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In this paper, we present several composition formulae of pathway fractional integral operators connected withS-function. Here,
we point out important links to known outcomes for some specific cases with our key results.

1. Introduction and Preliminaries

In recent years, fractional calculus has become a significant
instrument for the modeling analysis and plays a significant
role in different fields, for example, material science, science,
mechanics, power, economy, and control theory. In addition, a
number of researchers have investigated a variety of fractional
calculus operators in the depth level of properties, imple-
mentation methods, and complex modifications. Other anal-
ogous topics are also very active and extensive around the
world. One may refer to the research monographs in [1, 2].

S-function. Recently, Saxena and Daiya [3] defined and
studied a special function called as S-function (also see [4])
and its relation with other special functions, which include
generalized K-function, M-series, k-Mittag–Leffler func-
tion, Mittag–Leffler type functions, and other many special
functions. ,ese special functions have recently found es-
sential applications in solving problems in applied sciences,
biology, physics, and engineering.

,e S-function is defined for σ, η, ε, τ ∈ C, R(σ)> 0,
k ∈ R, R(σ)> kR(τ), li(i � 1, 2, 3, . . . , p),
mj(j � 1, 2, 3, . . . , q), and p< q + 1 as

S
σ,η,ε,τ,k

(p,q) l1, l2, . . . , lp; m1, m2, . . . , mq; x  � 
∞

n�0

l1( n . . . lp 
n
(ε)nτ,k

m1( n . . . mq 
n
Γk(nσ + η)

xn

n!
, (1)

Here, k-Pochhammer symbol is as follows:

(ε)n,k �

Γk(ε + nk)

Γk(ε)
, (k ∈ R, ε ∈ C/ 0{ }),

ε(ε + k) . . . (ε +(n − 1)k), (n ∈ N, ε ∈ C).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

Also, the k-gamma function is

Γk(ε) � k
(ε/k)− 1Γ

ε
k

 , (3)

where ε ∈ C, k ∈ R, and n ∈ N, introduced by Dı́az and
Pariguan [5] (see also Romero and Cerutti [6]).

Several major special cases of the S-function are de-
scribed as follows:

(i) For p � q � 0, the generalized k-Mittag–Leffler
function from Saxena et al. [7] (see [8, 9]) is
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E
ε,τ
k,σ,η(x) � S

σ,η,ε,τ,k

(0,0) [− ; − ; x] � 
∞

n�0

(ε)nτ,k

Γk(nσ + η)

xn

n!
,R

σ
k

− τ >p − q.

(4)

(ii) For k � τ � 1, the S-function is the generalized
K-function, introduced by Sharma [10] (see also [11]):

K
σ,η,ε
(p,q) l1, . . . , lp; m1, . . . , mq; x  � S

σ,η,ε,1,1
(p,q) l1, . . . , lp; m1, . . . , mq; x 

� 
∞

n�0

l1( n . . . lp 
n
(ε)n

m1( n . . . mq 
n
Γ(nσ + η)

xn

n!
, R(σ)>p − q.

(5)

(iii) For τ � k � ε � 1, the S-function reduced to gen-
eralized M-series introduced by Sharma and Jain
[12](detail [13]) is

M
σ,η
(p,q) l1, . . . , lp; m1, . . . , mq; x  � S

σ,η,1,1,1
(p,q) l1, . . . , lp; m1, . . . , mq; x 

� 
∞

n�0

l1( n . . . lp 
n
xn

m1( n . . . mq 
n
Γ(nσ + η)

, R(σ)>p − q − 1.

(6)

Recently, an expending pathway fractional integral (PFI)
operator introduced by Nair [14], which was earlier defined
by Mathai [15] and Mathai and Haubold [16, 17], is defined
as follows:

P
λ,ς
0+f (x) � x

λ


[x/(a(1− ς))]

0
1 −

a(1 − ς)ξ
x

 

λ/(1− ς)

f(ξ)dξ,

(7)

where Lebesgue measurable function f ∈L(a, b) for real or
complex term valued function, λ ∈ C, R(λ)> 0, a> 0, and
ς< 1 (ς is a pathway parameter).

,e pathway model for a real scalar ς and scalar random
variables is represented by the probability density function
(p.d.f.) in the following manner:

f(x) �
c

|x|1− v
1 − a(1 − ς)|x|

ρ
 

λ/(1− ς)
, (8)

where x ∈ (− ∞,∞);λ>0;ρ>0;[1 − a(1 − ς)|x|ρ]λ/(1− ς)>0;

v>0 and ς and c denote the pathway parameter and nor-
malizing constant, respectively.

Additionally, for ς ∈ R, the normalizing constants are
expressed in the following way:

c �

1
2
ρ[a(1 − ς)]v/ρΓ(v/ρ + λ/(1 − ς) + 1)

Γ(v/ρ)Γ(λ/(1 − ς) + 1)
, (ς< 1),

1
2
ρ[a(1 − ς)]v/ρΓ(λ/(ς − 1))

Γ(v/ρ)Γ(λ/(ς − 1) − v/ρ)
,

1
ς − 1

−
v

ρ
> 0, ς> 1 ,

1
2

[aλ]v/ρ

Γ(v/ρ)
, (ς⟶ 1).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

It is noted that if ς< 1, finite range density with
[1 − a(1 − ς)|x|ρ]λ/(1− ς) > 0 and (8) can be considered
a member of the extended generalized type-1 beta
family. Also, the triangular density, the uniform density,
the extended type-1 beta density and various

other probability density functions are precise special
cases of the pathway density function defined in (8) for
ς< 1.

For example, if ς> 1 and by setting (1 − ς) � − (ς − 1) in
(7), then we have
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P
λ,ς
0+f (x) � x

λ


[x/− a(ς− 1)]

0
1 +

a(ς − 1)ξ
x

 

λ/− (ς− 1)

f(ξ)dξ,

(10)

f(x) �
c

|x|1− v
1 + a(ς − 1)|x|

ρ
 

λ/− (ς− 1)
, (11)

provided that x ∈ (− ∞,∞); ρ> 0; λ> 0; and ς> 1 charac-
terize the extended generalized type-2 beta model for real x.
,e specific cases of density function (11) include the type-2
beta density function, the p density function, and the Stu-
dent’s t density function. For ς⟶ 1, (7) diminishes to the
Laplace integral transform.

In a similar way, if ς � 0, a � 1, and λ takes the place of
λ − 1, then (7) diminishes to the familiar Riemann–Liouville
(R-L) fractional integral operator Iλ

0+f (e.g., [7]):

P
λ− 1,0
0+ f (x) � Γ(λ) I

λ
0+f (x), (R(λ)> 1). (12)

PFI operator (7) leads to numerous interesting il-
lustrations such as fractional calculus associated with
probability density functions and their significant in
statistical theory. Nowadays, many researchers study PFI
formulae associated with various special functions (see
[18–27]). Motivated by these researchers, we study the
S-function, which is connected with PFI operator (7), to
present their integral formulae. Suitable connections of
some particular cases are also pointed out.

2. Pathway Fractional Integral Operator of S-
Function

In this section, we establish the PFI formula involving the
S-function which is stated in ,eorems 1 and 2.

Theorem 1. Suppose w, k ∈ R, σ, η, ε, τ ∈ C,R(σ)> 0,R(λ)

> 0,R(σ)> kR(τ), and p< q + 1,R(λ/(1 − ς))> − 1; ς< 1.
-en, the following formula holds true:

P
λ,ς
0+ ζ(η/k)− 1

S
σ,η,ε,τ,k

(p,q) l1, l2, . . . , lp; m1, m2, . . . , mq; wζ(σ/k)
  (x)

�
xλ+(η/k)k(1+(λ/1− ς))Γ(λ/(1 − ς) + 1)

(a(1 − ς))(η/k)
× S

σ,η+(1+λ/(1− ς))k,ε,τ,k

(p,q) l1, l2, . . . , lp; m1, m2, . . . , mq;
wx(σ/k)

(a(1 − ς))(σ/k)
 .

(13)

Proof. We indicate the RHS of equation (13) by I1, and
invoking equations (1) and (7), we have

I1 � x
λ


[x/a(1− ς)]

0
1 −

a(1 − ς)ζ
x

 

λ/(1− ς)

ζ(η/k)− 1

× 
∞

n�0

l1( n . . . lp 
n
(ε)nτ,k

m1( n . . . mq 
n
Γk(nσ + η)

wζ(σ/k)
 

n

n!
dζ.

(14)

Now changing the order of integration and summation,
we obtain

I1 � x
λ



∞

n�0

l1( n . . . lp 
n
(ε)nτ,kwn

m1( n . . . mq 
n
Γk(nσ + η)n!

× 
[x/a(1− ς)]

0
1 −

a(1 − ς)ζ
x

 

λ/(1− ς)

ζ((η+σn)/k)− 1dζ.

(15)

Using the substitution u � a(1 − ς)ζ/x, we can change
the limit of integration into the following:

I1 � x
λ



∞

n�0

l1( n . . . lp 
n
(ε)nτ,kwn

m1( n . . . mq 
n
Γk(nσ + η)n!

x

a(1 − ς)
 

(η+σn)/k

× 
1

0
(1 − u)

λ/(1− ς)
u

((η+σn)/k)− 1du.

(16)

Now, by calculating the inner integral and using the beta
function formula, we obtain the following:

I1 � x
λ



∞

n�0

l1( n . . . lp 
n
(ε)nτ,kwn

m1( n . . . mq 
n
Γk(nσ + η)n!

x

a(1 − ς)
 

(η+σn)/k

×
Γ(η/k + nσ/k)Γ(λ/(1 − ς) + 1)

Γ(η/k +(nσ/k) + λ/(1 − ς) + 1)
.

(17)

Using (3), we obtain
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I1 � x
λ+η/k



∞

n�0

l1( n . . . lp 
n
(ε)nτ,k

m1( n . . . mq 
n
Γ(nσ/k + η/k)k(nσ/k)+(η/k)− 1n!

×
Γ(η/k + nσ/k)Γ(λ/(1 − ς) + 1)

(a(1 − ς))η/kΓ(η/k +(nσ/k) + λ/(1 − ς) + 1)

· w
x

a(1 − ς)
 

(σ)/k
⎛⎝ ⎞⎠

n

.

(18)

Once again, using (3), we obtain

I1 �
xλ+(η/k)k(1+λ/(1− ς))Γ(λ/(1 − ς) + 1)

(a(1 − ς))(η/k)

S
σ,η+(1+λ/(1− ς))k,ε,τ,k

(p,q) l1, l2, . . . , lp; m1, m2, . . . ,

mq;
wx(σ/k)

(a(1 − ς))(σ/k)
,

(19)

which gives the required proof of ,eorem 1. □

Corollary 1. If we put p � q � 0, then (13) leads to the
subsequent result of generalized k-Mittag–Leffler function:

P
λ,ς
0+ ζ(η/k)− 1

E
ε,τ
k,σ,η wζ(σ/k)

  (x)

�
xλ+(η/k)k(1+λ/(1− ς))Γ(λ/(1 − ς) + 1)

(a(1 − ς))(η/k)
E

ε,τ
k,σ,η+(1+λ/(1− ς))k(x)

·
wx(σ/k)

(a(1 − ς))(σ/k)
 .

(20)

Proof. We consider (4) and p � q � 0 in ,eorem 1, and we
obtain the desired result in (13). □

Corollary 2. If we put k � τ � 1, then (13) leads to the
subsequent result in terms of generalized K-function:

P
λ,ς
0+ ζη− 1

K
σ,η,ε
(p,q) l1, l2, . . . , lp; m1, m2, . . . , mq; wζσ  (x)

�
xλ+ηΓ(λ/(1 − ς) + 1)

(a(1 − ς))η
K

σ,η+(1+λ/(1− ς)),ε
(p,q)

· l1, l2, . . . , lp; m1, m2, . . . , mq;
wxσ

(a(1 − ς))σ
 .

(21)

Proof. If we set k � τ � 1 in ,eorem 1 and using (5), we
obtain the required result (21). □

Corollary 3. If we put k � τ � 1, then (13) holds the formula
in terms of generalized M-series:

P
λ,ς
0+ ζη− 1

M
σ,η
(p,q) l1, l2, . . . , lp; m1, m2, . . . , mq; wζσ  (x)

�
xλ+ηΓ(λ/(1 − ς) + 1)

(a(1 − ς))η
M

σ,η+(1+λ/(1− ς))
(p,q)

· l1, l2, . . . , lp; m1, m2, . . . , mq;
wxσ

(a(1 − ς))σ
 .

(22)

Proof. If we put τ � k � ε � 1 in ,eorem 1 and using (6),
we obtain the result (22). □

Now, we use equation (10) to define the following
theorem, by the case ς> 1.

Theorem 2. Suppose w, k ∈ R; σ, η, ε, τ ∈ C,R(σ)> 0,
R(λ)> 0, R(σ)> kR(τ) and p< q + 1, and
R(1 − (λ/ς − 1))> 0; ς> 1. -en, the following formula holds
true:

P
λ,ς
0+ ζ(η/k)− 1

S
σ,η,ε,τ,k

(p,q) l1, l2, . . . , lp; m1, m2, . . . , mq; wζ(σ/k)
  

(x) �
xλ+(η/k)k(1− λ/(ς− 1))Γ(1 − (λ/(ς − 1)))

(− a(ς − 1))(η/k)

× S
σ,η+(1− λ/(ς− 1))k,ε,τ,k

(p,q) l1, l2, . . . , lp; m1, m2, . . . , mq;

wx(σ/k)

(− a(ς − 1))(σ/k)
.

(23)

Proof. We denote, for convenience, the RHS of equation
(23) by I2, and invoking equations (1) and (10), we have

I2 � x
λ


[x/− a(ς− 1)]

0
1 +

a(ς − 1)ζ
x

 

λ/− (ς− 1)

ζ(η/k)− 1

× 
∞

n�0

l1( n . . . lp 
n
(ε)nτ,k

m1( n . . . mq 
n
Γk(nσ + η)

wζ(σ/k)
 

n

n!
dζ.

(24)

Now, changing the order of integration and summation,
we obtain
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I2 � x
λ



∞

n�0

l1( n . . . lp 
n
(ε)nτ,kwn

m2( n . . . mq 
n
Γk(nσ + η)n!

× 
[x/− a(ς− 1)]

0
1 +

a(ς − 1)ζ
x

 

λ/− (ς− 1)

ζ((η+σn)/k)− 1dζ.

(25)

By setting v � − a(ς − 1)ζ/x, we can change the limit of
integration into the following:

I2 � x
λ



∞

n�0

l1( n . . . lp 
n
(ε)nτ,kwn

m1( n . . . mq 
n
Γk(nσ + η)n!

x

− a(ς − 1)
 

(η+σn)/k

× 
1

0
(1 − v)

λ/− (ς− 1)
v

((η+σn)/k)− 1dv

× 
1

0
(1 − v)

λ/− (ς− 1)
v

((η+σn)/k)− 1dv.

(26)

By analyzing the internal integral and using the beta
function rule, we obtain

I2 � x
λ



∞

n�0

l1( n . . . lp 
n
(ε)nτ,kwn

m1( n . . . mq 
n
Γk(nσ + η)n!

x

− a(ς − 1)
 

(η+σn)/k

×
Γ(η/k + nσ/k)Γ(1 − λ/(ς − 1))

Γ(η/k +(nσ/k) + 1 − λ/(ς − 1))
.

(27)

Using (3), we obtain

I2 � x
λ+η/k



∞

n�0

l1( n . . . lp 
n
(ε)nτ,k

m1( n . . . mq 
n
Γ(nσ/k + η/k)k(nσ/k)+(η/k)− 1n!

×
Γ(η/k + nσ/k)Γ(1 − λ/(ς − 1))

(− a(ς − 1))η/kΓ(η/k +(nσ/k) + 1 − λ/(ς − 1))

· w
x

− a(ς − 1)
 

(σ)/k
⎛⎝ ⎞⎠

n

.

(28)

Once again, we arrive at the target outcome by applying
(3):

I2 �
xλ+(η/k)k(1− λ/ς− 1)Γ(1 − λ/ς − 1)

(− a(ς − 1))(η/k)
S

σ,η+(1− λ/ς− 1)k,ε,τ,k

(p,q)

· l1, l2, . . . , lp; m1, m2, . . . , mq;
wx(σ/k)

(− a(ς − 1))(σ/k)
 .

(29)
□

Corollary 4. If we put p � q � 0, then (23) provides the result
as follows:

P
λ,ς
0+ ζ(η/k)− 1

E
ε,τ
k,σ,η wζ(σ/k)

  (x)

�
xλ+(η/k)k(1− (λ/ς− 1))Γ(1 − (λ/ς − 1))

(− a(ς − 1))(η/k)
E

ε,τ
k,σ,η+(1− (λ/ς− 1))k(x)

·
wx(σ/k)

(− a(ς − 1))(σ/k)
 .

(30)

Proof. We consider (4) and p � q � 0 in ,eorem 2 and we
obtain the desired result (30). □

Corollary 5. If k � τ � 1, then (23) holds the following
formula:

P
λ,ς
0+ ζη− 1

K
σ,η,ε
(p,q) l1, l2, . . . , lp; m1, m2, . . . , mq; wζσ  (x)

�
xλ+ηΓ(1 − (λ/ς − 1))

(− a(ς − 1))η
K

σ,η+(1− (λ/ς− 1)),ε
(p,q)

· l1, l2, . . . , lp; m1, m2, . . . , mq;
wxσ

(− a(ς − 1))σ
 .

(31)

Proof. If we set k � τ � 1 in ,eorem 2 and using (5), we
obtain the required result (31). □

Corollary 6. If we put k � τ � ε � 1, then resulting formula
(23) holds true:

P
λ,ς
0+ ζη− 1

M
σ,η
(p,q) l1, l2, . . . , lp; m1, m2, . . . , mq; wζσ  (x)

�
xλ+ηΓ(1 − (λ/ς − 1))

(− a(ς − 1))η
M

σ,η+(1− (λ/ς− 1))

(p,q)

· l1, l2, . . . , lp; m1, m2, . . . , mq;
wxσ

(− a(ς − 1))σ
 .

(32)

Proof. If we put τ � k � ε � 1 in ,eorem 2 and using (6),
we obtain the result (32). □

3. Concluding Remarks

In the present paper, we have established two pathway
fractional integral formulae associated with the more gen-
eralized special function called as S-function. ,e results
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obtained here involve special functions such as k-Mit-
tag–Leffler function,K-function, andM-series, due to their
general nature and usefulness in the theory of integral
operators and relevant part of computational mathematics.
Also, the special functions involved here can be reduced to
simpler functions, which have a number of applications in
various fields of science and technology and can be found as
special cases that we have not specifically stated here.
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