2) + ns
n
i�1ni(1 + ((n − 1)/2)

n
g>ing). *e number

of constraints in the inspection and repair stage is 4n

(
n
i�1ni + 

n
i�1(ni/2)(ni − 1)(

s
l�1ml′)

2) + 2n
n
i�1ni(1+((n −

1)/2) 
n
g>ing) + n. From the number of variables and

constraints above, we can see that the TSGMM-SW model
solves very complex intractable problem.

4. Proposed IHMMVO Algorithm

4.1. Basic MVO Algorithm [2]. MVO finds the solutions
through the interaction between white holes, black holes,
and wormholes. Each universe represents a viable solution
to the problem. Each object in the universe represents the
variables in each solution, and the expansion rate of
universes represents the fitness value of the solution.
Universes with higher expansion rates are considered to
have white holes, and those with lower expansion rates are
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considered to have black holes. Particles in the universe
move from white holes (sending) to black holes (accepting)
through a medium called wormholes. Eventually, all matter
in the universe reaches its optimum position by exploring
the search space. In each iteration of the algorithm, the
roulette method is used to select a white hole from universe
individuals which are sorted by expansion rate. *e pop-
ulation is described as

U �

x1
1 x2

1 . . . xd
1

x1
2x

2
2 . . . xd

2

. . .

x1
nx2

n . . . xd
n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (22)

where d is the number of variables, n is the number of
universes (the number of candidate solutions), and x

j

i is

Table 5: Mathematical notations and meanings.

Notations Meanings
n Total number of jobs
ni Total number of operations contained in job i

s Number of stations in manufacturing stage
l Serial number of stations in manufacturing stage, l � 1, 2, . . . , s

ml Number of parallel machines at station l in manufacturing stage
k Serial number of machines at station l, k � 1, 2, . . . , ml, k � 1, 2, . . . , ml

Li Reentry number of job i in manufacturing stage
s′ Number of stations in inspection and repair stage, s′ � 2
l′ Serial number of stations in inspection and repair stage, l′ � 1, 2
ml′ Number of parallel machines at station l′ in inspection and repair stage
k′ Serial number of machines at station l′, k′ � 1, 2, . . . , ml′
Li Reentry number of job i in inspection and repair stage
oij *e j-th operation of job i

Tijlk Processing time of oij on machine k at station l

Tijl′k′ Inspection and repair time of oij on machine k′ at station l′
G A large positive number
PWlk Processing power of machine k at station l

PIlk Idle power of machine k at station l

TIlk Idle time of machine k at station k

PWl′k′ Processing power of machine k′ at station l′
PIl′k′ Idle power of machine k′ at station l′
TIl′k′ Idle time of machine k′ at stage l′
TCPM Total carbon emissions from machines processing in manufacturing stage
TCPR Total carbon emissions from machines processing in inspection and repair stage
TCIM Total carbon emissions from machines in idle state in manufacturing stage
TCIR Total carbon emissions from machines in idle state in inspection and repair stage
TCRM Total carbon emissions from lubricants used by machines in manufacturing stage
TCRR Total carbon emissions from lubricants used by machines in inspection and repair stage
Fe Carbon emission factor of electric energy
tclosel,k *e finishing time of machine k at station l (the finishing time of the last operation on machine k)
topenl,k *e start time of machine k at station l (the start time of the first operation on machine k)
tclosel′ ,k′ *e finishing time of machine k′ at station l′ (the finishing time of the last operation on machine k′)
topenl′ ,k′ *e start time of machine k′ at station l′ (the start time of the first operation on machine k′)
URlk *e usage amount of lubricants on machine k at station l

URl′k′ *e usage amount of lubricants on machine k′ at station l′
TRlk Effective service time of lubricants on machine k at station l

TRl′k′ Effective service time of lubricants on machine k′ at station l′
FR Carbon emissions factor of lubricants
Ci *e start time of Oi,j

Ul *e set of all operations processed at station l; due to the reentrant characteristics, the same job may appear multiple times in it
Ci *e completion time of job i

VCostlk PM unit activity costs of machine k at station l

GCostlk PM fixed costs of machine k at station l

tplk PM time of machine k at station l

Idletimelk *e idle time of machine k at station l before the next operation starts processing
rijlk 1 indicates Oij is processed on machine k at stage l; 0 indicates Oij is not processed on machine k at stage l

rijl′k′
1 indicates Oij is inspected or repaired on machine k′ at stage l′; 0 indicates Oij is not inspected and repaired on machine k′ at

stage l′
Zij,gh,lk 1 indicates Oij is processed before Ogh on machine k at stage l; 0 indicates Oij is not processed before Ogh
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the j-th dimension of the i-th universe, which is de-
scribed as

x
j
i �

x
j

k, r1 <NI Ui( ,

x
j
i , r1 ≥NI Ui( ,

⎧⎪⎨

⎪⎩
(23)

where Ui represents the i-th universe, NI(Ui) represents
normalized expansion rate of the i-th universe, xj

k represents

the j-th dimension of the k-th universe selected by the
roulette method, and r1 is a random number between [0, 1].

In order to increase the expansion rate of objects through
wormholes, it is assumed that wormhole tunnels are always
built between each universe and the optimal universe. *e
location of black holes in the optimal universe is updated by
the following equation:

x
j
i �

Xj + TDR × ubj − lbj  × r4 + lbj , r3 < 0.5, r2 <WEP,

Xj − TDR × ubj − lbj  × r4 + lbj , r3 ≥ 0.5, r2 <WEP,

x
j
i , r2 ≥WEP,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(24)

where Xj represents the j-th dimension of the current
optimal universe, ubj and lbj are the upper and lower
bounds of the j-th dimension respectively, r2, r3, and r4
represent random numbers between [0, 1], respectively,
WEP indicates the existence rate of wormholes, and it is
calculated by equation (25), and TDR indicates the travel
distance ratio of the object around the current optimal
universe, and it is calculated by equation (26).

WEP �
WEPmin + l × WEPmax − WEPmin( 

L
, (25)

TDR � 1 −
l1/p

L1/p, (26)

where WEPmax represents the maximum value of WEP,
WEPmin represents the minimum value of WEP, l represents
the current number of iterations, L represents the maximum
number of iterations, and p represents mining accuracy of
the algorithm.

4.2. IHMMVO Algorithm for Solving TSGMM-SW

4.2.1. IHMMVO Algorithm Flow. *e IHMMVO algorithm
proposed in this paper adds fast nondominated sorting,
crowding distance calculation, and elite strategy to solve the
multiobjective optimization problem based on the single-
objective MVO algorithm. In addition, the improvements
mainly include the following aspects: synchronous sched-
uling and maintenance strategy, initial population fusion
strategy, and subpopulation evolution strategy. *e flow-
chart is shown in Figure 2.

4.2.2. Encoding and Decoding. *e basic MVO algorithm is
used to solve the single-objective optimization problem of
continuous function. If the individual’s position corre-
sponds to the continuous vector value, it is impossible to
update the processing sequence of jobs in the job shop
scheduling problem. In this paper, the random key rule
based on ascending order is used to map the position of
individuals and the processing order of jobs. By changing
the position information of individuals, the processing

order of jobs is changed, so different scheduling schemes
are constructed. For the manufacturing stage of TSGMM-
SW, greedy strategy is adopted to decode, i.e., arrange the
processing operation of each job in turn on the machine
that can start processing it at the earliest time at each
station. *is decoding method can quickly calculate the
service age of each machine and make it easier to judge
whether the machine needs PM or not. For the inspection
and repair stage of TSGMM-SW problem, PM operation is
not considered, and the service age of machines is not
required to be calculated. *e PS decoding method [20] is
used. *at is, if the idle time is enough to process the
operation, it will be inserted into the idle time gap for
processing.

*ere are three scheduling strategies for joint optimi-
zation of production scheduling and maintenance, namely,
scheduling before maintenance [39], maintenance before
scheduling [40], and synchronous scheduling and main-
tenance [41]. *e scheduling before maintenance strategy
needs to arrange the scheduling plan of jobs first and then
insert the PM into the idle gap of the machine. If the idle
gap cannot meet the PM time, you need to dynamically
adjust the start processing time of jobs. *is strategy in-
volves rescheduling, which is more complex and time
consuming. Maintenance before scheduling strategy sets
the PM period to be unavailable and schedules the jobs in
the remaining time. *is strategy ignores the actual pro-
cessing situation of machines in the factory and excessively
relies on the machine PM period determined by historical
experience. *e synchronous scheduling and maintenance
strategy makes up for the shortcomings of the above two
strategies. According to the machine reliability threshold,
the service age threshold of machines is determined. Every
time when a job is arranged, it is judged whether the service
age of machines reaches the threshold value. If it reaches
the threshold value, PM will be executed. Otherwise, the
jobs will continue to be arranged. *e actual processing
situation of machines will be fully considered, and no
additional dynamic adjustment of jobs is required.
*erefore, the third synchronous scheduling and mainte-
nance strategy is adopted in this paper. *e specific process
is as follows.
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Step 1. For the operation Oij+1 which waits for pro-
cessing, the machine that can start to process it at the
earliest time is selected at the corresponding station.
Judge Zt (service age of the selected machine k at the
moment t); if Zt + Ti,j+1,lk <Z0, machine k does not
need perform PM and Oij+1 is processed directly on the
machine k. Otherwise go to Step 2.

Step 2. If Ti,j+1,lk + Zt >Z0 &Zt <Z0 & Idletimelk < tplk,
ts (the start time of PM) is the maximum of Sm (the start
processing time of the selected machine k) and Cij (the
completion time of Oij ). *e end time of PM is
te � ts + tplk. So, the start time of Oij+1 is Sij+1 � te,
and execution ends and goes to step 5. Otherwise go to
Step 3.

Start

Yes

Form a new noninferior solution 
set and update the external Archive 

Yes

Initialize the population
1. Individuals of pop1 are randomly generated

2. Individuals of pop2 are generated by differential 
mutation on the basis of pop1

Combine pop1 and pop2Fast nondominated 
sorting

Crowding distance 
calculation

Select the first N individuals to 
form the initial population

Generate initaial 
external Archive 

No

Iteration times = 1

N/2 universe individuals 
perform Levy fight 

disturbance updation to form 
new offspring population C1

Combine C1 and C2

Judge whether the 
maximum number of

iterations is 
reached

End

Iteration 
times + 1

No

Fast nondominated 
sorting

Crowding distance 
calculation

N/2 universe individuals 
perform NSGA-II operation 

updation to form new 
offspring population C2

Figure 2: *e flowchart of IHMMVO.
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Step 3. If Ti,j+1,lk + Zt >Z0 &Zt <Z0 & Idletimelk ≥ tplk,
te is the maximum of Sm and Cij. *at is, PM is inserted
into the idle time on machine k before starting Oij+1,
without affecting the start time Sij+1.*en, ts � te − tplk

and Sij+1 � te, and execution ends and goes to Step 5.
Otherwise go to Step 4.
Step 4. If Zt � Z0, ts is the time when the machine can
start processing Oij+1, i.e., ts � Sm. *en, te � ts + tplk.
Sij+1 is the maximum of te and Cij, and execution ends
and goes to Step 5.
Step 5. Record S∗ij+1,k (the earliest start time of Oij+1 on
machine k) after considering PM on the selected ma-
chine k. Determine the earliest start time of Oij+1 on the
remaining machines at the corresponding station in
turn. First, judge whether the other machines need to
perform PM if they process Oij+1. If there is no need,
then S∗ij+1,k∗ � Sij+1. Otherwise, perform the calculation
of Sij+1 according to Steps 1–4. Finally, the earliest start
time of processing Oij+1 for all machines (considering
PM) is obtained.
Step 6. According to the machine serial number order,
select a machine that can start processing Oij+1 at the
earliest time and assign it to process.

In order to describe synchronous scheduling and
maintenance strategy more clearly, this paper gives a de-
tailed description through a small-scale test example. *e
example includes four jobs; [1, 2, 4, 3] is the encoding mode,
that is, decoding the job 1, 2, 4, and 3 in turn. In this ex-
ample, all machines belonging to the same station in the two
stages have the same processing power, idle power, effective
use time, and usage of lubricants. For the manufacturing
stage, there are 3 stations, and the number of parallel ma-
chines at the same speed is 3, 2, and 2, respectively. *e PM
fixed costs are the same for all machines belonging to the
same station, but the PM unit activity costs are set differ-
ently. Reliability thresholds of the machines having the same
serial number at each station are the same. *ere are two
stations in the inspection and repair stage. One is the in-
spection station and the other is the repair station. *ere are
two parallel machines at the same speed in each station. *e
relevant parameters and values for the two stages are shown
in Tables 6 and 7. In addition, the carbon emission factor of
electric energy is 1.8742×10− 7 kgCO2/J, and the carbon
emission factor of lubricants is 469 kgCO2/m3 [42]
(1 L� 0.001m3, 1 kw/h� 3.6×106 J). According to equation
(4), the service age thresholds of machines for PM are
[21, 28, 43] (unit: min).

Figure 3 shows the scheduling Gantt chart for this ex-
ample. Take the first machine at station 1 as an example.
Before processing the third layer of Job1, the first and second
layers of it and the first layer of Job3 and the second layer of
Job2 have already been arranged to process at station 1. *e
machine is idle before processing the second layer of Job1,
and the idle time is 10min, so it is necessary to consider the
influence of machine’s degradation effect. *e machine’s
degradation factor is 0.1, and the actual processing time of
Job1 on the first machine at station 1 is T2

111 �

round(2 × 100.1) � 3min. Similarly, the machine is idle
before processing the second layer of Job2, the idle time is
3min, and T2

211 � round(4 × 30.1) � 4min. After the second
layer of Job2 is processed, the machine’ service age is the
total processing time on the machine Z′ � 5 + 6+

3 + 4 � 18min. If the third layer processing of Job1 is
performed, the machine is idle before processing, and the
idle time is 14min; then, T3

111 � round(4 × 140.1) � 5min.
*emachine’s service age threshold is 21min and PM time is
4min because Z′ + T3

111 � 18 + 5 � 23> 21 and the PM time
is less than the idle time, so according to the scheduling and
maintenance strategy, PM should be executed in the idle
time of themachine before processing the third layer of Job1,
without affecting the start time of it. *e second machine
and the third machine at the station 1 are also analyzed. If
the third layer of Job 1 is processed on them, although PM is
not required, the start times are same with the first machine.
*en, when decoding, according to machine serial order, the
final decision is to process the job on the first machine. *e
first machine of station 2 and station 3 is similar to the above
example; due to limited space, there are no more details. On
the second machine of station 3, the processing time of Job2
and Job3 is 13min and 3min, respectively, for the first layer.
*e machine is idle before processing the second layer of
Job4, the idle time is 16min, and the machine’s degradation
factor is 0.15. *en, the actual processing time is
T2
432 � round(5 × 160.15) � 8min. Also, the machine is idle

before processing the third layer of Job2, the idle time is
11min, and the actual processing time is T3

232 � round(3×

110.15) � 4min. At this moment, the machine’s service age is
Z′ � 13 + 3 + 8 + 4� 28min. Because the second machine’s
service age is 28min and Z′ � Z0, PM should be executed
immediately after Job2 is processed. Finally, three objective
values were obtained as follows: Cmax � 77min, TCT �

0.3538 kgCO2, and TCost � 143 RMB.

4.2.3. Initialization Population Fusion Strategy. For the
bionic intelligent optimization algorithm, the initial pop-
ulation has a very important impact on the search efficiency
and the quality of the solutions. In order to expand the
diversity of the population, a better initial population is
screened by fusing the two populations.*e two populations
have the same size. *e individual’s position variables of
population pop1 are generated randomly, and the indi-
vidual’s position variables of population pop2 are generated
by differential evolution mutation operation based on the
position information of pop1 individuals. *ree individuals
are randomly selected from pop1 individuals and mutated to
form position variables of pop2 individuals. *e mutation
method is shown in the following equation:

pop2(i, :) � pop1(j, :) + rand ×(pop1(k, :) − pop1(p, :)),

(27)

where pop2(i, :) is the position variable of the i-th indi-
vidual in population pop2 and pop1(j, :), pop1(k, :), and
pop1(p, :) are the position variables of the j-th, k-th, and
p-th individuals which are randomly selected from pop1. In
addition, i≠ j, k, p. By enlarging the position variables of
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individuals, more job scheduling schemes can be obtained by
using random key coding rules. Combine the populations
pop1 and pop2, calculate the crowding distance, and per-
form fast nondominated sorting [43]. *en, select the first N
individuals to form the final initial population and get the
initial external archive Archive which is composed of
noninferior solution set.

4.2.4. Subpopulation Evolution Strategy. Divide the whole
population into two subpopulations popx and popy, each
with N/2 universe individuals. Implement different evolu-
tionary strategies for the two subpopulations. Among them,
Levy flight perturbationmutation operation is performed for
universe individuals in popx, and NSGA-II operation is
performed for universe individuals in popy. *ese opera-
tions can expand the search scope and the population’s

diversity, make the algorithm can jump out of local optimum
in the process of evolution, and avoid premature
convergence.

For subpopulation popx, WEP increases gradually
during the iteration of the basic MVO algorithm. In the early
iteration, it is less than the random number r2 , and the j-th
dimension variable of the i-th universe remains unchanged
according to equation (24). *is can easily cause the algo-
rithm to fall into the local optimal value. *erefore, this
paper introduces the Levy flight perturbation strategy to
perturb the position variables of universe individuals in the
early iteration and increase the diversity of the population.
By introducing the adaptive weighted learning factor w, the
offspring universe individuals can maintain the original
position information and can also carry out Levy distur-
bance to a certain extent. *e above operation increases the
universe individuals’ diversity and obtains a new offspring

Table 7: Processing time of jobs.

Jobs

Manufacturing stage Inspection and repair stage

First processing (the
first layer)

First reentry (the
second layer)

Second reentry (the
third layer)

First route
(the first
layer)

First
reentry
(the

second
layer)

Stations Stations Stations Stations Stations
1 2 3 1 2 3 1 2 3 1 2 1 2

Job1 5 6 4 2 6 8 4 3 6 2 1 2 1
Job2 5 4 13 4 6 7 5 2 3 2 0 1 2
Job3 6 4 3 2 5 7 6 2 0 1 0 2 1
Job4 9 5 8 6 2 5 6 3 4 1 2 2 1

Table 6: Related parameters and values.

Parameter Value
Manufacturing stage
Processing power of machines at each station [6, 5, 4] (kw/h)
Effective use time of lubricants on machines at each station [4.6, 4.3, 4.5] (h)
PM time of three machines at the first station [4, 4, 3] (min)
PM time of two machines at the third station [2, 5] (min)
PM unit activity costs of two machines at the second station [3, 5] (RMB)
PM fixed costs of all machines at each station [10, 12, 11] (RMB)
Degradation factor of the first machine at each station 0.1
Degradation factor of the third machine at each station 0.2
m in failure rate function 1.1
Idle power of machines at each station [2, 1.5, 1] (kw/h)
*e amount of lubricants used on machines at each station [0.31, 0.32, 0.33] (L)
PM time of two machines at the second station [2, 2] (min)
PM unit activity costs of three machines at the first station [5, 3, 4] (RMB)
PM unit activity costs of two machines at the third station [5, 5] (RMB)
Reliability thresholds of all machines at each station [0.85, 0.8, 0.7]
Degradation factor of the second machine at each station 0.15
Regression factor of service age 0.9
β in failure rate function 110
Inspection and repair stage
Processing power of machines at each station [3, 3] (kw/h)
Effective use time of lubricants on machines at each station [4.1, 4.2] (h)
Idle power of machines at each station [2, 3] (kw/h)
*e amount of lubricants used on machines at each station [0.25, 0.24] (L)
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population C1. Equations (28)–(31) are used for changing
individuals’ position variables.

x
j
i �

Xj + TDR × ubj − lbj  × r4 + lbj , r3 < 0.5, r2 <WEP,

Xj − TDR × ubj − lbj  × r4 + lbj , r3 ≥ 0.5, r2 <WEP,

wx
j
i +(1 − w) × Levy, r2 ≥WEP,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(28)

w � wmax − wmax − wmin(  ×
l

L
 

2

(29)

Levy �
u

|v|1/β
, u ∼ N 0, σ2u , v ∼ N 0, σ2v , (30)

σu �
Γ(1 + β)sin(πβ/2)

βΓ[(1 + β)/2](β− 1)/2 

1/β

, σv � 1, (31)

where w is a weighted learning factor, Levy is Levy flight
step, and β is a parameter between [1, 2], and we set it to 1.5.
u and v obey normal distribution.

For subpopulation popy, NSGA-II algorithm is used to
generate new subpopulations new1 and new2 by LOX
crossover [44] and swap mutation. Combine them to cal-
culate the crowding distance and perform fast non-
dominated ranking; the first N/2 individuals are selected to
obtain a new offspring population C2. Finally, the sub-
populations C1 and C2 are merged to form the final initial
population C at the beginning of the next iteration. *e
noninferior solution set of the population C is obtained, and
Archive is updated.

5. Simulation Experiments

In order to verify the effectiveness of the proposed
IHMMVO algorithm for solving TSGMM-SW, the experi-
mental phase is divided into two parts. *e first part selects
MMVO, MSSA, and IHMMVO algorithm for comparison.
Among them, MMVO is the basic algorithm of IHMMVO,
and MSSA has been proved to have high convergence and
good divisibility in solving multiobjective optimization
problems in literature [45]. Besides, both of them have
simple structure, strong search ability, and fast convergence
ability in solving complex problems, so we select them as
comparative algorithms. In order to further verify the
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Figure 3: Scheduling Gantt chart of the synchronous scheduling and maintenance strategy.
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validity of IHMMVO algorithm, the second part selects two
canonical multiobjective evolutionary algorithms
(MOEA)—NSGA-II algorithm [43] and MOPSO algorithm
[46] for comparative analysis, which are classical and ef-
fective algorithms for solving multiobjective problems. In
the experimental stage, in order to make the three objective
functions in the same order of magnitude, the min-max
normalization was carried out. In order to ensure the
fairness of the comparison, experimental simulation envi-
ronment is set to Windows 10 operating system, with Intel
(R) Core (TM) i7-4770 CPU @3.40GHz and 8GB memory,
and programming software is MATLAB R2017a.

5.1. Test Cases and Parameter Setting. Since there is no
dataset for solving TSGMM-SW in the published literature,
the dataset setting method in [17] is referenced to generate
test cases. *e dataset includes 5 job number criteria, 2
reentry number criteria, 3 station number criteria, and 3
machine number criteria, a total of 5∗ 2∗ 3∗ 3� 90 pa-
rameter combinations. For each parameter combination, 10
test cases are generated randomly, including 90∗10� 900
test cases. *e parameters and their values involved in the
dataset are shown in Table 8.

*e setting of algorithm parameters has an important
influence on its performance. *e IHMMVO algorithm
designed in this paper involves four key parameters, namely,
the maximum value of weighted learning factor wmax, the
minimum value of weighted learning factor wmin, crossover
probability Pcrossover, and mutation probability Pmutation. *e
Taguchi method is used for experiments to study the so-
lution results of various parameter combinations to the
scheduling problem, and finally the optimal parameter
combination is determined. *e remaining parameters are
selected based on experience. For the fairness of experi-
ments, the same parameter involved in the rest of com-
parison algorithms is same with IHMMVO. *e specific
parameter settings are shown in Table 9.

5.2. Performance Test and Result Analysis. In this paper SP,
GD, and IGD are selected as evaluation indicators [44]. For
the investigated problem, the Pareto optimal solutions of all
test algorithms are regarded as the final Pareto optimal
solutions. For TSGMM-SW, 10 test cases are generated
randomly by each parameter combination. Simulation ex-
periments are carried out with all the comparison algo-
rithms. *e average value is taken as the final result of the
parameter combination, and the optimal values of each
evaluation indicator are shown in bold. Table 10 shows the
experimental result comparison of IHMMVO, MMVO, and
MSSA. It can be seen that for SP indicator, the dominant
proportion of IHMMVO is 51%, the dominant proportion of
MMVO is 43%, and the dominant proportion of MSSA is
6%. For GD indicator, the dominant proportion of
IHMMVO is 91%, the dominant proportion of MMVO is
9%, and the dominant proportion of MSSA is 0%. For IGD
indicator, the dominant proportion of IHMMVO is 96%, the
dominant proportion of MMVO is 4%, the and dominant
proportion of MSSA is 0%. All of the above indicates the

diversity and convergence of Pareto frontier solutions ob-
tained by IHMMVO algorithm are superior to MMVO and
MSSA algorithms; for the distribution of Pareto frontier
solutions, IHMMVO is superior to MSSA algorithm, just
slightly better than MMVO.

Table 11 shows the experimental result comparison of
IHMMVO, NSGA-II, and MOPSO. It can be seen that for
GD and IGD indicators, IHMMVO algorithm is superior to
NSGA-II and MOPSO algorithm and the dominant pro-
portion is 100%, which indicates the diversity and con-
vergence of Pareto frontier solutions obtained by IHMMVO
algorithm are superior to NSGA-II and MOPSO algorithm.
For SP indicator, the dominant proportion of IHMMVO is
69%, the dominant proportion of NSGA-II is 10%, and the
dominant proportion of MOPSO is 21%. *at is, for most of
the test cases, IHMMVO is superior to other comparison
algorithms in the distribution of Pareto frontier solutions.

Tables 10 and 11 show the advantages and disadvantages
of several comparison algorithms from a macro perspective.
Table 12 judges whether there is a significant difference
between the evaluation indicator of each comparison al-
gorithm by performing Wilcoxon signed rank test on all
experimental results. *e values outside the brackets are the
experimental results between IHMMVO, MMVO, and
MSSA, and the values inside the brackets are the experi-
mental results between IHMMVO, NSGA-II, and MOPSO.
It can be concluded that there are significant differences
between IHMMVO algorithm and the other four compar-
ison algorithms for GD and IGD indicators. For SP indi-
cator, IHMMVO algorithm has significant differences with
other comparison algorithms except MMVO. *rough the
analysis of the above experimental results, it can be inferred
that IHMMVO algorithm proposed in this paper can ef-
fectively solve TSGMM-SW problem and has certain
competitiveness and advantages compared with other
comparative algorithms. *e Pareto frontiers of several al-
gorithms for 10∗ 2∗ 5∗ 5 case, 30∗ 2∗ 8∗ 9 case,
40∗ 3∗ 5∗10 case, and 50∗ 2∗ 6∗11 case are clearly il-
lustrated in Figure 4. We can find IHMMVO is closer to the
optimal frontier.

5.3. Case Analysis. In this paper, a 10∗ 2∗ 8∗ 3 test case is
selected for concrete analysis. Assume that there are 8
stations in the production line, including oxidation, depo-
sition, injection, metallization, lithography, etching, pol-
ishing, and cleaning. *e number of parallel machines on
each station is 3, and the number of jobs for processing is 10.
*e processing level is 2. *e reliability thresholds of the
three machines at each station are [0.5, 0.4, 0.55]. For other
parameters, refer to Table 8. Compare the Pareto optimal
solution set and job scheduling schemes obtained by con-
sidering PM and without considering PM. *e results are
shown in Table 13. Among them, the values outside brackets
are the experimental results considering PM, while the
values inside brackets are the experimental results without
considering PM. It can be seen that makespan and total
carbon emissions can be optimized to some extent by taking
PM operation into account in semiconductor production
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line. Besides, Figure 5 shows the scheduling Gantt chart of
the third scheduling scheme 4-9-3-5-8-6-7-10-2-1 in Ta-
ble 13. It can be found that most PM is executed in the idle
period of machines, which has little impact on the start time
of the next operation. But it can effectively alleviate the
degradation effect of machines caused by long-term con-
tinuous production and reduce the makespan of jobs as a
whole. To sum up in conclusion, PM is an important factor
for semiconductor wafer fabrication enterprises to achieve
cleaner production.

*e sensitivity analysis method is used to analyze the
importance degree of reliability threshold R for the three

optimization objectives of this paper. *e three objective
function values are the averages of all the solutions in op-
timal Pareto solution set. *e sensitivity coefficient is cal-
culated by the following equation:

SfR �
Δf/f
ΔR/R

, (32)

where SfR is the sensitivity of objective function value to
factor variable R, Δf/f is the change rate of objective
function value f, and ΔR/R is the change rate of factor
variable R. Figure 6 shows the effect of ΔR/R on the op-
timization objectives. Figures 6(a)–6(c), respectively, rep-
resent the change trend of the three objectives values with
the increase of ΔR/R. It can be seen that Cmax and TCT
increase with the increase of ΔR/R, while TCost decreases.
Figure 6(d) shows the change trend of sensitivity coefficient
of objective function values. *e change curve of Cmax and
TCT basically coincides, and the latter is slightly larger than
the former, indicating that the influence of ΔR/R on the two
is almost the same. *e change curve of TCost is obviously
above the change curve of the former two, indicating that
ΔR/R had greater influence on TCost than on Cmax and
TCT.

6. Discussion

From the experimental results in Figure 4, it can be seen
that in the multiobjective optimization problem, the
optimization of one indicator will inevitably cause the

Table 9: Main parameters and values of each algorithm.

Parameter Value
Iteration number 50
WEP_Max (IHMMVO, MMVO) 1
Wmax (IHMMVO) 0.95
Pcrossover (IHMMVO, NSGA-II) 0.8
Size of Archive (MOPSO) 50
Learning factor c1 (MOPSO) 1
Number of grids per dimension (MOPSO) 7
Popsize 50
WEP_Min (IHMMVO, MMVO) 0.2
Wmin (IHMMVO) 0.05
Pmutation (IHMMVO, NSGA-II) 0.3
Inertia weight w (MOPSO) 0.5
Learning factor c2 (MOPSO) 2
Mutation probability (MOPSO) 0.1

Table 8: Main parameters and values in the dataset.

Parameter Value
Number of jobs 10, 20, 30, 40, 50
Number of stations in manufacturing stage U [4, 6], U [5, 7], U [6, 8]
Processing time of jobs U [2, 10]
Inspection time of jobs U [1, 2]
Processing power of machines at each station in manufacturing stage U [5, 8]
Reliability of machines at each station in manufacturing stage U [0.4, 0.6]
m in failure rate function 1.1
Processing power of machines at each station in inspection and repair stage U [3, 6]
*e amount of lubricants used on machines at each station in manufacturing stage U [0.2, 0.4]
*e amount of lubricants used on machines at each station in inspection and repair stage U [0.2, 0.4]
PM fixed costs of machines U [10, 15]
PM time of machines U [2, 5]
Carbon emissions factor of electric energy 1.8742×10− 7

Reentry number in manufacturing stage U [1, 2], U [2, 3]
Number of machines at each station in manufacturing stage [Number of jobs/5] +1 or +2 or +3
Stations in inspection and repair stage 2
Repair time of jobs U [0, 2]
Idle power of machines at each station in manufacturing stage U [1, 5]
Service age regression factor 0.9
β in failure rate function 110
Idle power of machines at each station in inspection and repair stage U [1, 3]
Effective use time of lubricants on machines at each station in manufacturing stage U [4, 6]
Effective use time of lubricants on machines at each station in inspection and repair stage U [4, 6]
PM unit activity costs of machines U [3, 5]
Machine degradation factor U [0.1, 0.3]
Carbon emissions factor of lubricants 469
Note. Power unit: kw/h; effective service time unit of lubricants: h; usage unit of lubricants: L; processing time, inspection and repair time, and PM time unit:
min; costs unit: RMB; carbon emission factor of electric energy unit: kgCO2/J; carbon emission factor of lubricants: kgCO2/m3.
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Table 10: Experimental result comparison of IHMMVO, MMVO, and MSSA.

Cases
IHMMVO MMVO MSSA

SP GD IGD SP GD IGD SP GD IGD
10∗ [1, 2]∗ [4, 6]∗ 3 0.2111 0.0351 0.1042 0.2288 0.1092 0.2737 0.4912 0.1551 0.4199
10∗ [1, 2]∗ [4, 6]∗ 4 0.1445 0.0147 0.0484 0.1789 0.0898 0.2943 0.2559 0.0684 0.2558
10∗ [1, 2]∗ [4, 6]∗ 5 0.1291 0.0261 0.1321 0.1761 0.0536 0.2305 0.1842 0.0883 0.2977
10∗ [1, 2]∗ [5, 7]∗ 3 0.2960 0.0211 0.0634 0.2084 0.0848 0.2788 0.3067 0.0973 0.3282
10∗ [1, 2]∗ [5, 7]∗ 4 0.2129 0.0118 0.0316 0.1105 0.0493 0.2209 0.2158 0.1193 0.3420
10∗ [1, 2]∗ [5, 7]∗ 5 0.1290 0.0332 0.0674 0.2275 0.0972 0.3036 0.3259 0.1255 0.3944
10∗ [1, 2]∗ [6, 8]∗ 3 0.1984 0.0492 0.1176 0.1950 0.0806 0.2519 0.4591 0.1627 0.4179
10∗ [1, 2]∗ [6, 8]∗ 4 0.1591 0.0318 0.1296 0.1700 0.0556 0.1689 0.1173 0.1003 0.3046
10∗ [1, 2]∗ [6, 8]∗ 5 0.1364 0.0208 0.0687 0.1797 0.0413 0.1229 0.3332 0.1524 0.4083
10∗ [2, 3]∗ [4, 6]∗ 3 0.1487 0.0204 0.0782 0.1464 0.0373 0.1510 0.1182 0.0832 0.3044
10∗ [2, 3]∗ [4, 6]∗ 4 0.1134 0.0114 0.0692 0.1088 0.0226 0.1128 0.2637 0.1362 0.3881
10∗ [2, 3]∗ [4, 6]∗ 5 0.1044 0.0103 0.0453 0.1295 0.0186 0.1189 0.1599 0.0503 0.2027
10∗ [2, 3]∗ [5, 7]∗ 3 0.1767 0.0283 0.1125 0.1589 0.0423 0.1576 0.1936 0.1144 0.2736
10∗ [2, 3]∗ [5, 7]∗ 4 0.1357 0.0120 0.0447 0.1592 0.0441 0.2020 0.2112 0.0723 0.2319
10∗ [2, 3]∗ [5, 7]∗ 5 0.1007 0.0154 0.0719 0.1399 0.0397 0.1880 0.2064 0.0718 0.2581
10∗ [2, 3]∗ [6, 8]∗ 3 0.1146 0.0078 0.0432 0.1810 0.0428 0.1819 0.2413 0.0645 0.2459
10∗ [2, 3]∗ [6, 8]∗ 4 0.0946 0.0056 0.0305 0.0832 0.0276 0.1281 0.2211 0.0703 0.2024
10∗ [2, 3]∗ [6, 8]∗ 5 0.0840 0.0093 0.0629 0.1007 0.0179 0.1166 0.2063 0.0639 0.2406
20∗ [1, 2]∗ [4, 6]∗ 5 0.1833 0.0194 0.0565 0.1716 0.0645 0.2204 0.3157 0.1192 0.3174
20∗ [1, 2]∗ [4, 6]∗ 6 0.1694 0.0337 0.1099 0.1775 0.0499 0.1543 0.3961 0.1242 0.3253
20∗ [1, 2]∗ [4, 6]∗ 7 0.1814 0.0210 0.0681 0.1912 0.0588 0.2030 0.1793 0.1053 0.3042
20∗ [1, 2]∗ [5, 7]∗ 5 0.1618 0.0140 0.0681 0.2094 0.0458 0.1733 0.2015 0.0707 0.2335
20∗ [1, 2]∗ [5, 7]∗ 6 0.1335 0.0254 0.0764 0.1593 0.0529 0.2180 0.2362 0.0929 0.2714
20∗ [1, 2]∗ [5, 7]∗ 7 0.1434 0.0193 0.0737 0.1556 0.0633 0.2080 0.3405 0.1122 0.3353
20∗ [1, 2]∗ [6, 8]∗ 5 0.1837 0.0170 0.0914 0.1662 0.0554 0.1712 0.2963 0.0916 0.2387
20∗ [1, 2]∗ [6, 8]∗ 6 0.1766 0.0225 0.1134 0.1900 0.0381 0.1651 0.2844 0.1083 0.3180
20∗ [1, 2]∗ [6, 8]∗ 7 0.1873 0.0272 0.0807 0.2290 0.0515 0.2015 0.3201 0.1125 0.3471
20∗ [2, 3]∗ [4, 6]∗ 5 0.2254 0.0434 0.1436 0.1568 0.0536 0.1769 0.1780 0.0789 0.2320
20∗ [2, 3]∗ [4, 6]∗ 6 0.1333 0.0258 0.0670 0.2002 0.0455 0.1692 0.1852 0.0853 0.2867
20∗ [2, 3]∗ [4, 6]∗ 7 0.1573 0.0404 0.1235 0.1767 0.0901 0.2785 0.2100 0.1275 0.3291
20∗ [2, 3]∗ [5, 7]∗ 5 0.2091 0.0117 0.0746 0.1981 0.0590 0.2157 0.3242 0.1135 0.3237
20∗ [2, 3]∗ [5, 7]∗ 6 0.1411 0.0284 0.0982 0.1772 0.0398 0.1257 0.1394 0.0848 0.2450
20∗ [2, 3]∗ [5, 7]∗ 7 0.1205 0.0248 0.1080 0.1819 0.0547 0.2060 0.3256 0.0732 0.2785
20∗ [2, 3]∗ [6, 8]∗ 5 0.1996 0.0565 0.1985 0.2230 0.0402 0.1414 0.2734 0.1031 0.3560
20∗ [2, 3]∗ [6, 8]∗ 6 0.1981 0.0234 0.0988 0.1317 0.0428 0.1553 0.2952 0.1318 0.3438
20∗ [2, 3]∗ [6, 8]∗ 7 0.0958 0.0055 0.0421 0.1121 0.0259 0.1329 0.1731 0.0565 0.2503
30∗ [1, 2]∗ [4, 6]∗ 7 0.2310 0.0521 0.1779 0.1998 0.0640 0.2414 0.3125 0.1513 0.3938
30∗ [1, 2]∗ [4, 6]∗ 8 0.1667 0.0034 0.0479 0.2133 0.0608 0.2220 0.4183 0.1228 0.4149
30∗ [1, 2]∗ [4, 6]∗ 9 0.2160 0.0197 0.0695 0.1413 0.0711 0.2354 0.2631 0.1744 0.4338
30∗ [1, 2]∗ [5, 7]∗ 7 0.2547 0.0493 0.1380 0.2777 0.0610 0.1945 0.2641 0.0872 0.2833
30∗ [1, 2]∗ [5, 7]∗ 8 0.2812 0.0883 0.2083 0.1767 0.0625 0.1643 0.2840 0.1277 0.3452
30∗ [1, 2]∗ [5, 7]∗ 9 0.3230 0.0382 0.1164 0.1678 0.0721 0.2387 0.3144 0.1849 0.3605
30∗ [1, 2]∗ [6, 8]∗ 7 0.1680 0.0062 0.0297 0.1288 0.0646 0.2076 0.3130 0.1581 0.4306
30∗ [1, 2]∗ [6, 8]∗ 8 0.1596 0.0289 0.1026 0.1765 0.0576 0.1709 0.3042 0.1248 0.3437
30∗ [1, 2]∗ [6, 8]∗ 9 0.1712 0.0733 0.2042 0.2399 0.0805 0.2547 0.5323 0.1496 0.3852
30∗ [2, 3]∗ [4, 6]∗ 7 0.2274 0.0680 0.1719 0.2096 0.1028 0.2930 0.5621 0.1844 0.4635
30∗ [2, 3]∗ [4, 6]∗ 8 0.1231 0.0354 0.1427 0.1321 0.0404 0.1579 0.2152 0.1119 0.3282
30∗ [2, 3]∗ [4, 6]∗ 9 0.1460 0.0273 0.1176 0.2230 0.0598 0.2031 0.4261 0.1177 0.3573
30∗ [2, 3]∗ [5, 7]∗ 7 0.2043 0.0447 0.1333 0.1698 0.0642 0.2350 0.3514 0.1271 0.3313
30∗ [2, 3]∗ [5, 7]∗ 8 0.1673 0.0565 0.1103 0.2434 0.0777 0.2365 0.1714 0.1759 0.3362
30∗ [2, 3]∗ [5, 7]∗ 9 0.1879 0.0603 0.1654 0.1465 0.0460 0.1801 0.2571 0.1383 0.3494
30∗ [2, 3]∗ [6, 8]∗ 7 0.1654 0.0284 0.0714 0.3713 0.1120 0.3180 0.2981 0.0995 0.3402
30∗ [2, 3]∗ [6, 8]∗ 8 0.2027 0.0312 0.0775 0.1340 0.0509 0.2127 0.2732 0.1354 0.3612
30∗ [2, 3]∗ [6, 8]∗ 9 0.1116 0.0169 0.0588 0.1325 0.0346 0.1621 0.1676 0.0780 0.2187
40∗ [1, 2]∗ [4, 6]∗ 9 0.2580 0.0000 0.0150 0.1020 0.2355 0.2355 0.3105 0.1261 0.2428
40∗ [1, 2]∗ [4, 6]∗ 10 0.1923 0.0216 0.0900 0.1749 0.0646 0.1941 0.2886 0.0953 0.3135
40∗ [1, 2]∗ [4, 6]∗ 11 0.2267 0.0504 0.1641 0.1435 0.0525 0.1884 0.2550 0.1579 0.3280
40∗ [1, 2]∗ [5, 7]∗ 9 0.2595 0.0352 0.1224 0.1887 0.0564 0.2044 0.3557 0.1985 0.4714
40∗ [1, 2]∗ [5, 7]∗ 10 0.1749 0.0228 0.0914 0.1961 0.0532 0.2090 0.3160 0.1279 0.3693
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Table 10: Continued.

Cases
IHMMVO MMVO MSSA

SP GD IGD SP GD IGD SP GD IGD
40∗ [1, 2]∗ [5, 7]∗ 11 0.1190 0.0543 0.1774 0.1332 0.0728 0.2147 0.4126 0.1425 0.3818
40∗ [1, 2]∗ [6, 8]∗ 9 0.3196 0.1227 0.2472 0.2467 0.1090 0.2966 0.3736 0.1264 0.3513
40∗ [1, 2]∗ [6, 8]∗ 10 0.2265 0.0422 0.1361 0.2933 0.0652 0.2226 0.2682 0.1447 0.4057
40∗ [1, 2]∗ [6, 8]∗ 11 0.2202 0.0255 0.0765 0.2498 0.0541 0.1677 0.3620 0.1869 0.3318
40∗ [2, 3]∗ [4, 6]∗ 9 0.2299 0.0637 0.1699 0.2626 0.0724 0.2493 0.3363 0.1057 0.3606
40∗ [2, 3]∗ [4, 6]∗ 10 0.1372 0.0365 0.1183 0.2655 0.0735 0.2437 0.3855 0.1329 0.3697
40∗ [2, 3]∗ [4, 6]∗ 11 0.2563 0.0198 0.0614 0.2581 0.0607 0.1985 0.5137 0.1728 0.4426
40∗ [2, 3]∗ [5, 7]∗ 9 0.1658 0.0424 0.1410 0.2285 0.0738 0.2398 0.2372 0.2051 0.4509
40∗ [2, 3]∗ [5, 7]∗ 10 0.1344 0.0518 0.0981 0.3289 0.0254 0.0757 0.1929 0.1833 0.3366
40∗ [2, 3]∗ [5, 7]∗ 11 0.1735 0.0320 0.1288 0.1214 0.0720 0.2185 0.2911 0.1492 0.3943
40∗ [2, 3]∗ [6, 8]∗ 9 0.2417 0.0236 0.0771 0.1682 0.0695 0.2029 0.2877 0.2038 0.4049
40∗ [2, 3]∗ [6, 8]∗ 10 0.3215 0.0083 0.0234 0.1557 0.0904 0.2742 0.2018 0.1802 0.3564
40∗ [2, 3]∗ [6, 8]∗ 11 0.1624 0.0531 0.1381 0.2564 0.1118 0.3091 0.5177 0.1482 0.3666
50∗ [1, 2]∗ [4, 6]∗ 11 0.2166 0.0537 0.1364 0.1881 0.1017 0.2887 0.2644 0.1725 0.3732
50∗ [1, 2]∗ [4, 6]∗ 12 0.2169 0.0150 0.0583 0.1846 0.0542 0.2119 0.2241 0.1210 0.3495
50∗ [1, 2]∗ [4, 6]∗ 13 0.2045 0.0368 0.1039 0.2645 0.0909 0.3295 0.2274 0.2018 0.4640
50∗ [1, 2]∗ [5, 7]∗ 11 0.2773 0.0752 0.1534 0.3035 0.1322 0.3485 0.2519 0.1989 0.4616
50∗ [1, 2]∗ [5, 7]∗ 12 0.3066 0.0925 0.2462 0.1523 0.0909 0.2790 0.3709 0.2361 0.4576
50∗ [1, 2]∗ [5, 7]∗ 13 0.2241 0.0160 0.0671 0.1557 0.0631 0.2129 0.3143 0.1690 0.4525
50∗ [1, 2]∗ [6, 8]∗ 11 0.1641 0.0261 0.0741 0.1321 0.0629 0.2408 0.3091 0.1342 0.3434
50∗ [1, 2]∗ [6, 8]∗ 12 0.2204 0.0578 0.1773 0.2047 0.0261 0.0965 0.2712 0.1006 0.2909
50∗ [1, 2]∗ [6, 8]∗ 13 0.2122 0.0442 0.1612 0.2037 0.0657 0.2182 0.2470 0.0938 0.3015
50∗ [2, 3]∗ [4, 6]∗ 11 0.2491 0.0727 0.2006 0.2207 0.0770 0.2553 0.3589 0.2028 0.4872
50∗ [2, 3]∗ [4, 6]∗ 12 0.2071 0.0194 0.0735 0.1426 0.0706 0.2373 0.1902 0.1747 0.4244
50∗ [2, 3]∗ [4, 6]∗ 13 0.2149 0.0451 0.1511 0.2246 0.0630 0.1912 0.3652 0.1059 0.2977
50∗ [2, 3]∗ [5, 7]∗ 11 0.1617 0.0387 0.1454 0.1688 0.0642 0.2320 0.3143 0.1248 0.3920
50∗ [2, 3]∗ [5, 7]∗ 12 0.1642 0.0430 0.1435 0.1551 0.0870 0.2182 0.1815 0.1317 0.3426
50∗ [2, 3]∗ [5, 7]∗ 13 0.1894 0.0454 0.1295 0.2769 0.1238 0.2686 0.5330 0.1729 0.4383
50∗ [2, 3]∗ [6, 8]∗ 11 0.2460 0.0287 0.1046 0.2150 0.0639 0.2436 0.2273 0.1755 0.4135
50∗ [2, 3]∗ [6, 8]∗ 12 0.1911 0.0873 0.2021 0.2173 0.0841 0.2384 0.3899 0.1646 0.4175
50∗ [2, 3]∗ [6, 8]∗ 13 0.1931 0.0779 0.1859 0.2398 0.0798 0.2171 0.3755 0.2248 0.4421

Table 11: Experimental result comparison of IHMMVO, NSGA-II, and MOPSO.

Cases
IHMMVO NSGA-II MOPSO

SP GD IGD SP GD IGD SP GD IGD
10∗ [1, 2]∗ [4, 6]∗ 3 0.1496 0.0114 0.0214 0.2228 0.1220 0.3443 0.2214 0.0874 0.2860
10∗ [1, 2]∗ [4, 6]∗ 4 0.1913 0.0222 0.0746 0.2772 0.1132 0.3268 0.1881 0.0728 0.2473
10∗ [1, 2]∗ [4, 6]∗ 5 0.2432 0.0209 0.0544 0.2249 0.1192 0.3119 0.2319 0.0924 0.2576
10∗ [1, 2]∗ [5, 7]∗ 3 0.1511 0.0179 0.0602 0.2392 0.1075 0.2903 0.2383 0.0763 0.2610
10∗ [1, 2]∗ [5, 7]∗ 4 0.1569 0.0147 0.0423 0.4381 0.1234 0.3865 0.1919 0.0651 0.2390
10∗ [1, 2]∗ [5, 7]∗ 5 0.1476 0.0004 0.0068 0.3057 0.0800 0.2660 0.1952 0.0718 0.2466
10∗ [1, 2]∗ [6, 8]∗ 3 0.1465 0.0094 0.0248 0.3124 0.1311 0.3478 0.2375 0.0933 0.2863
10∗ [1, 2]∗ [6, 8]∗ 4 0.1569 0.0142 0.0464 0.2149 0.1743 0.3086 0.2935 0.0968 0.2570
10∗ [1, 2]∗ [6, 8]∗ 5 0.1875 0.0102 0.0264 0.2880 0.1739 0.3256 0.2563 0.0844 0.2340
10∗ [2, 3]∗ [4, 6]∗ 3 0.1861 0.0094 0.0312 0.2639 0.1598 0.3892 0.1758 0.0874 0.2632
10∗ [2, 3]∗ [4, 6]∗ 4 0.1355 0.0100 0.0294 0.2797 0.1047 0.3226 0.1737 0.1024 0.2766
10∗ [2, 3]∗ [4, 6]∗ 5 0.1945 0.0142 0.0502 0.2542 0.1202 0.3098 0.1537 0.0666 0.2144
10∗ [2, 3]∗ [5, 7]∗ 3 0.2221 0.0220 0.0755 0.2965 0.1007 0.2773 0.2068 0.1219 0.2672
10∗ [2, 3]∗ [5, 7]∗ 4 0.1733 0.0048 0.0187 0.2367 0.1251 0.3323 0.2024 0.0802 0.2624
10∗ [2, 3]∗ [5, 7]∗ 5 0.1800 0.0101 0.0336 0.2202 0.1031 0.3052 0.2074 0.0606 0.2236
10∗ [2, 3]∗ [6, 8]∗ 3 0.1947 0.0088 0.0343 0.2032 0.1341 0.3700 0.2596 0.1154 0.3584
10∗ [2, 3]∗ [6, 8]∗ 4 0.1851 0.0128 0.0546 0.2653 0.1155 0.3100 0.2608 0.0697 0.2533
10∗ [2, 3]∗ [6, 8]∗ 5 0.1183 0.0129 0.0528 0.2583 0.0774 0.2656 0.1846 0.0528 0.1955
20∗ [1, 2]∗ [4, 6]∗ 5 0.2346 0.0045 0.0049 0.2913 0.1171 0.3346 0.2769 0.1098 0.2620
20∗ [1, 2]∗ [4, 6]∗ 6 0.1332 0.0137 0.0390 0.4063 0.1255 0.3818 0.2866 0.0875 0.3024
20∗ [1, 2]∗ [4, 6]∗ 7 0.1617 0.0103 0.0358 0.2988 0.1031 0.3000 0.2462 0.0797 0.2592
20∗ [1, 2]∗ [5, 7]∗ 5 0.1277 0.0066 0.0127 0.3383 0.1149 0.3156 0.1578 0.0682 0.2148
20∗ [1, 2]∗ [5, 7]∗ 6 0.1635 0.0131 0.0531 0.3107 0.1383 0.3316 0.2368 0.0979 0.2929
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Table 11: Continued.

Cases
IHMMVO NSGA-II MOPSO

SP GD IGD SP GD IGD SP GD IGD
20∗ [1, 2]∗ [5, 7]∗ 7 0.1171 0.0033 0.0094 0.2986 0.0782 0.2499 0.1634 0.0603 0.2333
20∗ [1, 2]∗ [6, 8]∗ 5 0.1461 0.0265 0.0741 0.2586 0.1349 0.3585 0.3942 0.1171 0.3562
20∗ [1, 2]∗ [6, 8]∗ 6 0.1840 0.0145 0.0504 0.2142 0.1161 0.2747 0.1662 0.1235 0.2494
20∗ [1, 2]∗ [6, 8]∗ 7 0.1736 0.0128 0.0425 0.2102 0.0967 0.2755 0.2455 0.0846 0.2749
20∗ [2, 3]∗ [4, 6]∗ 5 0.2136 0.0000 0.0360 0.1756 0.1004 0.2870 0.3895 0.1135 0.3041
20∗ [2, 3]∗ [4, 6]∗ 6 0.1780 0.0039 0.0150 0.2095 0.1154 0.3015 0.1335 0.1038 0.2592
20∗ [2, 3]∗ [4, 6]∗ 7 0.1351 0.0124 0.0502 0.2775 0.1393 0.2922 0.3344 0.0943 0.3106
20∗ [2, 3]∗ [5, 7]∗ 5 0.1645 0.0308 0.0552 0.3234 0.1409 0.3149 0.2464 0.0877 0.2608
20∗ [2, 3]∗ [5, 7]∗ 6 0.1980 0.0077 0.0271 0.2731 0.1546 0.3670 0.3290 0.1072 0.3309
20∗ [2, 3]∗ [5, 7]∗ 7 0.1645 0.0308 0.0552 0.3234 0.1409 0.3149 0.2464 0.0877 0.2608
20∗ [2, 3]∗ [6, 8]∗ 5 0.1154 0.0035 0.0129 0.2387 0.1186 0.2863 0.2467 0.0719 0.1950
20∗ [2, 3]∗ [6, 8]∗ 6 0.1778 0.0000 0.0000 0.2698 0.0774 0.2489 0.1188 0.0923 0.2853
20∗ [2, 3]∗ [6, 8]∗ 7 0.1745 0.0046 0.0260 0.2857 0.1357 0.3467 0.2173 0.0758 0.2552
30∗ [1, 2]∗ [4, 6]∗ 7 0.1331 0.0236 0.0734 0.2678 0.0917 0.3017 0.1950 0.0897 0.2817
30∗ [1, 2]∗ [4, 6]∗ 8 0.1489 0.0111 0.0386 0.2955 0.0778 0.2497 0.2342 0.0751 0.2575
30∗ [1, 2]∗ [4, 6]∗ 9 0.1391 0.0104 0.0432 0.3944 0.0999 0.3627 0.2292 0.0655 0.2230
30∗ [1, 2]∗ [5, 7]∗ 7 0.1393 0.0085 0.0448 0.1387 0.1182 0.3251 0.1919 0.0672 0.2460
30∗ [1, 2]∗ [5, 7]∗ 8 0.1258 0.0083 0.0348 0.2823 0.1027 0.3061 0.1451 0.0754 0.2611
30∗ [1, 2]∗ [5, 7]∗ 9 0.1248 0.0204 0.0640 0.2511 0.1126 0.3278 0.3262 0.1087 0.3313
30∗ [1, 2]∗ [6, 8]∗ 7 0.1568 0.0051 0.0289 0.2510 0.1274 0.3376 0.2176 0.0458 0.1967
30∗ [1, 2]∗ [6, 8]∗ 8 0.1214 0.0078 0.0279 0.1920 0.0974 0.2897 0.2476 0.0713 0.2480
30∗ [1, 2]∗ [6, 8]∗ 9 0.1229 0.0078 0.0267 0.2318 0.1086 0.3159 0.1908 0.0629 0.2233
30∗ [2, 3]∗ [4, 6]∗ 7 0.1726 0.0149 0.0365 0.1738 0.1308 0.3174 0.1446 0.0780 0.2238
30∗ [2, 3]∗ [4, 6]∗ 8 0.1302 0.0112 0.0309 0.4057 0.0879 0.2913 0.1896 0.0683 0.2562
30∗ [2, 3]∗ [4, 6]∗ 9 0.1468 0.0128 0.0555 0.2925 0.1301 0.3654 0.2079 0.0591 0.2108
30∗ [2, 3]∗ [5, 7]∗ 7 0.1732 0.0199 0.0536 0.2506 0.0794 0.2627 0.1502 0.0708 0.2428
30∗ [2, 3]∗ [5, 7]∗ 8 0.1800 0.0046 0.0328 0.3314 0.1150 0.3387 0.2346 0.0805 0.2798
30∗ [2, 3]∗ [5, 7]∗ 9 0.1184 0.0230 0.0835 0.1863 0.1499 0.3355 0.2032 0.0792 0.2703
30∗ [2, 3]∗ [6, 8]∗ 7 0.1348 0.0163 0.0507 0.3173 0.1360 0.3672 0.2521 0.0989 0.2863
30∗ [2, 3]∗ [6, 8]∗ 8 0.1603 0.0400 0.1018 0.2183 0.1049 0.3053 0.2220 0.0900 0.2642
30∗ [2, 3]∗ [6, 8]∗ 9 0.1481 0.0120 0.0321 0.3486 0.1447 0.3748 0.1837 0.0581 0.2280
40∗ [1, 2]∗ [4, 6]∗ 9 0.2309 0.0000 0.0000 0.2676 0.1559 0.3808 0.2688 0.0908 0.2982
40∗ [1, 2]∗ [4, 6]∗ 10 0.2662 0.0055 0.0281 0.2913 0.1206 0.3186 0.3053 0.1052 0.3046
40∗ [1, 2]∗ [4, 6]∗ 11 0.2553 0.0041 0.0104 0.4165 0.2267 0.4868 0.3073 0.1817 0.4043
40∗ [1, 2]∗ [5, 7]∗ 9 0.1763 0.0221 0.0550 0.2919 0.1741 0.3998 0.3703 0.1186 0.3137
40∗ [1, 2]∗ [5, 7]∗ 10 0.2126 0.0236 0.0949 0.3213 0.1756 0.4166 0.2596 0.0997 0.3243
40∗ [1, 2]∗ [5, 7]∗ 11 0.2844 0.0118 0.0395 0.2126 0.1455 0.3484 0.3308 0.0809 0.2285
40∗ [1, 2]∗ [6, 8]∗ 9 0.2958 0.0053 0.0235 0.4481 0.1187 0.3412 0.2480 0.1116 0.3124
40∗ [1, 2]∗ [6, 8]∗ 10 0.2554 0.0300 0.0703 0.1647 0.1793 0.4216 0.3722 0.1930 0.4193
40∗ [1, 2]∗ [6, 8]∗ 11 0.3100 0.0026 0.0143 0.2115 0.1769 0.4070 0.3185 0.1315 0.3364
40∗ [2, 3]∗ [4, 6]∗ 9 0.2689 0.0000 0.0068 0.4875 0.2208 0.5339 0.4478 0.1239 0.3950
40∗ [2, 3]∗ [4, 6]∗ 10 0.2122 0.0133 0.0269 0.3338 0.1860 0.4170 0.3545 0.1514 0.3393
40∗ [2, 3]∗ [4, 6]∗ 11 0.1754 0.0224 0.0473 0.1689 0.1794 0.4592 0.2627 0.1073 0.2974
40∗ [2, 3]∗ [5, 7]∗ 9 0.1080 0.0030 0.0086 0.7716 0.0990 0.4251 0.1737 0.0902 0.3045
40∗ [2, 3]∗ [5, 7]∗ 10 0.2806 0.0338 0.1003 0.3181 0.1087 0.2586 0.2172 0.0945 0.2636
40∗ [2, 3]∗ [5, 7]∗ 11 0.1924 0.0058 0.0297 0.3633 0.1047 0.3497 0.1763 0.1082 0.3214
40∗ [2, 3]∗ [6, 8]∗ 9 0.1887 0.0091 0.0112 0.5673 0.2438 0.5562 0.2603 0.1405 0.3259
40∗ [2, 3]∗ [6, 8]∗ 10 0.1484 0.0107 0.0277 0.7492 0.1264 0.3498 0.2435 0.1019 0.2478
40∗ [2, 3]∗ [6, 8]∗ 11 0.1735 0.0000 0.0103 0.3329 0.1769 0.4305 0.1877 0.0983 0.2854
50∗ [1, 2]∗ [4, 6]∗ 11 0.1878 0.0262 0.1002 0.2299 0.1344 0.3134 0.3463 0.1234 0.3204
50∗ [1, 2]∗ [4, 6]∗ 12 0.1564 0.0082 0.0161 0.1860 0.1081 0.3421 0.2043 0.1413 0.3517
50∗ [1, 2]∗ [4, 6]∗ 13 0.1903 0.0000 0.0000 0.2726 0.1184 0.2874 0.2658 0.1225 0.2460
50∗ [1, 2]∗ [5, 7]∗ 11 0.1558 0.0000 0.0034 0.2823 0.1080 0.3100 0.1764 0.0940 0.2838
50∗ [1, 2]∗ [5, 7]∗ 12 0.1787 0.0169 0.0575 0.2181 0.1005 0.3092 0.3980 0.1292 0.3503
50∗ [1, 2]∗ [5, 7]∗ 13 0.2139 0.0514 0.1253 0.2611 0.1305 0.3363 0.2134 0.1159 0.2864
50∗ [1, 2]∗ [6, 8]∗ 11 0.2177 0.0279 0.0661 0.4901 0.1410 0.4360 0.1843 0.0890 0.2719
50∗ [1, 2]∗ [6, 8]∗ 12 0.2208 0.0222 0.0608 0.3102 0.1418 0.3927 0.2175 0.1094 0.3635
50∗ [1, 2]∗ [6, 8]∗ 13 0.1434 0.0091 0.0181 0.3467 0.1289 0.3968 0.3834 0.1187 0.3836
50∗ [2, 3]∗ [4, 6]∗ 11 0.2136 0.0168 0.0939 0.1921 0.1593 0.3851 0.3105 0.0848 0.2805
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deterioration of at least one other indicator. *e obtained
Pareto solution and the corresponding scheduling scheme
can be an effective reference tool to help managers make

intelligent decisions based on the actual situation of the
enterprise and the goals they are focusing on when
considering the production efficiency, green production,

Table 11: Continued.

Cases
IHMMVO NSGA-II MOPSO

SP GD IGD SP GD IGD SP GD IGD
50∗ [2, 3]∗ [4, 6]∗ 12 0.1502 0.0226 0.0490 0.2881 0.1591 0.3901 0.2282 0.1235 0.2532
50∗ [2, 3]∗ [4, 6]∗ 13 0.2465 0.0316 0.0804 0.5516 0.2442 0.5482 0.1684 0.0846 0.2169
50∗ [2, 3]∗ [5, 7]∗ 11 0.2685 0.0105 0.0360 0.3180 0.2367 0.4556 0.3790 0.0967 0.3229
50∗ [2, 3]∗ [5, 7]∗ 12 0.2661 0.0079 0.0204 0.1047 0.1130 0.3439 0.3405 0.1174 0.3050
50∗ [2, 3]∗ [5, 7]∗ 13 0.2424 0.0132 0.0408 0.3205 0.2062 0.4130 0.1761 0.0819 0.2534
50∗ [2, 3]∗ [6, 8]∗ 11 0.0925 0.0069 0.0040 0.3357 0.1110 0.2952 0.2634 0.1017 0.2890
50∗ [2, 3]∗ [6, 8]∗ 12 0.2268 0.0038 0.0104 0.3904 0.1292 0.3293 0.2124 0.1455 0.3110
50∗ [2, 3]∗ [6, 8]∗ 13 0.2972 0.0195 0.0557 0.4237 0.1701 0.3785 0.1748 0.0980 0.2563

Table 12: *e results of Wilcoxon signed rank test.

Indicator
MMVO MSSA NSGA-II MOPSO

P Sig(P< 0.05) P Sig(P< 0.05) P Sig(P< 0.05) P Sig(P< 0.05)

SP 0.624 (0.000) N(Y) 0.000 (0.000) Y(Y) 0.000 (0.000) Y(Y) 0.000 (0.000) Y(Y)
GD 0.000 (0.000) Y(Y) 0.000 (0.000) Y(Y) 0.000 (0.000) Y(Y) 0.000 (0.000) Y(Y)
IGD 0.000 (0.000) Y(Y) 0.000 (0.000) Y(Y) 0.000 (0.000) Y(Y) 0.000 (0.000) Y(Y)
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Figure 4: Comparison diagrams of Pareto frontier. (a) 10∗ 2∗ 5∗ 5. (b) 30∗ 2∗ 8∗ 9. (c) 40∗ 3∗ 5∗10. (d) 50∗ 2∗ 6∗11.
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Table 13: Pareto optimal solution set obtained by IHMMVO algorithm (part).

TCT (kgCO2) TCost (RMB) Cmax (min) Scheduling scheme

1 2.9 (3.7) 1022 (0) 366 (421) 1-3-8-9-10-6-5-4-2-7
2 2.9 (3.4) 985 (0) 349 (412) 4-3-6-10-5-8-7-1-2-9
3 3.1 (3.5) 847 (0) 355 (404) 4-9-3-5-8-6-7-10-2-1
4 3.2 (3.6) 813 (0) 361 (413) 8-4-3-1-9-7-6-10-5-2
5 3.0 (3.5) 936 (0) 359 (410) 9-3-4-10-2-8-7-1-5-6
6 3.1 (3.4) 1152 (0) 342 (379) 10-6-4-7-5-3-8-1-2-9
7 3.0 (3.2) 884 (0) 364 (389) 1-4-3-5-6-2-9-7-8-10
8 3.0 (3.5) 852 (0) 349 (411) 1-2-3-4-7-5-6-10-8-9
9 3.0 (3.5) 920 (0) 353 (430) 1-2-3-6-5-4-8-7-9-10
10 2.9 (3.3) 1025 (0) 348 (401) 1-3-7-4-5-6-2-8-10-9
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and economic benefit balance in the semiconductor wafer
manufacturing environment. In this paper, IHMMVO
algorithm is used to perform a comparative experiment on
a test case of 10 ∗ 2 ∗ 8 ∗ 3 scale, showing the optimization
objective values of partial solutions obtained with and
without considering PM operation. On the other hand,
sensitivity analysis is performed to show how the change
rate of R affects the three objective function values. It can
be concluded that the change rate of R has little effect on
Cmax and TCT, which is basically the same, while the effect
on TCost is greater than the former two. Based on this,
enterprise decision makers can set appropriate machine
reliability threshold to reduce PM costs and improve
economic benefits on the basis of no significant impact on
Cmax and TCT indicators. In short, the research of this
paper can provide a certain reference value for the future
transition of semiconductor wafer manufacturing to a
clean production mode while weighing production effi-
ciency and economic benefits. However, this paper mainly
focuses on the deterministic scheduling of semiconductor
wafer manufacturing, without considering the uncertainty of the
production process.

7. Conclusions and Future Work

In this paper, a two-stage joint optimization model of green
manufacturing and maintenance for semiconductor wafers
is constructed for the first time, and an IHMMVO algo-
rithm is proposed to solve the problem. Initial population
fusion strategy, subpopulation evolution strategy, and
synchronous scheduling and maintenance strategy are
designed in IHMMVO algorithm. *e algorithm can jump
out of local optimum and obtain better Pareto frontier
solution set, which realizes the two-stage joint optimization
of green manufacturing and PM. Enterprise decision
makers can choose an optimal scheduling scheme
according to the actual situation. *e simulation results
show that the proposed algorithm has certain advantages
and competitiveness in solving TSGMM-SW. Finally,

through the specific experimental results analysis of a
simulation case in semiconductor wafer manufacturing
stage, it can be seen that makespan and total carbon
emission indicators can be optimized to a certain extent by
considering PM operation on semiconductor production
line under reasonable machine reliability threshold setting.
It can make a contribution to green manufacturing of
semiconductor wafer enterprises.

With the development of collaborative production
mode, distributed manufacturing has become a trend. In the
future, we will focus on the research of semiconductor wafer
distributed green manufacturing scheduling problem con-
sidering equipment preventive maintenance. We will also
pay more attention to the uncertain scheduling problem in
semiconductor wafer production. In addition, with the
pursuit of “things perception, things interconnection, and
things intelligence” in manufacturing workshop, combining
IoT, cloud computing, and big data technologies to build
intelligent scheduling algorithms and scheduling rules li-
braries and combining deep learning and machine learning
method to construct more efficient algorithms are also our
future effort direction.

Data Availability

*e data used to support the findings of this paper are from
previously reported studies, which have been cited.

Conflicts of Interest

*e authors declare no conflicts of interest.

Acknowledgments

*is research was supported by the National Natural Science
Foundation of China under grant no. 71840003 and Science
and Technology Development Project of University of
Shanghai for Science and Technology under grant no.
2018KJFZ043.

400

600

800

1000
To

ta
l P

M
 co

sts

10 20 300
Change rate of R (%)

(c)

Makespan
Total carbon emissions
PM costs

0

0.2

0.4

0.6

Se
ns

iti
vi

ty

20 3010
Change rate of R (%)

(d)

Figure 6: *e impact of ΔR/R on the optimization objectives.

20 Mathematical Problems in Engineering



References

[1] H.-M. Cho, S.-J. Bae, J. Kim, and I.-J. Jeong, “Bi-objective
scheduling for reentrant hybrid flow shop using Pareto ge-
netic algorithm,” Computers & Industrial Engineering, vol. 61,
no. 3, pp. 529–541, 2011.

[2] S. Mirjalili, S. M. Mirjalili, and A. Hatamlou, “Multi-verse
optimizer: a nature-inspired algorithm for global optimiza-
tion,” Neural Computing and Applications, vol. 27, no. 2,
pp. 495–513, 2016.

[3] H. Faris, I. Aljarah, and S. Mirjalili, “Training feedforward
neural networks using multi-verse optimizer for binary
classification problems,” Applied Intelligence, vol. 45, no. 2,
pp. 322–332, 2016.

[4] M. A. Elaziz, D. Oliva, A. A. Ewees, and S. Xiong, “Multi-level
thresholding-based grey scale image segmentation using
multi-objective multi-verse optimizer,” Expert Systems with
Applications, vol. 125, pp. 112–129, 2019.

[5] J. Lin, L. Zhu, and Z.-J. Wang, “A hybrid multi-verse opti-
mization for the fuzzy flexible job-shop scheduling problem,”
Computers & Industrial Engineering, vol. 127, pp. 1089–1100,
2019.

[6] S. H. Kim and Y. H. Lee, “Synchronized production planning
and scheduling in semiconductor fabrication,” Computers &
Industrial Engineering, vol. 96, pp. 72–85, 2016.

[7] A. Bitar, S. Dauzère-Pérès, C. Yugma, and R. Roussel, “A
memetic algorithm to solve an unrelated parallel machine
scheduling problem with auxiliary resources in semicon-
ductor manufacturing,” Journal of Scheduling, vol. 19, no. 4,
pp. 367–376, 2016.

[8] T. Jamrus, C. F. Chien, M. Gen, and K. Sethanan, “Hybrid
particle swarm optimization combined with genetic operators
for flexible job-shop scheduling under uncertain processing
time for semiconductor manufacturing,” IEEE Transactions on
Semiconductor Manufacturing, vol. 31, no. 1, pp. 32–41, 2018.

[9] W. Jia, Z. Jiang, and Y. Li, “Combined scheduling algorithm
for re-entrant batch-processing machines in semiconductor
wafer manufacturing,” International Journal of Production
Research, vol. 53, no. 6, pp. 1866–1879, 2015.

[10] Y. Hur, J. F. Bard, and R. Chacon, “Hierarchy machine set-up
for multi-pass lot scheduling at semiconductor assembly and
test facilities,” International Journal of Production Research,
vol. 57, no. 14, pp. 4351–4370, 2019.

[11] M. Foumani, A. Razeghi, and K. Smith-Miles, “Stochastic
optimization of two-machine flow shop robotic cells with
controllable inspection times: from theory toward practice,”
Robotics and Computer-Integrated Manufacturing, vol. 61,
Article ID 101822, 2020.

[12] M. Foumani, I. Gunawan, K. Smith-Miles et al., “Increasing
throughput for a class of two-machine robotic cells served by a
multifunction robot,” IEEE Transactions on Automation
Science and Engineering, vol. 14, no. 2, pp. 1150–1159, 2017.

[13] M. Foumani, K. Smith-Miles, and I. Gunawan, “Scheduling of
two-machine robotic rework cells: in-process, post-process
and in-line inspection scenarios,” Robotics and Autonomous
Systems, vol. 91, pp. 210–225, 2017.

[14] M. Foumani, K. Smith-Miles, I. Gunawan, and A. Moeini, “A
framework for stochastic scheduling of two-machine robotic
rework cells with in-process inspection system,” Computers &
Industrial Engineering, vol. 112, pp. 492–502, 2017.

[15] I. Tirkel, “*e efficiency of inspection based on out of control
detection in wafer fabrication,” Computers & Industrial En-
gineering, vol. 99, pp. 458–464, 2016.

[16] M. Ulrich, G. Lux, L. Jürgensen, and G. Reinhart, “Automated
and cycle time optimized path planning for robot-based in-
spection systems,” Procedia CIRP, vol. 44, pp. 377–382, 2016.

[17] B.-H. Zhou, L.-M. Hu, and Z.-Y. Zhong, “A hybrid differential
evolution algorithm with estimation of distribution algorithm
for reentrant hybrid flow shop scheduling problem,” Neural
Computing and Applications, vol. 30, no. 1, pp. 193–209, 2018.

[18] S. M. Mousavi, I. Mahdavi, J. Rezaeian, and M. Zandieh, “An
efficient bi-objective algorithm to solve re-entrant hybrid flow
shop scheduling with learning effect and setup times,” Op-
erational Research, vol. 18, no. 1, pp. 123–158, 2018.

[19] J.-N. Shen, L. Wang, and H.-Y. Zheng, “A modified teaching-
learning-based optimisation algorithm for bi-objective re-
entrant hybrid flowshop scheduling,” International Journal of
Production Research, vol. 54, no. 12, pp. 3622–3639, 2016.

[20] K.-C. Ying, S.-W. Lin, and S.-Y. Wan, “Bi-objective reentrant
hybrid flowshop scheduling: an iterated Pareto greedy algo-
rithm,” International Journal of Production Research, vol. 52,
no. 19, pp. 5735–5747, 2014.

[21] X. Y. Zhang and L. Chen, “A re-entrant hybrid flow shop
scheduling problem with machine eligibility constraints,”
International Journal of Production Research, vol. 56, no. 16,
pp. 5293–5305, 2018.

[22] C. Sangsawang, K. Sethanan, T. Fujimoto, and M. Gen,
“Metaheuristics optimization approaches for two-stage re-
entrant flexible flow shop with blocking constraint,” Expert
Systems with Applications, vol. 42, no. 5, pp. 2395–2410, 2015.

[23] C. Chamnanlor, K. Sethanan, M. Gen, and C.-F. Chien,
“Embedding ant system in genetic algorithm for re-entrant
hybrid flow shop scheduling problems with time window
constraints,” Journal of Intelligent Manufacturing, vol. 28,
no. 8, pp. 1915–1931, 2017.

[24] L. Yin, X. Li, L. Gao, C. Lu, and Z. Zhang, “A novel math-
ematical model and multi-objective method for the low-
carbon flexible job shop scheduling problem,” Sustainable
Computing: Informatics and Systems, vol. 13, pp. 15–30, 2017.

[25] Q. Liu, M. Zhan, F. O. Chekem, X. Shao, B. Ying, and
J.W. Sutherland, “A hybrid fruit fly algorithm for solving flexible
job-shop scheduling to reduce manufacturing carbon footprint,”
Journal of Cleaner Production, vol. 168, pp. 668–678, 2017.

[26] N. Sihag and K. S. Sangwan, “Development of a multi-criteria
optimization model for minimizing carbon emissions and
processing time during machining,” Procedia Cirp, vol. 69,
pp. 300–305, 2018.

[27] J. Wang, S. Yao, J. Sheng, and H. Yang, “Minimizing total
carbon emissions in an integrated machine scheduling and
vehicle routing problem,” Journal of Cleaner Production,
vol. 229, pp. 1004–1017, 2019.

[28] M. Foumani and K. Smith-Miles, “*e impact of various
carbon reduction policies on green flowshop scheduling,”
Applied Energy, vol. 249, pp. 300–315, 2019.

[29] R.Wang and Y. Feng, “Evaluation research on green degree of
equipment manufacturing industry based on improved par-
ticle swarm optimization algorithm,” Chaos, Solitons &
Fractals, 2019.

[30] X. Y. Zhang, X. G. Ming, Z. W. Liu et al., “General reference
model and overall frameworks for green manufacturing,”
Journal of Cleaner Production, vol. 237, no. 10, Article ID
117757, 2019.

[31] Q. Liu, M. Dong, F. F. Chen, W. Lv, and C. Ye, “Single-
machine-based joint optimization of predictive maintenance
planning and production scheduling,” Robotics and Com-
puter-Integrated Manufacturing, vol. 55, pp. 173–182, 2019.

Mathematical Problems in Engineering 21



[32] R.-H. Huang and S.-C. Yu, “Two-stage multiprocessor flow
shop scheduling with deteriorating maintenance in cleaner
production,” Journal of Cleaner Production, vol. 135,
pp. 276–283, 2016.

[33] A. Ladj, C. Varnier, and F. B.-S. Tayeb, “IPro-GA: an inte-
grated prognostic based GA for scheduling jobs and predictive
maintenance in a single multifunctional machine,” IFAC-
PapersOnLine, vol. 49, no. 12, pp. 1821–1826, 2016.

[34] L. Xiao, S. Song, X. Chen, and D. W. Coit, “Joint optimization
of production scheduling and machine group preventive
maintenance,” Reliability Engineering & System Safety,
vol. 146, pp. 68–78, 2016.

[35] H. Golpı̂ra and E. B. Tirkolaee, “Stable maintenance tasks
scheduling: a bi-objective robust optimization model,”
Computers & Industrial Engineering, vol. 137, Article ID
106007, 2019.

[36] A. Goli, E. B. Tirkolaee, andM. Soltani, “A robust just-in-time
flow shop scheduling problem with outsourcing option on
subcontractors,” Production & Manufacturing Research,
vol. 7, no. 7, pp. 294–315, 2019.

[37] C. R. Cassady and E. Kutanoglu, “Integrating preventive
maintenance planning and production scheduling for a single
machine,” IEEE Transactions on Reliability, vol. 54, no. 2,
pp. 304–309, 2005.

[38] Z. Q. Lu, Y. J. Zhang, and X. L. Han, “Integrating run-based
preventive maintenance into the capacitated lot sizing
problem with reliability constraint,” International Journal of
Production Research, vol. 51, no. 5, pp. 1379–1391, 2015.
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