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In this paper, multiwavelet deconvolution density estimators are presented by a linear multiwavelet expansion and a nonlinear
multiwavelet expansion, respectively. Moreover, the unbiased estimation is shown, and asymptotic normality is discussed for the

multiwavelet deconvolution density estimators. Finally, a numerical example is given for our discussion.

1. Introduction and Preliminary

Assume that (Q, F, P) is a probability space. Y|,Y,,...,Y,
are independent and identically distributed (i.i.d) random
variables. They have the same model Y = X + ¢, where X isa
real random variable and ¢ denotes a random noise (error).
Furthermore, X and ¢ are independent of each other. Let f
be the unknown probability density of X and f, be the
density of e. So the probability density fy of Y is equivalent
to the convolution of fy and f,.If f, degenerates to the diac
functional §, Y reduces to be noise-free. So, approximating
the density fyx Dby an estimator f,(-): = f,
(+Y,Y,,...,Y,) can be recognized as a deconvolution
problem. A wavelet estimator f, means that f, can be
expanded by a wavelet basis. Some important work has been
done, such as wavelet deconvolution estimators and as-
ymptotic normality (seen in [1-5]). Moreover, a multi-
wavelet estimator implies that f, can be denoted by a
multiwavelet basis.

Firstly, we introduce the concept of multiplicity
multiresolution analysis (MMRA) and the expansion of
multiwavelet estimators. Assume that a sequence of closed
subspac.es {Vj}jeZ in L?(R) satisfy the following
properties:

1) VicVig
(2) UjezV; = L (R),NjezV ;= {0}
B) feVie=>f(2)eV,,

(4) There exists a function vector ® = [¢, d,,...,,]7,
such that {¢;(-—k),i=1,...,r,k € Z} forms an
orthogonal basis of the subspace Vj, where V'; = clos

®<bijx =279, (2x-k):i= 1,2,...,r, ke Z)
and q)],k - ¢1,],k’ ¢2,],k’ < (/)r]k]

For every j € Z, the space W; can be defined as an

orthogonal complement of V; into V o le, Vi =VeWw,
Then, ®.W . = L2(R) There exists a function Vector ‘I’ =

(V¥ w, ]t € (R such  that  {y;(-—k),i=
1,...,r,k € Z} forms an orthogonal basis of the subspace
Wy, where W, =clos; (R)<I.//i)jyk =21y, (2] -‘—k),.i =
1,2,...,r,k € Z). Moreover, ® is called a multiscaling

function with multiplicity r, and ¥ is called its corre-
sponding multiwavelet.
So, if a function f € L?(R), it has the following

expansion:
_ T T
f=2 Ciu®pt ) Y D@y
keZ Jj2jo keZ
, ; (1)
Z Z Cipbijet Y, Y D dikWijeo
i=1 keZ i=1 j>j, keZ
Where Ck = [Cljk’CZJk""’ T]k] ,D [dljk’dZJk""’

dr]k] > Cijk = <f ¢Uk> and dl]k - <f Wz]k> i=12,.

Generally, assume that P; and Q; are orthogonal pro-
jections from the space L?(R) to V; and W, respectively.
Then,
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ij = Z CJT'kCDjk = Z Z Cijk(pijk’

keZ i=1 keZ

; )
Qif = Y Dy®u =) Y dinvi =(Pju —P;)f-
keZ i=1 keZ
Thus, f = P, f + 3%, Q.
~And  we also define the notation qu’ " f=

J Jo Q f Z] =jo Zz 1ZkeZdz]kl//z]k

Moreover the Fourier transform ffT of f is defined by
@ = | f e ()
R
And the inverse transform of ffT is denoted by
1 FT ( \ iwx
= — . 4
f) =5 | T (@ da O

So, the Fourier transform @7 (w) of ® (x) is defined as
o (w) = JRcD(x)e"‘w"dx = [ (@), 5T (@), ... ¢/ ()]
(5)

In this paper, choose a multiscaling function ® with

multiplicity r satistying the following condition:

(€)@= (9. 6,7 € I2(R)' and
[CRRIE (1+ |w| ) with
I>1,m=0,1,2,i=1,2,.

Note: A< B denotes two Variables A, B satisfying
A <cB, for some constant ¢ > 0; A>B is equivalent
to BS A, and A ~ B means both A<B and A>B.
Obviously, multiwavelets Sa4 (constructed by Shen
et al.) [6] and CL (constructed by Chui and Lian)
[7, 8] are examples for CI.

According to condition (C1), the corresponding
multiwavelet y/]) s w,]T satisfies
ly/ T (w)l< (1+ le )
In fact, ¢; (x) = (1/27) [ .67 (w)e”*dw. By using
integration by parts,

I8 ()] < (1+1x?) . (6)

Then,

SuPZl‘/’i(x—k)]S supZ(1+|x—k|2)_lsl. 7)
X€ER X€ER

According to multiplicity multiresolution analysis
(MMRA),

Yol = X< py0| = T[VZ | 9000825 =R <1,
k 3 k R
()
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where @ (x) = V23, Pe®@ (2x — k), P = (p; ;1)1< jer
¥ (x) = V21 Q® (2x — k), Q¢ = (G 1)< jer
¢1('x) \/_Zk Z] 1p1]k¢] (Zx k) and Wz(x) \/EZk

z; 1 ql]k¢] (2x k)

Moreover, P;;(w) = (1/V2)Yp;; e~ are bounded.
So, Qjj(w) = (1/\/_)qu, e “ika! are bounded, where
Q,J (w) is constructed by P (w)(seen in [7-9]). Thus,

D=2l ()

wpy~ 2 -
s(1+l—| ) s(1+|w|2) ( 2).
2

|vi™ ()| —’Z Q(5)e(

9)
In addition, the density function f, of the random noise ¢
satisfies the following conditions [2]:
(C2) 1T (@2 (1 +wl)”
(C€3) 1™ @I+ )™ F m = 0,1,2

Under these two conditions, the random noise ¢ is said to
be ill-posed.

2. Multiwavelet Deconvolution
Density Estimators

In this section, we discuss the multiwavelet deconvolution
density estimators. And some lemmas are deduced for the
discussion of asymptotic normality in Section 3.

Similar to the discussion in [2, 3, 5], if I>f+ 1, the
estimators can be defined as

2]/2 n

G = — Z K;¢:(2'Y, - k),

(10)
L 1 iwy ,T(w)
Kij¢i (y) = EJR‘? de
~ iz 2 i
dij ="— ZKU%(ZY - k),
() (11)
— iwy Wi w
Kijyi () : 27Tl € FIT (22iw)

According to equation (10), the linear multiwavelet
estimator can be defined by

= Z Z 1]k¢11k (12)
i=1 keZ

By deducing simply, we have
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jr2 n

20 2
EG,j = ZKU¢1(2 Y,-k)="— ZEK,ng,(Z Y, k)

1w(2JY k) (/) ( )

fFT( —2iw )dwa (Y)d)’

- — i fT( ) i
=— le JRe kifg; (_;)jw)f,F,T(—ZJw)dw

e kgt (w)ff(T(—ij)dw
R

p=1
= Cijk-
(13)
So Ef,(x)=EX., ZkeZEijk¢ijk =Y ZkeZCijk¢ijk =

P, fx. And we have the following conclusion.

Theorem 1. Assume that €, is defined in equation (10).

Then, € is an unbzased estimation of Cijk = ijX

(%)2172¢; (2/x — k)dw, i.e., EC;j = ¢;j and Ef,(x)= Pifx.

The detailed proof of Theorem 1 is similar to the proof of
Lemma 2.2 in [1].

According to the definition of ¢; jk in equation (10), the
estimator f,(x) = Y.} YxezCijk®ijx can be rewritten as

EDN B ACKNCATIER)

i=1 keZ p=1

fu(x) =

(14)
To simplify the above expansion, the function
K/ (x,y) = Z (Kij¢i) (x —k)¢; (y = k) (15)
keZ

is introduced. It is similar to the discussion in [2, 3, 5]. Then,

T =2y YK (@Y, 2% e

i=1 p=1

We introduce K’* (Y,x):=K;(Y,x) - EK]" (Y, x).

Then,

<

n

PR

i=1 p=1

Fa(x) = Ef,(x) (ZjYp,ij). (17)

Next, the properties of the above functions are discussed
in the following lemmas. Some conclusions are similar to the
discussion in [2, 3, 5].

Lemma 1. For I>f+1,3> 1, the conditions (C1-C3) hold.
Then, for every i =1,2,...,r, K;;¢; satisfies:

[y <27 (1 +1yP) (8)

Proof. Assume that (;(w): = (¢! (w)/ fIT (-2/w)), for
every i = 1,2,...,r. Then,

K¢ (y) = %J-Reiwyfi(w)dw. (19)
Since
T @lz(1+1al) =] T (-0) 227 (1 +10l?)
(20)
and [(¢/7) (w)] < (1 +|wl*)™",
(@] <2P(1+10P) PP — 0, 0 — 00 (D)

We compute the derivative
G @ =(9f) @[T (-2a)] " + 29T (@) (FT)

(20 (-20)]
(22)

According to the conditions (C1-C3) and >+ 1,5> 1,

_ ) B2 , (B-1/2)
|0/ (@)] < (1 +1wl?) ”2[<1 +‘2]a)|2) + 2J<1 +|2fw|2> ]
— 0, w— oo.
(23)
Similarly,

¢ (@) :((pr)// () [ffT(—ij)]_l " 2j+1(¢l{~“T)/ ((U)(ffT),
() [ (-20)]
=2 @(FT) (D) £ ()]

27T @ |[(F7) (-2) | [£17(-20)]
(24)
Then,

ol (1) [ (il ) 2 (el )

(i +1sz|2)ﬁ

+221'<1 +|2J'w|2>_(ﬁ+2/2)(1 +\sz(z)ﬂ 122!

. (1 +|sz|2)_(ﬁ+l)(1 +|2fw\2)3ﬁ/2],
|<4lr(w)l SZjﬁ(l +|w|2)—(l/2)[(272]‘ +|w|2)ﬁ/2 +(272j +|w|2),8—1/2
+(2"2j +|w|2)/3_2/2].
(25)

So, the derivative functions {}(w) and ('i'(w) are boun-
ded. By integration by parts,



(26)
If |y| < 1, it is obtained that
|K,-,-¢i (y)| < JR|Ci(w)|dws2fﬁjR(1 +|w|2)””3/2dws2f/3
<2 (1+]y?)
(27)
If |y| = 1, the conclusion holds that
K¢, ()| < |y|-2ch:'|(w)|dw <(1+ |y|2)”jR|c,~" (w)]de.
(28)

For every jeN, R;:= {w|2’21 + lezzl} and
RS = {wl27% + ol <1},
Ifwe ERj,
@) <2 (1 +10P) P (27 +lwP )" <28 (1 +10l?)
(29)
Then,
J |<§’(w)|vdws2fﬁj (1+loP) T do
R; R;
(30)
szfﬁj (1 +|w|2)’”_ﬁ/2)dwszfﬁ.
R
Ifwe ERE,
| (@) <28 (1 +10P) " (27 +10P) P <2 (27 410P) .
(31)

Thus, for $>2,
[ Jr@los|  j@laos2?]  (1+1af) " o<
§Rj |w|<1 |lw|<1

(32)
Andif 1<f<2,

o (] .
[ Jrles| @ldos2? [ ol dos2
9{; |w|<1 0

(33)
So, for every > 1,
jm;|<*;(w)|dwszfﬁ. (34)
Hence, for every |y|>1,
|0 ()] <2 (1 +15P) . (35)

The conclusion is similar to Lemma 2.1 in [2]. According
to the above conclusion, we have the following lemma. [

Lemma 2. Forl>f+1,[> 1, under the conditions (C1-C3),
define the function F(|x]): = (1+ lxI™1). Then, for every
i=12,....1, K;¢; and K;" satisfy the following:

¢’ (¢)" (w)da.
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(1) 1K (x, )| < 27F (|x - y))
(2) Ykez (Kij) (x =Ky ¢y (y — k) < 2BF (|x - yI)

(3) Yiy EK; (27x,27y) = 277P; fx (x) (fx € L*(R)),
where P, f  is defined in equation (2)

Proof. According to the conclusion of Lemma 1,

[y (= <2 (1ol =kF) S (36)
for every i = 1,2,...,r. Then,
il:g];JKz‘j(pi (x - k)| <2, (37)

where Z ={ke Z,|x—k|> (lx-yl/2)} UlkeZ|y-k|>
(|x — y|/2)} for fixed x, y € R.
According to the definition of K;* (x, y),

K eyl Y [(Kiyd) (x=R)|lgi (v = )]
|x—k|= (lx=yl/2)
+ Z KKij¢i)(x_k)'l¢i(y_k)|'
|y=kl=(Ix-yl/2)

(38)

On the other hand, ¢;(x) = (1/2ﬂ)fR T (w)el“* da.
According to the condition C1 and integration by parts,
we have

|6: (20| < (1 +1x?) " = F (I, (39)
that is,
|6:(y —R)| <E(ly - k) < F(Ix - yI). (40)
So,
Y |Kig) (x= k)¢ (v - R < 2P (Ix - yl).

ly—kI= (lx-y1/2)
(41)

Since

(Kij0:) (= )| <27 (141~ k1) = 2 (Ix ~ k)

2

(K1) (= R)|¢: (v = )|

[x=k|>(|lx-yl/2)
iB lx — yl S
<22 p<_2 >|¢,(y )l
eZ
(42)
On the other hand, [¢;(x)|<F(|]x]) implies

Ykez|0; (¥ — k)| < 1. So the conclusion (2) holds.
For the conclusion (10), according to Lemma 1 and the
above discussion in conclusion (2),
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|Ki 180 (= B)|s2P(1 41y~ KP) ™" = 2R 1y — k),
KZZKK,-]-@)(x = 0)|[Ki 0 (v = )| (43)

< Y (Kiji) (x = RPF(ly - kD) < 2P F (Ix - yl).

keZ

Next, to prove the conclusion (11),

EK;(2'Y,2'x) = JRKi*(ZjY, 2/x) fy (y)dy
~ | Y (ki) (@y - 082~ K) fr ().
keZ
(44)

JR(Kz‘j‘Pi)( Y- k)fy(y)d)’ JZHJR

_1J
AT

2L
=—1 e
21

| (ki) @y -R)re0ay =3[ £

FT |

According to the convolution fIT = fiT. fFT

e

Note that [¢; (x)| < F(|x]) <1, then
| Y0 @y -0 (2R 01y <27 7y =27,

Riez
(45)
So
EKS(27,2'%) = ¥ [ (Ki6)(2)y - K)fr )y
kez ' R (46)
4,2 - k).

By the definition of K;;¢; in equation (10) and Fubini
theorem,

zw(zly k) ¢

7T 2] )dwfy(y)dy
e"'w"jRe-iw(-z"y) fy (»dy fgf(T (21) ) (47)
e e
(-20)¢f" (w)e” “*dw
= 22—7; JR @ (-2 w)e” *dw (48)

~ [ fx @925 - K)da

The final equality is due to Plancheral formula:

r

Y 2EK(2Y,2x) = ) .[fo (x)2"¢,(2/x

i=1 keZ

- k)dw
2P (27x - k)

= Z Z < fxoBije > i (%)

i=1 keZ
=P;fx(x).
(49)
The conclusion (11) holds. O

Lemma 3 (see 2, Theorem 3.1). Assume that H,(-,-), (n=
1,2,...) are symmetric functions, X,,X,,...,X, are i.id
random variables and G, (x, y): = E[H, (x, X,)H, (y, X,)].

If E[H,(X,,X,)1X,]1 =0, EH3(X;,X,)<0co(n=1,2,...),
and

EG; (X, X,) +n” 'EH, (X, X,)

lim =0. 50
T B (X)) o0
Then, s,'U, -, N(0,1), where U, =¥ .i,H,

(X, X;) and s,: = EU;, = (1/2)n(n~ 1)EH2 (X, X,).

3. Asymptotic Normality

In this section, asymptotic normality is discussed for the
linear multiwavelet deconvolutlon estimator f . (x) and the
nonlinear estimator fn "(x).

Theorem 2. Under the condition (C1-C3), with >1 and
I>B+1,if fx € LP(R), (p>2), then the linear estimator f,
satisfies



nz,j(zm(l/z))["jcn - fxllj ~E|f,- fxni] - N<

with j — oo and n™ 12/ — 0, where s?
VEH}; ,(Y\,Y,) and H}, (Y,.Y,

lln

equatzons (55) and (62).

ipipn” = (1/2)n(n -
5 are defined by

llﬂ
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2
0, Z Sipipn |
1<i <i)<r

Ef,(x) and Ef, -

(51)

fx are orthogonal in

So j?n (x) -

L?(R). We have

|l.?n_fX”§=l|?n_E.?n+E.?n_fX||§=||.?n_E.?n”§

Proof. Since Ef,(x) = P,f, fo(x)—Ef,(x) e V; and +|lE.?n _ fX";
Ef,-fx=-Y Qi fx (52) (53)
j'=i Assume that
~ 2 -~ 2 -~ -~ 12 -~ -~ 2
Tu =W fu= Fxle = ENFu = Fxl, =1f0 = EFul, = ENFu = EF]
2 r n 2
Fulx) - Efn(x)| = —2<Z y Ri*(zti,zfx)>
i=1 p=1
2 G oy i \\2
==Y Y (K (2Y,,2x))
n i=1 p=1
LYY K@Y, 202, 2) (54)

1<i) <i,<r 1<p; < p)<n

R (27, 215)R (2, 2)

22j+1

Ep)
n2

1<i<r 1<p, < p,<n

22j+1

Al

Y K(2Y,,2%)K/(2Y,,2'x)

RZ(szP,zfx)I?fz(szP,2fx).

1<i) <iy<r 1<p<n

Define

HiT»iz’"<YP1’ YPZ) =

[RACE AR ACOMNER)
+K; (2Y,,2%)K; (2Y,,2/x)dx.
(55)

n

and
p=1

_According to the independence of {Yp}
EK: (Y, x) = 0, we have

Ju =

2%

n? Z Z Hiiizs”(Ypl > YPz)

1<i) <i,<r 1<p<p,<n

3 [H(T

i=1 p=1

22
—zz

<r1<p,<p,sn

Y Dl

1<11<12<rp 1

2i—-1 r
ad Y,) = EH.,(Y,Y,)]

H:ﬂ” (Ypl > YPZ)

Yp) = EH (YY)

=04 7P 0 g,
(56)
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According to Lemma 2 and I~<i* (Y,x): = Moreover,
K (Y,x) - EK; (Y, x), we have

IK; (27y,,27x)K; (27, 2/x)| < 2zfﬁF(2f\Ypl - xl)F

)

E(Hun(Y Y )) Szj(4ﬁ72)’

IN

var(H;;, (Y, Y,))
var(H; (Y, Y,))<B(H, (Y,.Y )) < i),
(57)

2
var[ Y H <E S H (Y Y,) | <2/,
lzn( ) 1,1,n( p p)

i=1

Var< Y H (Y, ))sE( Y H (Y, )>2s2f(4ﬁ2’.

1<i, <iy<r 1<i) <iy<r

(58)

By Markov’s inequality, Ve >0,

P{|]r(12)| > 12j(2/3+(1/2))8}

Y S [Hi(¥p¥,) - EHL(Y,Y,)]

> znzj(zﬁ—(3/2))£ }

PSS [ (V) - BH (YY)

i=1 p=1

Var(21 1Zp 1 zzn(Y Y )) (59)

n22j(4B-3) g2

> ) (2P-(3/2) }

P{|]r(l4)| - 12j(2ﬂ+(1/2))8}

i

<Var(21§l<i2§rzzzl zllzn(Y Y )>

227 (4B-3) g2

Y S[H (YY) - EHL(Y,Y,)]

1<i <iy<r p=1

> i CB-G12) }

According to the independence of {YP}Z:V

14 -2
=n 2¢

|](2 |> 1A Var(zp Dy ”n(Y Y )) § 12J (4B=3)
n 122 (4p—3) ¢ S 20ip3) g2
(60)

P<l M

)| >

2j(2/3+(1/2))£}<var(zlgl<izgzg_l H (Y)Y ))< i i

n 1227 (4p-3) g2 S 22i0B-3g2 T pe?’



If n— oo, then for arbitrary given >0,
n 1215‘2 — 0. Moreover, n27/@FU2)JD e and
n2~ 1D W < ¢ a5 So ], can be denoted by

nz*j(2ﬁ+(1/2))]
n
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_ply ey Y H,(Y,.Y,)

1<i)<i,<r 1<p,<p,<n

e i 2B-G312) Z Z Hii’,n(Ypl’sz)“LO(l) (61)

1<i<r 1<p,<p,<n

= 1y (28-312) Z Z HiT,iz,n(YPNYPz) +o(1).

1<i| <i,<r 1<p,<p,<n

Let
_ j(2B-(3/2))+1
Hipizﬂ(Ypl’sz) n'2 Hzlzzn(Ypl’sz)’
(62)

so
2 1Ay

Z Z Hi1>i2>”(YP1’YP2) + O(l)

1<i; <i,<r 1<p<p,<n

(63)

It is easy to check that H; ; ,(Y,,Y, ) are symmetric
functions. It is similar to the work of Theorem A in [2] that
EH?% . (Y,,Y,) and EG? (Y,,Y,) satisfy the condi-

1 l Ba 1y l >N
tion of Lemma 3. Accordlng to Lemma 2 and Lemma 3,

s S H(Y,.Y,) -5 NGO, (64)

i15iss
1<p,<p,<n

where 5121 . = (1/2)n(n-1)EH?

ipn® ipsipn
us,

(Y,,Y,).

—non

o Jo (GB+1/2)) “

-l -l7

with A; ~ (]/H)ZJ s jordy — 00, and w120 ¢
where 5;21 2= (1/2)n(n- l)Elel 2(YLY5) and

(Yo, Y, ) are defined by equatzons (55) and (62).

1 1
"The praof is similar to Theorem B in [2].

4. Numerical Example

In this section, an example is given for discussing the results
of multiwavelet deconvolution density estimators.

Choose the model Y = X + ¢. Construct the data X by
the function “randn” and error data ¢ by the function “rand”
in Matlab. Thatis, X ~ N (0, 1) is a standard normal random
variable and & ~ U (0, 1) is a uniform random variable. So fy
is the convolution of fy and f,, where

fx(x) = (VZr)e” @ and fs(Z)—i Ocz<l
By the formula of the convolution, we ﬁave densuy
function fy of random variable Y as follows:

oo fX||§] N N<0,

Z Hil’iZ’n(Ypl’sz) i) N(O ’21 iy ”) (65)

1<p,<p,<n

The detail discussion is similar to the proof of Theorem A
n [2]. So,

> > H,(Y,.Y )—>N(0

1<i <iy<r 1<p <p,<n

2
Sivipn |

1<i) <ip<r

(66)

Consider the nonlinear multiwavelet estimator
—~.non " jl " - -~ —~non
fo (%)= Z Z CijokPijok + Z Z Z Vi = Fu+Qjj fu
i=1 kez i=Jo i=1 kez

(67)

O
Theorem 3. Under the conditions (C1-C3), with 3> 1 and
I>B+1if fx € LP(R), (p>2), then the nonlinear estimator

f:on satisfies

2
Z Sil,iz,n>’ (68)
1<i,<i, <

fyr(y) = J _l%ef(xz/z)dx, —00 < y < 00. (69)

In Figure 1, random data Y is shown at the left side and
its sampling number is 2048. At the right side of Figure 1, the
blue dotted curve denotes the empirical density of data Y’
and the density of data Y is shown by the red solid curve.

According to Theorem 1 and Ef,, (x) = P; ;f x> we choose
the multiwavelet Sa4 to estimate the expectation of the linear
multiwavelet deconvolution density estimators. The sam-
pling data are decomposed into 4 levels by multiwavelet
transform.

The density fx of X is shown in the second row and
second column of Figure 2. In the first row and first column
of Figure 2, the linear multiwavelet deconvolution density
estimator f,, of X is given by the black solid line and the
expectation E f , of linear multiwavelet deconvolution
density estimator f defined by equation (12) is shown by the
red solid line. In the first row and second column of Figure 2,



Mathematical Problems in Engineering

6 0.4
03+t
0.2
0.1+
4 . ' 0
0 1000 2000 3000 -10 5
(a) (b)
FIGURE 1: (a) Data Y; (b) empirical density and density of Y.
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FIGURE 2: Multiwavelet deconvolution density estimators.

nonlinear multiwavelet deconvolution density estimator

~non L - L -~
f n 1s given by the black solid line and the expectatlon Jin (x):= z Z Cijok®Pijok + Z Z dijkVijok

i=1 keZ i=1 keZ
E f In " of nonlinear multiwavelet den51ty estimator f In

shown by the red solid line, where f 1n can be denoted by

(70)
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TaBLE 1: Asymptotic normality of multiwavelet density estimators.

Estimators P value Results of normality
fo—fx 0.5000 0
- fx 0.4642 0
ok~ fx 0.5000 0

Note: thlS table shows the results of the J-B test for multiwavelet estimators
Fo=TFxo fl,1 - fx>and on — fx. If the result of Jarque-Bera test is zero,
it indicates that it obeys normal distribution at significant level 0.05. If P
value of the Jarque-Bera test is closer to zero, it indicates that the original
assumption of normal distribution can be rejected.

In the second row and first column of Figure 2, nonlinear
multiwavelet deconvolution density estimator rf 1S given
by the black solid line and the eerectatmn E f 5, of nonlinear
multiwavelet density estimator f,, is shown by the red solid
line, where f ,, can be denoted by

Jotl r
~non
f2n (X) - Z Z Cljok(pl](,k + Z Z Z dl]klllzjk (71)
i=1 keZ j=jo i=1 keZ

Moreover, asymptotic normality is identified by the
Jarque- Bera test. The results of the J-B test are given for
Fa-fro Fon = froand fa = f in Table 1.

In Table 1, all results of normality are zero, and the
original assumption of normal distribution can be accepted
by the P value of the Jarque-Bera test. These imply the
conclusions of Theorem 2 and Theorem 3.
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