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Collapse risk analysis is of great significance for ensuring construction safety in foundation pits. )is study proposes a com-
prehensive methodology for dynamic risk analysis of foundation pit collapse during construction based on a fuzzy Bayesian
network (FBN) and a fuzzy analytical hierarchy process (FAHP). Firstly, the potential risk factors contributing to foundation pit
collapse are identified based on the results of statistical analysis of foundation pit collapse cases, expert inquiry, and fault tree
analysis. )en, a FAHP and improved expert elicitation considering a confidence index are adopted to elicit the probability
parameters of the BN. On this basis, quantitative risk reasoning and sensitivity analysis of foundation pit collapse are achieved by
means of fuzzy Bayesian inference. Finally, an actual deep foundation pit in a metro station was used to illustrate a specific
application of this approach, and the results were in accordance with the field observations and numerical simulation results. )e
proposed approach can provide effective decision-making support for planners and engineers, which is vital to the prevention and
control of the occurrence of the foundation pit collapse accidents.

1. Introduction

With the rapid development of urbanization around the
world, metros have become a promising solution for re-
lieving overground traffic in congested urban areas. How-
ever, metro construction is exposed to large potential risks
due to various potential risk events in an uncertain envi-
ronment.)erefore, the number of accidents is increasing in
metro engineering, especially in developing countries such
as China. For example, on November 15, 2008, 21 people
were killed in a collapse caused by the diaphragm wall
failures in the Xianghu Station of Hangzhou Metro Line 1
[1]. Additionally, an accident that occurred in the Haizhu
Square Station of Guangzhou Metro Line 2 caused five
people to be trapped, and nearby buildings were cracked as a
result of a diaphragm wall collapse [2]. As we can see, the

frequent occurrence of foundation pit collapse accidents in
metro construction has led to serious consequences and
aroused the attention of all parties, including the public [3].

In recent decades, various risk assessment approaches
developed based on probabilistic risk analysis (PRA) have
been widely used in construction projects to avoid financial
losses and personnel casualties. For example, these ap-
proaches include Monte Carlo simulations (MCS) [4, 5],
event tree analysis (ETA) [6, 7], fault tree analysis (FTA)
[8, 9], and decision trees (DT) [10]. )e above-mentioned
methods have played a vital role in improving the risk
management and control ability of large construction
projects [11, 12]; however, in many circumstances, these
methods are incapable of coping well with uncertainties and
giving satisfactory results on account of incompleteness or
shortage of data [13]. Furthermore, it is often difficult or
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sometimes even impossible to obtain statistical data for PRA
modeling, and this approach often relies on expert knowl-
edge and experience. In recent years, the fuzzy reasoning
methods [14–17] and fuzzy hybrid methods [18–20] have
been developed based on fuzzy set theory (FST) [21] to
overcome the limitations of PRA methods. Although the
fuzzy reasoning and fuzzy hybrid methods can solve engi-
neering problems under uncertainty, these methods suffer
from limitations in conducting inference inversely and
dynamic risk analysis. Feed-forward-like approximate rea-
soning approaches are strictly one way; that is, when amodel
is given a set of inputs, it can predict the output, but not vice
versa [22–24]. )is may have limitations on the flexibility of
a safety analysis and assessment method that focuses on
exploring causal relationships among risk factors. Fur-
thermore, the aforementioned methods have a limitation in
effectively achieving dynamic risk analysis and cannot
achieve real-time safety control. When related parameters
such as hydrological and geological parameters are changed,
the above-mentioned approaches cannot accurately handle
the updated features of dynamic process in project con-
struction. )erefore, effective real-time safety measures
cannot be implemented with a change in environment [25].

Recently, Bayesian networks (BNs) have been developed
to model the complexity of man-machine systems [26] and
are widely used in many fields to perform uncertain
knowledge representation and probabilistic reasoning be-
cause of the ability to represent multistate variables, de-
pendencies among variables, and update probabilities
[25, 27, 28]. Sousa and Einstein [29] presented a BN-based
risk analysis approach for decision support in tunnel con-
struction. Liang et al. [30] used BNs to conduct risk as-
sessment of debris flow hazards. Khakzad et al. [31]
performed a quantitative risk assessment of drilling oper-
ations based on a bow-tie and BN method. Zhou et al. [32]
conducted quantitative risk analysis in foundation pit
construction project based on the BN and field data.

Although BN has many advantages, it also has the
limitation of using a probability measure to assess uncer-
tainty. Traditional BNs can achieve quantitative risk analysis
if exact information is sufficient and available [33], which is
nearly impossible owing to lack of detailed data and in-
complete knowledge, especially for construction projects
[34, 35]. As mentioned earlier, FSTprovides a powerful tool
to deal with uncertainties and ambiguities associated with
engineering problems [36]. )erefore, the combination of
fuzzy logical and BN theory may provide an alternative
means to carry out risk assessment under an uncertainty
environment [37]. A fuzzy BN-based safety risk analysis
model was proposed for risk assessment of tunnel-induced
pipeline damage by Zhang et al. [37]. Wang and Chen [38]
introduced a systematic risk assessment method for metro
construction using a fuzzy comprehensive BN. Similarly,
Sun et al. [39] utilized a multistate fuzzy Bayesian network
(FBN) to conduct risk analysis of tunnel collapse. Compared
with traditional BN, FBN seems more flexible and inter-
pretable [22]. Moreover, conventional BN can only handle
precise probabilities, which in most cases are difficult to
estimate, especially for large and complex projects. As FBN

incorporates the advantages of both FST and BN, it can deal
more effectively with uncertainty of risk data and describe
the dependent and complex relationships between risk
events [23, 40, 41]. Nevertheless, the elicitation of prior
probabilities and conditional probability tables (CPTs) un-
der data shortage or incompleteness is one of the key
challenges to be solved.

In the above-mentioned studies, the probability pa-
rameters are usually determined via expert elicitation to
overcome the incompleteness or lack of data, and linguistic
expressions and integral value methods are usually adopted
to quantify prior probabilities. However, the involvement of
human judgement inevitably brings subjectivity and
vagueness and thus causes the subsequent probability
analysis to be unreliable and untrustworthy. In addition, the
elicitation of large number of probability parameters of the
BN not only puts great workload on the experts but also
poses challenges to the quality or consistency of the elicited
result [42]. Additionally, most of the existing researches
focus mainly on risk analysis of tunnel construction, whereas
few cases of foundation pit construction are reported.
However, the foundation pit construction may face more
potential risks than tunnel construction due to its more
complex surroundings.

In construction practice, various risk factors including
internal (geological, hydrological, etc.) and external ones
(construction, organization, etc.) are able to lead to foun-
dation pit collapse. )us, a systematic and integrated
method is required to carry out collapse risk analysis of
foundation pit in construction, and this is of great signifi-
cance for ensuring construction safety. A comprehensive
methodology for quantitative risk analysis is presented in
this study to compensate for the shortcomings of existing
models. Firstly, the potential risk factors that contribute to
foundation pit collapse are identified via FTA. )ereafter, a
fault tree (FT) model is transformed into a corresponding
BN model to conduct quantitative risk reasoning. )en, the
FAHP technique is adopted in this study to determine the
prior probabilities and CPTs of nodes in BN, as it can
overcome subjectivity and ambiguity issues and is an ef-
fective approach for handling uncertainty associated with
expert evaluations. Moreover, a decomposition method is
used to eliminate the number of comparisons as well as
reducing possibility of inconsistency. Finally, the sensitivity
performance measure is applied for sensitivity analysis to
determine the critical risk factors for foundation pit collapse.

)e remainder of this paper is structured as follows.
Section 2 presents the developed methodology for risk
analysis of foundation pit collapse based on a FBN and a
FAHP. A case study of an actual deep foundation pit in
Qianhu Avenue Station is described in Section 3. Section 4
discusses issues to be further studied, and conclusions are
given in Section 5.

2. The Developed Methodology

To decrease the occurrence probability of collapse risk and
ensure safe construction of foundation pit, a comprehensive
methodology for risk analysis of foundation pit collapse is
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developed based on a FBN and a FAHP. )e following five
steps are included in the proposed approach: (1) risk
identification and FT construction based on expert knowl-
edge and collected information; (2) FBN model establish-
ment; (3) prior probability elicitation of the root nodes based
on the FAHP and improved expert elicitation; (4) CPT
elicitation of the intermediate nodes and leaf node using the
FAHP, decomposition method, and improved expert elici-
tation; and (5) FBN-based risk reasoning and sensitivity
analysis. )e overall procedure for risk analysis of foun-
dation pit collapse based on a FBN and a FAHP is shown in
Figure 1.

2.1. Fuzzy Bayesian Network. In traditional BN, the failure
probability of nodes is usually treated as a precise value, but
insufficient data often makes it difficult or even impossible to
obtain crisp probabilities, especially for construction proj-
ects [25]. In construction engineering fields, the occurrence
probabilities of basic events are usually more imprecise and
vague due to deviation of measured values, construction
operation errors, engineering experience, and other factors.
As FST aims to cope with uncertainties caused by impre-
cision and fuzziness, a BN model integrated with FST is
developed, and this combination is referred to as a FBN.
Moreover, many studies have shown that a FBN not only can
produce similar results with the same model and similar
input data but also is more flexible and interpretable than a
traditional BN and is the inheritance and development of a
traditional BN [22, 23].

2.2. Risk Identification and FT Construction. Risk identifi-
cation involves carrying out risk mechanism analysis for
accidents and documenting their characteristics. In this
paper, we analyze the risk mechanism of foundation pit
collapse from internal factors (hydrogeological conditions)
and external factors (design, construction, management
factors, etc.) and reveal the causal relationships between risk
factors via FTA. In addition, domain experts are also invited
to query risk factors according to the construction site
conditions and collected material (the literature, construc-
tion standards, and technical manuals). )en, the final FT
model of foundation pit collapse can be built by combining
the results of FTA and expert inquiry.

2.3. Mapping the FT into a Bayesian Network. BN con-
struction is usually complex and is the “bottleneck” of its
further application in safety risk analysis. )e method of BN
construction based on FT transformation is considered an
effective approach to solve the above problem. Hence, BN
construction based on the method of mapping the FT into a
BN is adopted in the present study. Mapping from FT into
the BN is based on graphical and numerical functions, and
the specific mapping procedure is shown in Figure 2 [27]. In
graphical mapping, the primary events, intermediate events,
and the top event of the FTare directly transformed into root
nodes, intermediate nodes, and the leaf node in an equiv-
alent BN, respectively [28]. Overlapping nodes are merged

into one [40]. In numerical mapping, the occurrence
probabilities of the primary events in the FT are assigned to
the relevant root nodes of the BN as a priori probabilities.
CPTs are developed based on the Boolean gates of the FT.

2.4. Prior Probabilities and CPT Establishment. Generally,
the prior probabilities and CPTs of BN can be obtained based
on a shrinkage approach [43] or hill climbing algorithms
[44] if sufficient available data are collected. However, it is
very difficult to present enough available data in engineering
practice for BN model construction and parameterization
due to the rare occurrence of foundation pit collapse and the
limits of various learning algorithms. )erefore, experts’
domain knowledge and experience remain important
sources for BN modeling, and the establishment of proba-
bility parameters of BN still relies on expert elicitation.
However, the involvement of human judgement inevitably
brings subjectivity and vagueness. )us, in this study, a
FAHP was employed to handle the uncertainty and ambi-
guity of criteria and the judgement process. Moreover, an
improved expert elicitation method based on a confidence
index was used to guarantee survey data reliability, which
takes both objectivity and subjectivity into account. An
expert’s judgement ability is determined according to his/her
designation, educational level, and service time. )e
judgement ability level represented by ξ is determined based
on the four indicators including expert’s designation, edu-
cational level, service time, and age, and the corresponding
expert judgement ability level is computed using a FAHP
method. )e system of expert information is illustrated in
Figure 3. )e expert profiles and judgement ability level
calculated via the FAHP are shown in Table 1.)e higher the
value of ξ is, the more reliable the expert judgement will be.

In addition, the subjective reliability level represented by ψ
is utilized to measure the reliability of experts’ judgements on
their own and is also divided into five levels, represented by
“0.6, 0.7, 0.8, 0.9, and 1.0.”)e higher the value ofψ is, themore
certain the judgement will be.WhenN experts are involved, the
confidence index of the kth expert, indicated by θk, can be
calculated by (1). If the expert cannot make a judgement about
his/her subjective reliability level or give a subjective reliability
level ψ less than 0.6, the data will not be adopted.

θk � ξk × ψk. (1)

)e processes of combining FAHP, decomposition
method, and improved expert elicitation to establish prior
probabilities and CPTs of BN are shown in the following
steps.

2.4.1. Generation of Root Nodes’ Prior Probabilities. In such
circumstances, assume that there are n states (S1, S2, . . ., Sn)
of a node N, and the probability of N at state Si is denoted by
P(Si). Generally speaking, P(Si) is usually elicited by experts
according to their experience, and it may be feasible while
the number of nodes’ states is not large. However, estimating
probabilities to all states at a time is difficult when the
number of states is large and the BN model structure is
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complex [45]. Moreover, it may inevitably bring uncertainty
and bias during expert elicitation. As mentioned earlier, the
fuzzy AHP, a decomposition method, and improved expert
elicitation are adopted in this paper to elicit probability
parameters of BN as follows.

Each expert individually implement a pairwise com-
parison according to Saaty’s 1–9 scale [46], and
A(k) � [a

(k)
ij ]n×n represents the pairwise comparison matrix

obtained from the kth expert. Furthermore, each expert
should also give his/her subjectivity reliability level ψk to-
wards his/her own judgements. )en, the fuzzy positive
reciprocal matrix 􏽥A � [􏽥aij]n×n can be obtained by integrating
M experts’ grades using (2), where 􏽥aij is a TFN with

􏽥aij �

[1, 1, 1], i � j,

lij, mij, uij􏽨 􏽩 �
1

uji

,
1

mji

,
1

uji

􏼢 􏼣, i≠ j,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

lij � min1≤k≤M a
(k)
ij􏽮 􏽯,

mij � 􏽘
M

k�1

θk

􏽐
M
k�1θk

a
(k)
ij ,

uij � max1≤k≤M a
(k)
ij􏽮 􏽯,

(2)

Define accident scenario and
collect necessary information

Identify factors affecting
foundation pit collapse

Factors affecting the pit
collapse assessment

All factors
complete?

Fault tree analysis

Bayesian network
construction of foundation

pit collapse

Prior probability
elicitation CPT elicitation

Safety measures

FAHP and
decomposition method

Improved expert
elicitation

FAHP

Improved expert
elicitation

Bayesian network modelling

No

Yes

Risk reasoning Sensitivity analysis

Figure 1: )e overall procedure for risk analysis of foundation pit collapse based on a FBN and FAHP.
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whereM is the number of experts, θk denotes the confidence
index of the kth expert and can be obtained by (1), and
θk/􏽐

M
k�1θk represents the degree of reliability regarding the

judgement data of the kth expert.
In addition, the consistency of fuzzy matrix 􏽥A should be

tested before the calculation of weight [47]. A new judge-
ment matrix 􏽥A must be obtained again when the above test
results are inconsistent until the consistency of matrix 􏽥A is
verified to be acceptable.

After the consistency test, the fuzzy weight matrix can be
calculated by (3)–(5). First, the geometric means of the TFNs
for the ith state of node N can be obtained as

gi � 􏽙
k

j�1
aij

⎛⎝ ⎞⎠

1/k

� 􏽙
k

j�1
aij
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1/k

, 􏽙
k

j�1
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, 􏽙
k

j�1
uij

⎛⎝ ⎞⎠

1/k
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦,

i � 1, 2, . . . , k.

(3)

By summing up the gi values, we have
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(4)

)en, the fuzzy weight 􏽥wi related to the prior probability
of the ith state of node N can be computed as follows:

􏽥wi � 􏽥w
l
i, 􏽥w

m
i , 􏽥w
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⎤⎥⎥⎥⎥⎥⎥⎦, i � 1, 2, . . . , k. (5)

Since the fuzzy weight 􏽥wi obtained above is a fuzzy
number, the “α-weighted valuation defuzzification tech-
nique” proposed by Detyniecki and Yager [48] is selected
here to convert fuzzy results into crisp values. Defuzzifi-
cation of a TFN 􏽥w � (􏽥wl

i, 􏽥wm
i , 􏽥wu

i ) is shown in

Val 􏽥wi( 􏼁 �
􏽒
1
0 Average Fα( 􏼁 × fαdα

􏽒
1
0 f(α)dα

, (6)

where Val(􏽥wi) denotes the transformed exact value, Fα �

(x | F(x)≥ α) is the α-level set of F, f(α) represents the
α-weighted valuation function, and Average(Fα) is the
average of the α-level set and can be obtained as follows:

Average Fα( 􏼁 �
uα + vα

2
, (7)

where uα and vα can be determined with the help of Figure 4.
Generally, we set f(α)� 1 and α� 0.5, and then, we can obtain
the value of Val(􏽥wi), as shown in (10).

Designation Education level Service time Age

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5

Expert judgement ability

Figure 3: Fuzzy AHP index system of respective expert judgement ability.

Table 1: Experts’ profile and related judgement ability level.

No. Designation Education level Service time (year) Age Judgement ability level (ξ)
Expert 1 Professor Doctoral 24 52 0.246
Expert 2 Associate professor Doctoral 16 44 0.202
Expert 3 Senior engineer Doctoral 18 46 0.221
Expert 4 Engineer Masters 11 38 0.150
Expert 5 Senior engineer Masters 14 40 0.181
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4
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Finally, P(Si) can be obtained via normalization of wi as
P Si( 􏼁 � ωi �

wi

􏽐
n
i�1wi

. (11)

2.4.2. CPT Establishment for a Node with One Parent.
Assuming that node N and its only parent M have n states
(SN1, SN2, . . ., SNn) and m states (SM1, SM2, . . ., SMm), re-
spectively, our aim is to derive the probabilities of each state
of node N when the parent M is at state Mj, i.e., P(SNi | SMj)
(i� 1, 2, . . ., n; j� 1, 2, . . ., m). We can judge which one (the
states SNi and SNη (η�1, 2, . . ., n)) is more likely to occur
when given the state of SMj by inquiring experts [45]. And
each expert only needs to fill in the number represented by aij
shown inTable 2.)us, the corresponding comparisonmatrix is
constructed as in the table.

)us, p(SNi | SMj)� wij can be obtained from the calcu-
lation of the above matrix, and the calculation procedure is
the same as the generation of root nodes’ prior probabilities.
Since nodeM hasm states,mmatrices should be constructed
to obtain all wij (i� 1, 2, . . ., n; j� 1, 2, . . ., m) values, which
are the CPTs of the node N. )erefore, we can establish the
CPTs for a single-parent node based on the above procedure.

2.4.3. CPT Establishment for Multiple-Parent Nodes.
Suppose a node N with n states (S1, S2, . . ., Sn) has k (k≥ 2)
parents M1, M2, . . ., Mk, and the node Mj has mj states,
namely, SMj1, SMj2, . . . , SMjmj

(j � 1, 2, . . . , k); the probabil-
ity of each state of N on the combination of the states of its
parent nodes can be denoted by

P N � SNi M1 � SM1P1
, M1 � SM2P2

, . . . , M1 � SMkPk

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓,

i � 1, 2, . . . , n; pj � 1, 2, . . . , mj; j � 1, 2, . . . , k.

(12)

As we can see, there are a large number of state com-
binations of its parent nodes, and it is difficult for experts to
directly estimate the above probabilities under such situa-
tions. Hence, a decomposition method is adopted here to
reduce the elicitation workload by simplifying CPT elicita-
tion [49, 50]. For example, when a node A has three parents
B, C, andD, its conditional probability on B, C, andD can be
approximated by

P(A | B, C, D) � αP(A | B)P(A | C)P(A | D), (13)

where α is a normalization factor to ensure that
􏽐a∈AP(a | B, C, D) � 1.

)us, (12) can be computed as follows:

P N � SNi M1 � SM1P1
, M1 � SM2P2

, . . . , M1 � SMkPk

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

� α􏽙
k

j�1
P N � SNi Mj � SMjPj

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓,

i � 1, 2, . . . , n; pj � 1, 2 . . . , mj; j � 1, 2, . . . , k,

(14)

where α is a normalizing constant to ensure that

􏽘

n

i�1
P N � SNi M1 � SM1P1

, M1 � SM2P2
, . . . , M1 � SMkPk

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 � 1.

(15)

)rough the above technique, we can see that the
problem of CPT calculation for a node with multiple-parent
nodes is transformed to compute the CPTs for a single-
parent node. Additionally, estimating p(N � SNi | Mj �

SMjPj
) individually will be much easier than directly esti-

mating P(N � SNi |M1 � SM1P1
,M1 � SM2P2

, . . . ,M1 � SMkPk
).

uα vα

1

0
wl
i wm

i wu
i

α

Figure 4: Membership function of a TFN 􏽥wi.
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2.5. FBN-Based Risk Analysis

2.5.1. Risk Reasoning Analysis. After obtaining the prior
probabilities and CPTs of FBN, combined with the estab-
lished FBN model, the forward reasoning for prediction of

foundation pit collapse risk prior to construction and during
construction can be realized by (16). )is approach can
predict the potential risk of top event T and provide deci-
sion-making support for foundation pit construction.

P(T � t) � 􏽘

q1,...,qn,r1 ,...,rn

1
P T � t X1 � x1, . . . , Xn � xn, Y1 � y1, . . . , Ym � ym

􏼌􏼌􏼌􏼌􏼐 􏼑

× P X1 � x1, . . . , Xn � xn, Y1 � y1, . . . , Ym � ym( 􏼁

t � t1, t2, . . . , tp􏽮 􏽯; xi � x
1
i , x

2
i , . . . , x

qi

i􏽮 􏽯; yj � y
1
j , y

2
j , . . . , y

rj

j􏽮 􏽯; i � 1, 2, . . . , n; j � 1, 2, . . . , m,

(16)

where t� {t1, t2, . . ., tP} is states range for the leaf node T,
xi � x1

i , x2
i , . . . , x

qi

i􏼈 􏼉 is states range for the root node Xi, and
yj � y1

j , y2
j , . . . , y

rj

j􏽮 􏽯 is states range for the intermediate
node Yi. P(T� t | X1 � x1, . . ., Xn � xn, Y1 � y1, . . ., Ym � ym)
represents the CPT of T, and P(X1 � xj, X2 � xj, . . ., Xn � xj,
Y1 � y1, . . ., Ym � ym) stands for the JPD of the root nodes.

2.5.2. Sensitivity Analysis. In engineering practice, decision
makers usually pay more attention to which factors play an
important role in foundation pit collapse. In addition, the
critical checkpoints are usually determined based on expert
knowledge and practical experience. Sensitivity analysis pro-
vides an alternative method that observes the relevant changes
in the probability distribution of the top event by changing the
probability distribution of each factor. )e sensitivity perfor-
mance measure (SPM) proposed by Zhang et al. [37] is applied
for sensitivity analysis in this paper and can be calculated by
(17). )e higher the SPM (Xi) of root node xi is, the greater the
contribution xi is for the risk sensitivity of top event T.

SPM Xi( 􏼁 �
1
qi

􏽘

qi

1

P T � t Xi � xi

􏼌􏼌􏼌􏼌􏼐 􏼑 − P(T � t)

P(T � t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (17)

where t and xi refer to the state of the top event T and risk
factor Xi, respectively.

3. Case Study

3.1. Background. )e foundation pit construction in Qianhu
Avenue Station in Nanchang Metro Line 2 is chosen as a case
study to illustrate a specific application of the proposed ap-
proach. )e Qianhu Avenue Station is located at the inter-
section of Qianhu Avenue and Fenghe South Avenue,
Honggutan New District, Nanchang City, Jiangxi Province,
China.)e length of themetro station is 223m beginning from
YCK27+254.700m to YCK27+477.700m. )e width of the
main structure of the standard section and the end well of the

metro station are 20.2m and 24.2m, respectively. On the east
side of the station, there is a temporary construction site and a
vacant greening land, and on the west side of the station, there
is Nanchang Hangkong University (shown in Figure 5). In
addition, there are four sewage pipelines with a diameter of
800mm on both sides of the road, only 20m to the edge of the
foundation pit. According to the investigation report, the main
strata of the site comprise miscellaneous fill (1-2), silty clay (2-
1), medium-coarse sand (2-4-5), round gravel (2-7), and
medium weathered argillaceous siltstone (5-1-2), as shown in
Figure 6.)e groundwater in the station includes perched pore
water and bedrock fissurewater, and there is no confinedwater.

Figure 7 shows the working site of the Qianhu Avenue
Station construction.)e excavation depth of foundation pit is
16m, and an open-cut method was used in the station con-
struction as shown in Figure 7(a).)e retaining structure of the
foundation pit consists of diaphragm walls and three rows of
inner supports (Figure 7(b)). )e three rows of supports are
used to restrain the diaphragm wall deflection. )e first row of
support was concrete support (800mm× 1000mm) and the
second and third rows of supports were steel supports
(Φ609mm). In addition, the excavation principle of “layering,
blocking, symmetry, and balance” is adopted during the
foundation pit excavation, as can be seen in Figure 6.

3.2. Risk Identification and Fault Tree Construction. )e
metro construction accident data from 2004 to 2017 in
China were collected through the network, accident in-
vestigation reports, and a literature review [51] and analyzed
by statistical methods.We found that foundation pit collapse
is the main type of accident, accounting for 44% of the total
number of accidents. Moreover, foundation pit collapse is
considered a large potential risk to personnel safety and
surrounding facilities.)erefore, foundation pit collapse risk
is chosen as the top event (T) in the FT for the present study.

Due to complexities and uncertainties of the foundation
pit construction process, the foundation pit collapse may be

Table 2: )e construction of pairwise comparison matrix.

M in the state of SMj SN1 SN2 . . . SNn wij

SN1 a11 a12 . . . a1n w1j

SN2 a21 a22 . . . a2n w2j

. . . . . . . . . . . . . . . . . .

SNn an1 an2 . . . ann wnj

λmax CI� CR�
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influenced by a large number of risk factors that interact
with each other. )erefore, a database of 48 deep foundation
pit collapse cases of metro stations is analyzed to provide
support for risk identification. Moreover, the results of
expert inquiry and the method of FT are also used to de-
termine the risk factors and reveal the causal relationships of
risk factors. Finally, a FTdiagram of foundation pit collapse
for the Qianhu Avenue Station is constructed based on the
above analysis. )e three types of influential factors that
contribute to Tare revealed and analyzed in detail as follows:

(1) Hydrogeological conditions (y1): )e geological con-
dition (y4) and hydrologic condition (y5) are intrinsic
risk surroundings; thus, five primary influential factors
are selected, namely, thickness of soft stratum or
permeable sand layer (x1), accuracy/degree of site in-
vestigation (x2), groundwater level (x3), rainfall (x4),
and drainage timeliness (x5) on the basis of foundation
pit collapse case analyses, as shown in Table 3.

(2) Design factors (y2): )e diaphragm walls are widely
used in metro foundation pits due to their

Landscape open channel of
Qianhu avenue

Nanchang Hangkong University

NEntrance of no. 4

Entrance of no. 3

Ventilation Pavilion
of no.2

Greenbelt

Fenghe south avenue

Qianhu
avenue

Bridge of no. 2
of Fenghe south

avenue
Entrance of no. 2

Vacant 
greening

land
Entrance of no. 1

Vacant
greening

land

Ventilation pavilion
of no. 1

Figure 5: Location relationships of surrounding environment of the metro station.

16m

Soil excavation 1 Concrete support
YDK27 + 306.221 YDK27 + 322.989

Evaluation unit Pre-excavation boundary

Soil excavation 2-1
Soil excavation 2-2
Soil excavation 3-1
Soil excavation 3-2
Soil excavation 4-1
Soil excavation 4-2

Steel support-1

Steel support-2
Soil to be excavated

Steel support to be erected

Over excavation of soil

(1-2) miscellaneous fill
(2-1) silty clay1

(2-4-5) medium-coarse sand

(2-7) round gravel

(5-1-2) medium weathered argillaceous siltstone

Displacement monitoring section
YDK27 + 314.605

Figure 6: )e site geological conditions of the station.

(a)(a) (b)(b)

Figure 7: Working site of the Qianhu Avenue Station construction: (a) earth excavation; (b) retaining structure.
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advantages of time and space saving and safety, and
they can be used as waterproof curtains during
construction and permanent basement walls after
construction. And the inner supports are being in-
dispensable part of the diaphragm walls as foun-
dation pits have become deep and large, because they
can effectively restrain the diaphragm wall deflec-
tion.)erefore, the rationality of diaphragmwall and
support design (y6 and y7) has great impact on the
stability and safety of the pit. )e diaphragm wall
thickness (x6), diaphragm wall insertion ratio (HO/
H) (x7), number of supports (x8), and support form
(x9) are selected based on the cases analysis, as shown
in Table 3.

(3) Construction and management factors (y3): )e
construction quality and management level play a
crucial role in the pit stability, and improper con-
struction organization and management may lead to
potential risks during pit construction. )ey can be
further classified into three types: reliability of ex-
cavation (y8), reliability of support (y9), and field
monitoring and management (y10). )en, the eight
primary risk factors (x10, x11, . . ., x17) related to
construction and management are selected accord-
ing to the cases analysis, as shown in Table 3.

3.3. Bayesian Network Modeling. )e BN model (shown in
Figure 8) for collapse risk analysis of metro pit construction
can be established in light of the transformation process
described in Section 3.2. Each node of BN and relevant
descriptions are shown in Table 3. All the nodes are con-
sidered to be multistate variables to make the results more
accurate. )us, the corresponding risk state of each node is
divided into three levels defined by “L (low), M (medium),
and H (high),” as illustrated in Table 3.

3.4. Prior Probabilities and CPT Establishment. First, detailed
information about the project’s geological exploration, design,
construction, and field investigation should be collected. )en,
domain experts are invited to express their opinions towards
each node of the FBN.Clemen andWinkler [52] indicated that 3
to 5 experts are enough to achieve the most of the knowledge.
)us, we invited five domain experts to elicit prior probabilities
and CPTs of the FBN based on the collected information and
their own experiences.

)e root node X4 (rainfall) is taken as an example. )e
probabilities of X4 in each state can be elicited from experts
through the procedure introduced in Section 2.4.1. Each expert
individually gives a pairwise comparisonmatrixA(k) � [a

(k)
ij ]3×3

in the light of Table 2 and a subjectivity reliability level ψk to-
wards all states of the root node X4, and the fuzzy positive

Table 3: Node descriptions and risk states division.

Nodes Descriptions
Risk level/states

L (low) M (medium) H (high)
T Foundation pit collapse risk Slight <22mm Moderate 22–30mm Serious >30mm
y1 Hydrogeological factors Good 80–100 Moderate 60–80 Poor 0–60
y2 Design factors Good 80–100 Moderate 60–80 Poor 0–60
y3 Construction and management factors Good 0–100 Moderate 60–80 Poor 0–60
y4 Geological condition Good 80–100 Moderate 60–80 Poor 0–60
y5 Hydrologic condition Good 80–100 Moderate 60–80 Poor 0–60
y6 Rationality of diaphragm wall design Reasonable 80–100 General 60–80 Unreasonable 0–60
y7 Rationality of support design Reasonable 80–100 General 60–80 Unreasonable 0–60
y8 Reliability of excavation High 80–100 Medium 60–80 Low 0–60
y9 Reliability of support High 80–100 Medium 60–80 Low 0–60
y10 Field monitoring and management Good 80–100 Moderate 60–80 Poor 0–60
x1 )ickness of soft stratum or permeable sand layer <1m 1-2m >2m
x2 Accuracy/degree of site investigation Very detailed 80–100 General 60–80 Rough 0–60
x3 Groundwater level >16m 10–16m <10m
x4 Rainfall <20mm/d 20–50mm/d >50mm/d
x5 Drainage timeliness In time 80–100 General 60–80 Delay 0–60
x6 Diaphragm wall thickness >1000mm 800–1000mm <800mm
x7 Diaphragm wall insertion ratio (HO/H) >0.4 0.2–0.4 <0.2
x8 Number of supports >5 3–5 <3
x9 Support form Concrete Con + ste Steel
x10 Overbreak depth <1.0m 1.0-2.0m >2.0m
x11 Excavation speed <2500m3/d 2500–3000m3/d >3000m3/d
x12 Timeliness of support erection <8 h 8–24 h >24 h
x13 Specification of support erection <15mm 15–30mm >30mm
x14 Steel support axial force <640 kN 640–1000 kN >1000 kN
x15 Overloading (multiples of the allowable value of design) <1.2 1.2–1.5 >1.5
x16 Construction normalization 80–100 60–80 0–60
x17 Monitoring (frequency (times/24 h)) 2 1 0
Note. (1))e evaluation of leaf node T is measured by the diaphragmwall deflection, the evaluation of intermediate nodes (y1, y2, . . . , y10) is measured using
100-mark system, the evaluation of root nodes (x1, x3, x4, x6 . . . , x15, x17) is measured by practical values in actual projects, and the evaluation of root nodes
(x2, x5, x16) is also measured using 100-mark system. (2) HO: the insertion depth of diaphragm wall; H: the excavation depth of the foundation pit.
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reciprocal matrix 􏽥A � [􏽥aij]3×3 shown in Table 4 can be obtained
by integrating the five experts’ judgements. )en, we can obtain
the prior probabilities of node X4 by calculating the principle
eigenvector of the fuzzy matrix 􏽥A � [􏽥aij]3×3 (displayed in Ta-
ble 4), and these probabilities are shown as follows:

P X4 � L( 􏼁 � wL � 0.2631,

P X4 � M( 􏼁 � wM � 0.5851,

P X4 � H( 􏼁 � wH � 0.1518.

(18)

)e prior probabilities of remaining nodes can also be
determined and their prior probabilities are listed in Table 5.

After the prior probabilities of each root node are cal-
culated, CPTelicitation for intermediate nodes and leaf node
can be carried out using the FAHP and decomposition
method mentioned in Section 3.3.3. )e calculation of the
CPT of node T is taken as an example. )e leaf node T has
three parent nodes, as illustrated in the FBN model, namely,
y1, y2, and y3. First, we should obtain P(T|y1), P(T|y2), and
P(T|y3), respectively, according to the method in Section
2.4.3. An example of the calculation of the probabilities of
node Twhen the node y1 is at state L is presented in Table 6.
Similarly, the probability of each state of T when its parent
node y1 is at states M and H can also be obtained (shown in

Table 7). In addition, the probabilities of each state of node T
can also be obtained under the given states of nodes y2 and
y3, and the results are listed in Tables 8 and 9, respectively.

)en, the conditional probabilities of the leaf node T can
be estimated via the decomposition method as follows. For
instance, when the states of nodes y1, y2, and y3 are all H, we
will have the following equations with α� 1/K:

P T � L y1 � H, y2 � H, y3 � H
􏼌􏼌􏼌􏼌􏼐 􏼑 � αP T � L y1 � H

􏼌􏼌􏼌􏼌􏼐 􏼑P T � L y2 � H
􏼌􏼌􏼌􏼌􏼐 􏼑P T � L y3 � H

􏼌􏼌􏼌􏼌􏼐 􏼑,

P T � M y1 � H, y2 � H, y3 � H
􏼌􏼌􏼌􏼌􏼐 􏼑 � αP T � M y1 � H

􏼌􏼌􏼌􏼌􏼐 􏼑P T � M y2 � H
􏼌􏼌􏼌􏼌􏼐 􏼑P T � M y3 � H

􏼌􏼌􏼌􏼌􏼐 􏼑,

P T � H y1 � H, y2 � H, y3 � H
􏼌􏼌􏼌􏼌􏼐 􏼑 � αP T � H y1 � H

􏼌􏼌􏼌􏼌􏼐 􏼑P T � H y2 � H
􏼌􏼌􏼌􏼌􏼐 􏼑P T � H y3 � H

􏼌􏼌􏼌􏼌􏼐 􏼑,

(19)

where

K � P T � L y1 � H
􏼌􏼌􏼌􏼌􏼐 􏼑P T � L y2 � H

􏼌􏼌􏼌􏼌􏼐 􏼑P T � L y3 � H
􏼌􏼌􏼌􏼌􏼐 􏼑 + P T � M y1 � H

􏼌􏼌􏼌􏼌􏼐 􏼑,

P T � M y2 � H
􏼌􏼌􏼌􏼌􏼐 􏼑P T � M y3 � H

􏼌􏼌􏼌􏼌􏼐 􏼑 + P T � H y1 � H
􏼌􏼌􏼌􏼌􏼐 􏼑P T � H y2 � H

􏼌􏼌􏼌􏼌􏼐 􏼑P T � H y3 � H
􏼌􏼌􏼌􏼌􏼐 􏼑.

(20)

T

y1

y4

y5 y6 y7 y8 y10

y10y3y2

x1

x2

x3

x4

Root node

Intermediate node

Leaf node

x5 x6 x7 x8 x9 x10 x11 x12
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x14
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x16
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Figure 8: Established BN model for collapse risk analysis of metro foundation pit construction.

Table 4: )e evaluation of prior probabilities of root node X4.

X4 L M H ω

L
(1.000,
1.000,
1.0000)

(0.2500,
0.3151,
0.3333)a

(0.5000,
0.5000,
0.5000)a

wL � 0.2631

M
(3.000,
3.1736,
4.0000)b

(1.0000,
1.0000,
1.0000)

(2.000,
2.6723,
3.0000)a

wM � 0.5851

H
(2.000,
2.000,
2.0000)b

(0.3333,
0.3742,
0.5000)b

(1.0000,
1.0000,
1.0000)

wH � 0.1518

CI� 0.0163 CR� 0.0281< 0.1 λmax � 3.0326
aExperts’ judgements after integration. bReciprocal matrix of experts’
judgements after integration.
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)e following results can be obtained based on the partial
probability data in Tables 7–9 along with the above equations:

P T � L y1 � H, y2 � H, y3 � H
􏼌􏼌􏼌􏼌􏼐 􏼑 � 0.0008,

P T � M y1 � H, y2 � H, y3 � H
􏼌􏼌􏼌􏼌􏼐 􏼑 � 0.0313,

P T � H y1 � H, y2 � H, y3 � H
􏼌􏼌􏼌􏼌􏼐 􏼑 � 0.9679.

(21)

In the same way, we can also obtain the conditional
probabilities of T on the other states combination of its parent
nodes (y1, y2, and y3). In addition, the CPTs of each intermediate
node of BN can be generated similarly. Owing to limited space,
only the fuzzy CPT of T is given, as shown in Table 10.

3.5. FBN-Based Risk Analysis

3.5.1. Risk Prediction Based on Forward Reasoning. After
prior probabilities and CPTs are assigned into the established
FBN model, we can predict the risk of foundation pit collapse
by forward reasoning prior to foundation pit construction.)is
can help decision makers gain insight into the potential risks
associated with the foundation pit, which is very important for
decision making in the preconstruction phase. Using (16), the
occurrence probabilities of foundation pit collapse with dif-
ferent risk levels under prior probability environments (Sce-
nario 1 displayed in Table 11) are calculated as follows:

Table 6: )e evaluation of conditional probabilities of leaf node T on y1.

y1 � L L M H ω
L (1.000, 1.000, 1.0000) (0.3333, 0.4049, 0.5000)a (0.1667, 0.1810, 0.200)a wL � 0.6714
M (2.000, 2.4698, 3.000)b (1.000, 1.000, 1.0000) (0.250, 0.2780, 0.3333)a wM � 0.2230
H (5.000, 5.5255, 6.0000)b (3.000, 3.5970, 4.0000)b (1.000, 1.000, 1.0000) wH � 0.1056
CI� 0.0176 CR� 0.0303< 0.1 λmax � 3.0352
aExperts’ judgements after integration. bReciprocal matrix of experts’ judgements after integration.

Table 7: )e conditional probabilities of leaf node Ton y1’s various
states.

T y1 � L y1 �M y1 �H
L 0.7053 0.3102 0.0640
M 0.2371 0.4954 0.2205
H 0.0576 0.1944 0.7155

Table 8: )e conditional probabilities of leaf node Ton y2’s various
states.

T y2 � L y2 �M y2 �H
L 0.6828 0.2535 0.0763
M 0.2490 0.5062 0.1915
H 0.0682 0.2403 0.7322

Table 5: Prior probabilities of each root node.

Root node L M H
X1 0.2777 0.5814 0.1408
X2 0.6393 0.2479 0.1128
X3 0.2067 0.6794 0.1139
X4 0.2631 0.5851 0.1518
X5 0.6308 0.2912 0.0780
X6 0.2844 0.5964 0.1192
X7 0.2948 0.6242 0.0810
X8 0.2403 0.6459 0.1138
X9 0.6183 0.3041 0.0776
X10 0.5311 0.3066 0.1624
X11 0.6627 0.2239 0.1135
X12 0.6412 0.2466 0.1122
X13 0.2864 0.5954 0.1182
X14 0.6552 0.2328 0.1120
X15 0.6723 0.2225 0.1052
X16 0.5828 0.2928 0.1143
X17 0.3455 0.5010 0.1536

Table 9: )e conditional probabilities of leaf node Ton y3’s various
states.

T y3 � L y3 �M y3 �H
L 0.7018 0.2079 0.0809
M 0.2395 0.5262 0.1345
H 0.0587 0.2659 0.7846
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P(T � L) � 􏽘
x1 ,...,x17 ,y1 ,...,y10

P T � L x1, x2, . . . , x17, y1, y2, . . . , y10
􏼌􏼌􏼌􏼌􏼐 􏼑

× P x1, x2, . . . , x17, y1, y2, . . . , y10( 􏼁 � 0.47,

P(T � M) � 􏽘
x1 ,...,x17 ,y1 ,...,y10

P T � M x1, x2, . . . , x17, y1, y2, . . . , y10
􏼌􏼌􏼌􏼌􏼐 􏼑

× P x1, x2, . . . , x17, y1, y2, . . . , y10( 􏼁 � 0.45,

P(T � H) � 􏽘
x1 ,...,x17 ,y1 ,...,y10

P T � H x1, x2, . . . , x17, y1, y2, . . . , y10
􏼌􏼌􏼌􏼌􏼐 􏼑

× P x1, x2, . . . , x17, y1, y2, . . . , y10( 􏼁 � 0.08.

(22)

Obviously, the above computation results mean that the
risk state of foundation pit collapse belongs to level L (low)
since P(T� L)>P(T�M)>P(T�H). However, the potential
risk of foundation pit collapse shows a considerable trend
moving towards level M (medium). )us, the planners and
engineers need to optimize the design and construction
plans continuously until the collapse risk probability of level
M is relatively small to ensure the safety of the foundation pit
construction.

Moreover, the actual status information of root nodes
will be revealed gradually as the construction progress
evolves. )erefore, we can achieve dynamic risk analysis
of foundation pit collapse by the new evidence (current
actual state of root node) entered into the FBN, which is
also the unique merit of the FBN compared to other static
analysis methods (FTA, ETA, etc.). When the foundation
pit was excavated between YDK27 + 306.221m and
YDK27 + 322.989m (current evaluation unit shown in
Figure 6), there were several irregularities in the current
evaluation unit according to the construction plan and

on-site inspection. For example, considering the condi-
tion of earthwork overbreak, the excavation speed is
relatively too fast, the support erection lags, and there are
earthmoving vehicles passing along the periphery of the
foundation pit. Specifically, the second row of steel
support should be set up when the soil is excavated to the
level of 11.5 m in light of the design requirements. Ac-
tually, the second row of steel support is erected until the
soil is excavated to the level of 13m, as shown in Figure 6
(overbreak part of earthwork). Furthermore, there is
overloading around the foundation pit as the earthmoving
vehicles pass along the periphery of the foundation pit.
)erefore, the new status of root nodes X10, X11, X12, and
X15 can be defined according to the current construction
states as P(X10, X11, X12, X15 �M) � 1 (Scenario 2 displayed
in Table 11). )en, we can calculate the occurrence
probabilities of foundation pit collapse with different risk
levels under current construction status through forward
reasoning. Using (16), these probabilities are calculated as
follows:

Table 10: Fuzzy CPT of the leaf node T in the FBN.

y1 y2 y3 P(T� L | y1, y2, y3) P(T�M | y1, y2, y3) P(T�H | y1, y2, y3)
L L L 0.9745 0.0251 0.0004
L L M 0.8930 0.1058 0.0012
L L H 0.7541 0.2109 0.0350
L M L 0.8376 0.1588 0.0036
L M M 0.5299 0.4626 0.075
. . . . . . . . . . . . . . . . . .

H M H 0.0073 0.1275 0.8652
H H L 0.0656 0.2430 0.6913
H H M 0.0189 0.3221 0.6590
H H H 0.0080 0.0313 0.9679

Table 11: Probabilities of foundation pit collapse under different scenarios.

Scenarios Evidence L M H Risk level
Scenarios 1 No 0.47 0.45 0.08 L
Scenarios 2 P(X10, X11, X12, X15 �M)� 1 0.34 0.52 0.14 M
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P(T � L) � 􏽘
x1 ,...,x17 ,y1 ,...,y10

P T � L x1, . . . , x9, x10 � x11 � x12 � x15 � M, x13, x14, x16, x17, y1, y2, . . . , y10
􏼌􏼌􏼌􏼌􏼐 􏼑

× P x1, x2, . . . , x17, y1, y2, . . . , y10( 􏼁 � 0.34,

P(T � M) � 􏽘
x1 ,...,x17 ,y1 ,...,y10

P T � M x1, . . . , x9, x10 � x11 � x12 � x15 � M, x13, x14, x16, x17, y1, y2, . . . , y10
􏼌􏼌􏼌􏼌􏼐 􏼑

× P x1, x2, . . . , x17, y1, y2, . . . , y10( 􏼁 � 0.52,

P(T � H) � 􏽘
x1 ,...,x17 ,y1 ,...,y10

P T � H x1, . . . , x9, x10 � x11 � x12 � x15 � M, x13, x14, x16, x17, y1, y2, . . . , y10
􏼌􏼌􏼌􏼌􏼐 􏼑

× P x1, x2, . . . , x17, y1, y2, . . . , y10( 􏼁 � 0.14.

(23)

From the above calculation results, it can be seen that the
risk level of foundation pit collapse corresponds to M
(medium) as P(T�M)>P(T� L)>P(T�H). In addition, it
should be noted that the occurrence probability of risk level
H increases from 0.08 to 0.14, meaning that the potential risk
of serious collapse is increasing. Hence, necessary measures
must be adopted to reduce the occurrence probability of
foundation pit collapse risk. Specifically, the earth excava-
tionmust be stopped immediately; in themeantime, the steel
support should be set up in time. Moreover, the supervisors
should strictly control the earth excavation speed and pay
much more attention to the overloading condition around
the foundation pit while limiting it to a reasonable range.

3.5.2. Comparison with Field Actual Status and Numerical
Results. To validate the reliability of the proposed approach,
the field monitoring data and numerical simulation results
under current construction states (Scenario 2 displayed in
Table 11) are analyzed. First, the relationship between col-
lapse risk levels and diaphragm wall deflection is established
as illustrated in Table 12 in light of the related design code,
the control standards, and the actual construction situation
(Nanchang Metro in China). )en, the monitoring data of
diaphragm wall deflection under current evaluation unit are
analyzed to assess the actual risk status of the foundation pit
according to the relationship between collapse risk levels and
diaphragm wall deflection shown in Table 12. Actually, the
maximum diaphragm wall deflection in the displacement
monitoring section of YDK27 + 314.605 was 28.7mm under
current evaluation unit, indicating that the risk level of the
foundation pit collapse corresponds to level M. Obviously,
the result obtained from the proposed approach was con-
sistent with the field actual status of foundation pit in
construction. In addition, early warning was issued on-site
since the displacement rate exceeded the warning value
(>3mm/d) for consecutive two days under current con-
struction states.

Moreover, to further illustrate the performance of
foundation pit and retaining structure under current con-
struction states, a numerical model of typical construction
section under current evaluation unit was established using
FLAC3D software [53] and is shown in Figure 9. As Mohr-
Coulomb model can predict the retaining structure defor-
mation and ground surface settlement of the foundation pit
with reasonable accuracy [54, 55], the Mohr-Coulomb yield

criterion was adopted for the rock and soil material. )e
diaphragm wall and inner supports belong to structural
member and were described by elasticity constitutive model.
)e horizontal constraint is applied on the left and right
boundaries of the model, the front and back boundaries are
fixed in the Y direction, and the full boundary constraint is
applied on the bottom boundary. In addition, an interface
element is arranged between the diaphragm wall and the soil
layer to simulate the soil-structure interaction such as sliding
and opening. )e physical and mechanical parameters of
material and structure applied in the numerical model are
shown in Tables 13 and 14, respectively.

First, the numerical model was calibrated via repeated
trial based on the existing monitoring data. On this basis, the
horizontal displacements of the diaphragm wall along the
depth, considering the condition of earthwork overbreak
and overloading around the pit, were calculated adopting the
above numerical model. )e overbreak depth is 1.5m, the
position of the overloading is at a distance of 5m from the
top of the pit, and the overloading value is 30 kPa. )e
monitoring and simulating curves of diaphragm wall de-
flection are shown in Figure 10. It can be seen that the
maximum diaphragm wall deflection calculated by FLAC3D
is 22.5mm, and it is also indicated that the risk level of the
foundation pit collapse was M according to Table 12. It is
apparent that the result obtained from the proposed ap-
proach was also in accordance with the numerical result. In
addition, the calculation value of maximum diaphragm wall
deflection is less than the monitoring value due to only the
condition of earthwork overbreak and overloading con-
sidered in numerical computation. In other words, the in-
fluence of excavation speed, timeliness of support erection,
and other uncertainty factors (time-space effect, weather
change, etc.) was not considered in numerical calculation. In
short, the accuracy and rationality of the proposed approach
were verified by comparing with field actual status and
numerical results.

3.5.3. Critical Risk Factor Identification and Countermeasures.
In construction practice, decision makers usually pay more
attention to which factors play a vital role in foundation pit
collapse. However, during the process of actual construction,
the critical checkpoints are usually determined based on
expert knowledge and practical experience. )rough sen-
sitivity analysis, the BN can automatically identify the critical
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risk factors, and this technique is effective and efficient for
controlling the risk of targeted events. )e SPM values of all
the root nodes (Xi; i� 1, 2, . . ., 17) in Scenario 1 are
computed by (17), as shown in Figure 11. When T�H, we
sort the risk factors according to the SPM value as
X11>X12 �X16>X7>X6>X9 �X10
�X14 �X15>X5>X1 �X4 �X8 �X17>X3>X13>X2. It is
apparent that X11 (excavation speed), X12 (timeliness of
support erection), and X16 (construction normalization)
were the top three suspected factors when serious collapse
occurred. )erefore, it is essential to give priority to the
factors X11, X12, and X16 during foundation pit construction.
In addition, we can facilitate fault diagnosis according to the

following route: X11⟶X12⟶X16⟶X7⟶X6⟶
X9⟶ X10⟶X14⟶X15. Furthermore, decision makers
can adopt corresponding safety control measures in advance
on the basis of the above sensitivity analysis results. For
instance, importance should be attached to the restriction of
excavation speed during excavation, the inner support
should be erected in time, and the management of on-site
construction should be strengthened in the meantime.

4. Discussion

Conducting accurate and quantitative risk assessment of
foundation pit collapse is difficult or not even possible due to
complexities and uncertainties of the foundation pit con-
struction process. )erefore, the conventional methods
(FTA, ETA, BN, etc.) cannot usually present the reliable and
trustworthy results for us in this case. )e proposed risk
analysis method is superior to the conventional methods,
mainly in the following aspects: firstly, the problems of
vagueness and subjectivity are well solved by using a FAHP
and improved expert elicitation considering a confidence
index; in the meantime, a decomposition method is adopted
in this study to reduce the elicitation workload and the
possibility of inconsistency by simplifying CPT elicitation;
secondly, since the occurrence probability of foundation pit
collapse risk can be calculated quantitatively using both the
prior probability and the actual fault state revealed during
construction of the root nodes, the proposed method can
achieve real-time deductive reasoning, dynamic risk control,
and management during construction; and finally, the
critical risk factors can be identified automatically through

Table 12: Risk level of foundation pit collapse.

Risk level L (mm) M (mm) H (mm)
Diaphragm wall deflection <22 22–30 >30
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Figure 9: )e monitoring and simulating curves of lateral dis-
placements of diaphragm wall.
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Figure 10: )e finite element mesh of the numerical model.
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sensitivity analysis to help decision makers judge the key
checkpoints accurately.

)e proposed model was applied before and during
construction of the foundation pit in Qianhu Avenue Sta-
tion, and the design and construction schemes were con-
tinuously optimized to reduce the collapse risk during
foundation pit construction to a maximum extent. )e
results were in accordance with the field observations and
numerical simulation results, indicating that the model
proposed in this paper is of certain feasibility and reliability.
)e Qianhu Avenue Station construction went smoothly
and no collapses occurred throughout foundation pit ex-
cavation. In addition, the results of sensitivity analysis in-
dicated that X11 (excavation speed), X12 (timeliness of
support erection), and X16 (construction normalization)

were the top three risk factors influencing the foundation pit
collapse in Qianhu Avenue Station.

Nevertheless, the approach proposed in the present
study still has some limitations. For example, this approach
relies greatly on domain experts during the establishment of
prior probabilities and CPTs of the FBN. Although the
subjective bias and uncertainty are reduced to some extent
by using the FAHP and improved expert elicitation, some
subjective bias still remains. Moreover, the risk factors
considered in this study are determined based on the results
of statistical analysis of foundation pit collapse cases, expert
inquiry, and fault tree analysis. )us, some other risk factors
may not be taken into consideration due to the shortage of
foundation pit cases. Future work will focus on developing a
data-driven BN model by collecting a large number of

Table 14: )e physical and mechanical parameters of model structure.

Structure Unit Weight (kN/m3) Poisson’s ratio Elastic modulus (MPa) Section size (mm)
Diaphragm wall 24 0.18 3.0×104 )ickness is 800mm
Concrete support 24 0.18 3.0×104 800mm× 1000mm
Steel support 78 0.28 2.06×105 Φ609mm
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Figure 11: )e SPM values of each risk factor when P (T�H)� 1.

Table 13: )e physical and mechanical parameters of model material.

Material Layer thickness
(m)

Deformation modulus
(MPa)

Poisson’s
ratio

Unit Weight
(kN/m3)

Cohesion force
(kPa)

Friction
angle (°)

Miscellaneous fill 4.4 4 0.30 18.4 4 18.4
Silty clay 3.0 10 0.30 19.1 16 5
Medium-coarse sand 8.9 15 0.26 19.6 1 22
Round gravel 2.2 20 0.24 20.9 1 28
Medium weathered
argillaceous siltstone — 1000 0.18 24 800 32
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foundation pit cases along with field monitoring data to
further reduce subjectivity and enhance the robustness of the
proposed model.

5. Conclusions

Foundation pit construction is associated with large po-
tential risks owing to various risk events in a complicated
uncertain environment. As foundation pit collapse in metro
construction can cause heavy casualties and financial losses,
it has aroused the attention of all parties. However, uncertain
construction environments and data shortages make it
difficult to accurately predict the potential collapse risk in
foundation pit construction. )is study proposes a sys-
tematic model for dynamic risk analysis of foundation pit
collapse during construction based on a FBN and a FAHP. In
terms of priori probabilities and CPTs establishment, a
FAHP and decomposition method were adopted to reduce
subjectivity and vagueness. In addition, improved expert
elicitation considering a confidence index was used to
guarantee survey data reliability. A case study concerning an
actual deep foundation pit in a metro station was utilized to
illustrate a specific application of this model, and the result
was in accordance with the field observations and numerical
simulation results.

)rough the FBN-based risk analysis, the potential risks
of foundation pit collapse were predicted quantitatively to
help decision makers adopt necessary safety measures in
advance; additionally, the critical risk factors were deter-
mined automatically to contribute to judging the key
checkpoints accurately and effectively. )e proposed ap-
proach can provide effective decision-making support for
planners and engineers and guarantee on-site construction
safety of foundation pit. Meanwhile, the results of this study
can be used in the field case with similar retaining structure
of foundation pit.
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