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In this paper, we obtain some generating matrix functions and integral representations for the extended Gauss hypergeometric
matrix function EGHMF and their special cases are also given. Furthermore, a specific application for the extended Gauss
hypergeometric matrix function which includes Jacobi matrix polynomials is constructed.

1. Introduction

Generalizations of the classical special functions to matrix
setting have become important during the previous years.
Special matrix functions appear in solutions for some physical
problems. Applications of special matrix functions also grow
and become active areas in the recent literature including
statistics, Lie groups theory, and differential equations (see, e.g.,
[1–4] and elsewhere). New extensions of some of the well-
known specialmatrix functions such as gammamatrix function,
beta matrix function, and Gauss hypergeometric matrix
function have been extensively studied in recent papers [5–10].

Hypergeometric matrix functions are an interesting
problem to study from a purely analytic point of view. )ese
functions arise in the study ofmatrix-valued spherical functions
and in the theory of matrix-valued orthogonal polynomials.

Moreover, they appear in the practice of various fields of
mathematics and engineering, so knowledge of them is nec-
essary for applications of theories associated with these fields.

In various areas of applications, generating functions
and integral transformations for some families of hyper-
geometric functions is potentially useful (see [11–16]), es-
pecially in situations when these hypergeometric functions

are involved in solutions of mathematical, physical, and
engineering problems that can be modeled by ordinary and
partial differential equations.

)e main object of this paper is to investigate various
properties for the extended Gauss hypergeometric matrix
function EGHMF. )e generating functions and integral for-
mulas are derived for EGHMF. We also present some special
cases of the main results of this work. A specific application for
the extended Gauss hypergeometric matrix function which
includes Jacobi matrix polynomials is constructed.

)roughout this paper, I and 0 will denote the identity
matrix and null matrix in Cr×r, respectively. For a matrix
A ∈ Cr×r, its spectrum is denoted by σ(A).We say that if Re(ξ)

for all ξ ∈ σ(A), a matrix A in Cr×r is a positive stable matrix.
In [9, 17–19], if f(z) and g(z) are holomorphic functions in
an open set Λ of the complex plane and if A is a matrix in Cr×r

for which σ(A) ⊂ Λ, then f(A)g(A) � g(A)f(A).

Notation 1. For all A in Cr×r, and

A + nI, is invertible for all integers n, (1)

then the Pochhammer symbol is defined by [1, 20]
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(A)n � A(A + I) · · · (A +(n − 1)I) � Γ(A + nI)Γ− 1(A);

(A)0 ≡ I.

(2)

By inserting a regularization matrix factor
e− B/t, B ∈ Cr×r. Abul-Dahab and Bakhet [6] have introduced
the following generalization of the gamma matrix function.

Definition 1. Let A and B be positive stable matrices in Cr×r;
then, the generalized Gamma matrix function Γ(A, B) is
defined by

Γ(A, B) � 􏽚
∞

0
t
A− I

e
− (It+(B/t))dt,

t
A− I

� exp((A − I)ln t),

(3)

for B � 0 reduces gamma matrix function in [21].
Also, Abdalla and Bakhet [7] considered the extension of

Euler’s beta matrix function in the following definition.

Definition 2. Suppose that A, B, and P are positive stable
and commutative matrices in Cr×r satisfying spectral con-
dition (1); then, the extended beta matrix function
B(A, B;P) is defined by

B(A, B;P) ≔ 􏽚
1

0
t
A− I

(1 − t)
B− I exp

− P

t(1 − t)
􏼠 􏼡dt. (4)

Hence,

B(A, B;P) � Γ(A,P)Γ(B,P)Γ− 1(A + B;P). (5)

For P � 0, it obviously reduces to the beta matrix
function in [21] by

B(A, B) � 􏽚
1

0
t
A− I

(1 − t)
B− Idt. (6)

For p, q ∈ Z+, we will denote Γ(A1) . . . Γ(Ap)Γ− 1(B1) . . .

Γ− 1(Bq) by

Γ
A1, . . . , Ap

B1, . . . , Bq

⎛⎝ ⎞⎠. (7)

Later, Abdalla and Bakhet [8] usedB(A, B;P) to extend
the Gauss hypergeometric matrix function in the following
form:

F
(P)

(A, B; C; z) � Γ
C

B, C − B

⎛⎝ ⎞⎠

× 􏽘
∞

n�0
(A)nB(B + nI, C − B;P)

zn

n!
.

(8)

)ismatrix power series is seen to converge when |z|< 1.

Also, forP � 0, it reduces to the usual Gauss hypergeometric
matrix function 1F2(A, B; C; z) in [22]:

2F1(A, B; C; z) � 􏽘
∞

n�0
(A)n(B)n (C)n􏼂 􏼃

− 1z
n

n!
, (9)

where A, B, and C are the matrices in Cr×r and C satisfying
condition (1).

Remark 1. 2F1(A, B; C; z) is the special case of the well-
known generalized hypergeometric matrix power series
qF

p
(Ai; Bj; z) defined by [5, 20]

qF
p

Ai; Bj; z􏼐 􏼑 � 􏽘
n≥0

􏽙

p

i�1
Ai( 􏼁n􏽙

q

j�1
Bj􏼐 􏼑

n
􏽨 􏽩

− 1zn

n!
. (10)

For commutative matrices Ai, 1≤ i≤p, and for
Bj, 1≤ j≤ q, in Cr×r such that

Bj + nI are invertible for all integers n≥ 0. (11)

Some integral forms of the extended Gauss hyper-
geometric matrix function proved in [8] are given by

F
(P)

(A, B, C; z) � Γ
C

B, C − B

⎛⎝ ⎞⎠ 􏽚
1

0
t
B− I

(1 − t)
C− B− I

×(1 − zt)
− A exp

− P

t(1 − t)
􏼠 􏼡dt,

|arg(1 − z)|< π,

(12)

F
(P)

(A, B, C; z) � 2Γ
C

B, C − B
􏼠 􏼡

× 􏽚
∞

0
cosh2 v − z sinh2 v􏼐 􏼑

− A
(sinh v)

2B− I

×(cosh v)
2(A− C)+I

· exp − P cosh2 v coth2 v􏼐 􏼑dv,

· (|arg(1 − z)|< π),

(13)

where CB � BC and C, B, and C − B are positive stable.
For (EGHMF), we have the following differential for-

mula [8]:

dn

dzn
F

(P)
(A, B; C; z)􏽮 􏽯 � (A)n(B)n(C)

−1
n × F

(P)

· (A + nI, B + nI; C + nI; z).

(14)

Definition 3 (see [20, 23]). Let A and B be positive stable
matrices in Cr×r; then, the Jacobi matrix polynomial (JMP)
P(A,B)

n (z) is defined by

P
(A,B)
n (z) �

(A + I)n

n! 2F1 − nI, A + B +(n + 1)I; A + I;
1 − z

2
􏼒 􏼓.

(15)
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2. Generating Functions of the EGHMF

In several areas in applied mathematics and mathematical
physics, generating functions play an important role in the
investigation of various useful properties of the sequences
which they generate. )ey are used to find certain properties
and formulas for numbers and polynomials in a wide variety
of research subjects, indeed, in modern combinatorics. One
can refer to the extensive work of Srivastava and Manocha
[24] for a systematic introduction and several interesting and
useful applications of the various methods of obtaining
linear, bilinear, bilateral, or mixed multilateral generating
functions for a fairly wide variety of sequences of special
functions (and polynomials) in one, two, andmore variables,
among much abundant literature; in this regard, in fact, a
remarkable large number of generating functions involving a
variety of special functions have been developed by many
authors (see, e.g., [13, 25–27]). Here, we present some
generating functions involving the following family of the
extended Gauss hypergeometric matrix functions:

Theorem 1. Let F(P)(A, B; C; z) be given in (8); then, the
following generating function holds true:

􏽘

∞

r�0
(A)rF

(P)
(A + rI, B, C; z)

wr

r!

� (1 − w)
− A

F
(P)

A, B, C;
z

1 − w
􏼒 􏼓; |z|< 1, |w|< 1.

(16)

Proof. For convenience, let the left-hand side of (16) be
denoted by T. Applying the series expression of (8) to T, we
obtain

T � 􏽘
∞

r�0
(A)r Γ

C

B, C − B

⎛⎝ ⎞⎠ × 􏽘
∞

n�0
(A + rI)n

⎧⎪⎨

⎪⎩

· B(B + nI, C − B;P)
zn

n!
􏼩

wr

r!
.

(17)

By changing the order of summations in (17), we obtain

T � Γ
C

B, C − B

⎛⎝ ⎞⎠ 􏽘

∞

n�0
(A)nB(B + nI, C − B;P)

× 􏽘
∞

r�0
(A + nI)r

wr

r!

⎧⎨

⎩

⎫⎬

⎭
zn

n!
.

(18)

Furthermore, upon using the generalized binomial ex-
pansion, we find that the inner sum in (18) yields

􏽘

∞

r�0
(A + nI)r

wr

r!
� (1 − w)

− (A+nI)
; |w|< 1. (19)

Finally, in view of (18) and (19), we obtain the desired
result of )eorem 1.

A further generalization of the extended Gauss hyper-
geometric matrix functions (8) is given in the following
definition. □

Definition 4. In terms of the extended Gauss hyper-
geometric matrix function given by (8), we define a sequence
Ωn(z)􏼈 􏼉n∈N0

as follows:

Ωn(z) � Ω(λ)
n (A, B; C; z)

� F
(P)

(Δ(λ; A + nI), B, C; z); λ ∈ N,
(20)

where, for convenience, Δ(λ; A) abbreviates the array of λ
matrix parameters:

A

λ
,
A + I

λ
,
A + 2I

λ
, . . . ,

A +(λ − 1)I

λ
; λ ∈ N. (21)

Remark 2. In the extended Gauss hypergeometric matrix
function occurring in definition (20), it is understood that
thematrix parameter A of definition (8) has been replaced by
a set of λ parameters which are abbreviated by Δ(λ; A + nI).
)e above definition (20) is motivated by the extensive
investigation on this subject.

Now, we prove the following result, which provides the
generating functions for the extended Gauss hypergeometric
matrix functions defined above.

Theorem 2. For each λ ∈ N, the following generating func-
tion holds true:

􏽘
∞

n�0
(A + kI)nΩ

(λ)
k+n(z)

wn

n!

� (1 − w)
− (A+kI)Ω(λ)

k

z

(1 − w)λ
􏼠 􏼡,

(22)

where |z|< 1, |w|< 1, and k ∈ N0.

Proof. Using the definitions (20) and (8) and changing the
order of summation, the left-hand side Υ of the result (22) is
given by

Υ � 􏽘
∞

r�0

A + kI

λ
􏼠 􏼡

r

A +(k − 1)I

λ
􏼠 􏼡

r

. . .
A +(k + λ − 1)I

λ
􏼠 􏼡

r

× Γ
C

B, C − B

⎛⎝ ⎞⎠B(B + rI, C − B;P)

× 􏽘
∞

n�0
(A +(k + rλ)I)n

wn

n!

⎧⎨

⎩

⎫⎬

⎭
zr

r!
.

(23)

Now, by appealing once again to (19), we easily arrive to
the desired result (22) asserted by )eorem 2. □

Remark 3. Furthermore, we note the following special cases
of generating functions of the EGHMF as follows:
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(i) It may be noted that if we set λ � 1 and replace A by
A − kI in (22), we readily obtain assertion (16) of
)eorem 1

(ii) At P � 0, we observe that result (16) corresponds
with that in [28]

(iii) For arbitrary complex numbers α, β, c and η􏼈 􏼉,

putting A � α ∈ C1×1,􏼈 B � β ∈ C1×1, C � c ∈ C1×1,
and P � η ∈ C1×1} in (16) and (22), we find gen-
erating functions for the generalized Gauss hyper-
geometric function on [13, 27]

3. Integral Representations for the EGHMF

Integral formulas with such special matrix functions such as
the beta matrix functions and the hypergeometric matrix
functions are used in solving numerous applied problems.
Hence, their demonstrated applications and several gener-
alizations of integral transforms with hypergeometric matrix
functions have been actively investigated. Here, by means of
the extended beta matrix function B(A, B;P) given in (4),
we introduce some new generalized integral formulas for the
EGHMF in this section.

Theorem 3. For α ∈ C, the extended Gauss hyper-
geometric matrix function satisfies the following integral
relations:

(i) 􏽒
∞
0 zα− 1F(P)(A, B; C; − z)dz � Γ C

B, C − B
􏼠 􏼡B

(A − αI, αI)B(B − αI, C − B;P)

(ii) 􏽒
∞
0 exp(− z)zα− 1F(P)(A,B;C;z)dz � Γ C

B,C − B
􏼠 􏼡

􏽐
∞
n�0B(B + nI,C − B;P)(α)nΓ(α)(A)n/n!

(iii) 􏽒
1
0 (1 − z2)α− 1F(P)(A,B;C;1 − z/2)dz � Γ C

B,C − B
􏼠 􏼡

􏽐
∞
n�0 2

2α+(n− 2)(A)n ×B((α+ n)I,αI)B(B + nI,C −

B;P)(1/2)n/n!,

where A, B, C, and C − B are the positive stable
matrices in Cr×r

Proof

(i) Replacing F(P)(A, B; C; − z) by its integral repre-
sentation (12) and changing the order of integration,
we get

􏽚
∞

0
z
α− 1

F
(P)

(A, B; C; − z)dz � Γ
C

B, C − B

⎛⎝ ⎞⎠

× 􏽚
1

0
t
B− I

(1 − t)
C− B− Iexp

− P

t(1 − t)
􏼠 􏼡

· 􏽚
∞

0
z
α− 1

(1 + tz)
− Adt dz.

(24)

Now, if we integrate with respect to z using the
properties of beta matrix function and substitute
u � tz, we will have

􏽚
∞

0
z
α− 1

F
(P)

(A, B; C; − z)dz � Γ
C

B, C − B

⎛⎝ ⎞⎠

· 􏽚
1

0
t
B− I

(1 − t)
C− B− I

× exp
− P

t(1 − t)
􏼠 􏼡dt

· 􏽚
∞

0

u

t
􏼒 􏼓

α− 1
(1 + u)

− Adu

t

� Γ
C

B, C − B

⎛⎝ ⎞⎠B(A − αI, αI)B(B − M, C − B;P),

(25)

which is the required result in (i).
(ii) Direct calculations using (12) yield

F
(P)

(A, B; C; z) � Γ
C

B, C − B

⎛⎝ ⎞⎠ × 􏽚
1

0
t
B− I

(1 − t)
C− B− I

· (1 − zt)
− A exp

− P

t(1 − t)
􏼠 􏼡dt.

(26)

Since (1 − zt)− A � 􏽐
∞
n�0 (A)n(zt)n/n!, then we have

􏽚
∞

0
exp(− z)z

α− 1
F

(P)
(A, B; C; z)dz

� Γ
C

B, C − B

⎛⎝ ⎞⎠ 􏽚
∞

0
􏽚
1

0
t
B− I

(1 − t)
C− B− I exp(− z)z

α− 1

× exp
− P

t(1 − t)
􏼠 􏼡 􏽘

n�0

∞ (A)n

n!
(zt)

ndtdz

� Γ
C

B, C − B

⎛⎝ ⎞⎠ 􏽚
∞

n�0
(A)n

1
n!

􏽚
∞

0
􏽚
1

0
t
B+(n− 1)I

(1 − t)
C− B− I

× exp(− z)z
α+(n− 1) exp

− P

t(1 − t)
􏼠 􏼡dt dz

� Γ
C

B, C − B

⎛⎝ ⎞⎠ 􏽘

∞

n�0
(A)n

1
n!

􏽚
∞

0
exp(− z)z

α+(n− 1)dz

× 􏽚
1

0
t
B+(n− 1)I

(1 − t)
C− B− I exp

− P

t(1 − t)
􏼠 􏼡dt

� Γ(α)Γ
C

B, C − B

⎛⎝ ⎞⎠ 􏽘

∞

n�0
(A)n(α)nB(B + nI, C − B;P)

1
n!

.

(27)

)us, we get the desired assertion (ii) of )eorem 3.
(iii) By using (12), it follows that
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F
(P)

A, B; C;
1 − z

2
􏼒 􏼓 � Γ

C

B, C − B

⎛⎝ ⎞⎠ × 􏽚
1

0
t
B− I

(1 − t)
C− B− I

· 􏽘
∞

n�0

(A)n

n!

1 − z

2
􏼒 􏼓

n

t
n exp

− P

t(1 − t)
􏼠 􏼡dt.

(28)

)us,

􏽚
1

0
1 − z

2
􏼐 􏼑

α− 1
F

(P)
A, B; C;

1 − z

2
􏼒 􏼓dz

� Γ
C

B, C − B

⎛⎝ ⎞⎠ 􏽚
1

0
􏽚
1

0
1 − z

2
􏼐 􏼑

α− 1
t
B− I

(1 − t)
C− B− I

× exp
− P

t(1 − t)
􏼠 􏼡 􏽘

∞

n�0

(A)n

n!

1 − z

2
􏼒 􏼓

n

t
ndtdz.

(29)

Now, we put z � cosθ, 1 − z � 2 sin2(θ/2), and 1 + z �

2 cos2(θ/2) in (29); we obtain

􏽚
1

0
1 − z

2
􏼐 􏼑

α− 1
F

(P)
A, B; C;

1 − z

2
􏼒 􏼓dz

� Γ
C

B, C − B

⎛⎝ ⎞⎠ 􏽘

∞

n�0

(A)n

2nn!
× 􏽚

π/2

0
􏽚
1

0
2 sin2

θ
2

􏼠 􏼡􏼠 􏼡

n

· 4 sin2
θ
2

􏼠 􏼡cos2
θ
2

􏼠 􏼡􏼠 􏼡

α− 1

× sin θt
B+(n− 1)I

(1 − t)
C− B− I

· exp
− P

t(1 − t)
􏼠 􏼡dθ dt.

(30)
Hence, we easily arrive to the desired result (iii) asserted

by )eorem 3:

􏽚
1

0
1 − z

2
􏼐 􏼑

α− 1
F

(P)
A, B; C;

1 − z

2
􏼒 􏼓dz

� Γ
C

B, C − B

⎛⎝ ⎞⎠ 􏽘

∞

n�0

(A)n

2nn!
× 􏽚

π/2

0
􏽚
1

0
22α+(n− 1)

· sin2α+(2n− 1) θ
2

􏼠 􏼡 × cos2α− 1 θ
2

􏼠 􏼡t
B+(n− 1)I

(1 − t)
C− B− I

· exp
− P

t(1 − t)
􏼠 􏼡d

θ
2

􏼠 􏼡dt

� Γ
C

B, C − B

⎛⎝ ⎞⎠ 􏽘

∞

n�0
22α+(n− 2)

(A)nB((α + n)I, αI)

× B(B + nI, C − B;P)
(1/2)n

n!
,

(31)
which proves the assertion (iii) of )eorem 3. □

Remark 4. It is worthy of note that the special cases can be
obtained from formulas (i), (ii), and (ii) of )eorem 3 as
follows:

(1) Taking P � 0, we find some integral representations
for the Gauss hypergeometric matrix function
(GHMF) (cf. [10, 20, 22])

(2) Furthermore, choosing a, b, c, and η ∈ C􏼈 􏼉 and set-
ting A � a ∈ C1×1, B � b ∈ C1×1, C � c ∈ C1×1􏼈 and
P � η ∈ C1×1} in)eorem 3, we obtain some integral
representations for Gauss hypergeometric function
(cf. [14])

4. An Application of the Computation of m
Derivatives of the Extended Jacobi
Matrix Polynomial

)e Jacobi matrix polynomial and their special cases play
important roles in approximation theory and its applications
[20]. In this section, the extended Jacobi matrix polynomial
ispresented and prove the following theorems for the mth
derivatives of extended Jacobi matrix polynomials. Using the
definition of the extended Gauss hypergeometric matrix
functions EGHMF to define the extended matrix Jacobi
polynomial and their special cases.

Definition 5. Let A, B, andP be positive stablematrices inCr×r

whose eigenvalues, z, all satisfy Re(z)> − 1. For any positive
integer n, the nth extended Jacobi matrix polynomial is

P
(A,B;P)
n (z) �

(A + I)n

n! 2F
(P)
1

· − nI, A + B +(n + 1)I; A + I;
1 − z

2
􏼒 􏼓.

(32)

Theorem 4. Let A, B, and P be positive stable matrices in
Cr×r. For the derivatives of extended Jacobi matrix polyno-
mial, we find

D
m

P
(A,B;P)
n (z)􏽮 􏽯 � 2− m

(A + B +(n + 1)I)mP
(A+mI,B+mI;P)
n− m (z),

(33)

where |z|< 1 and D � d/dz.

Proof. Using (14) and (32) with the parameters A � − nI,
B � A + B + (n + 1)I, and C � A + I, we get

D
m

2F
(P)
1 − nI, A + nI; A +

I

2
;
1 − z

2
􏼒 􏼓􏼚 􏼛

�
− 1
2

􏼒 􏼓
m

(− n)m(A + B +(n + 1)I)m (A + I)m􏼂 􏼃
− 1

2F
(P)
1 (− n + m)I, A +(n + m)I; A+; A +(m + 1)I;

1 − z

2
􏼒 􏼓,

(34)
from (34) and multiplying by (A + I)n/n!, we obtain
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D
m (A + I)n

n! 2F
(P)
1 − nI, A + nI; A +

I

2
;
1 − z

2
􏼒 􏼓􏼨 􏼩

�
(A + I)n

n!

− 1
2

􏼒 􏼓
m

(− n)m(A + B +(n + 1)I)m

(A + I)m􏼂 􏼃
− 1

2F
(P)
1 (− n + m)I, A +(n + m)I; A+; A􏼒

+(m + 1)I;
1 − z

2
􏼓.

(35)

Now making use of the extended of Jacobi matrix
polynomial (32), we find

D
m

P
(A,B;P)
n (z)􏽮 􏽯 �

(A + I)n

n!

− 1
2

􏼒 􏼓
m

(− n)m(A + B +(n + 1)I)m

(A + I)m􏼂 􏼃
− 1

2F
(P)
1 (− n + m)I, A +(n + m)I; A+; A􏼒

+(m + 1)I;
1 − z

2
􏼓.

(36)

By using (36), we get

D
m

P
(A,B;P)
n (z)􏽮 􏽯 �

− 1
2

􏼒 􏼓
mΓ(− n + m)

Γ(− n)n!
(A + B +(n + 1)I)m

× Γ− 1(A +(m + 1)I)Γ(A +(n + 1)I)

× 2F
(P)
1 ( − n + m)I, A +(n + m)I;􏼒

· A+; A +(m + 1)I;
1 − z

2
􏼓.

(37)

Further simplification yields

D
m

P
(A,B;P)
n (z)􏽮 􏽯 � 2− m

(A + B +(n + 1)I)m

·
Γ− 1(A +(m + 1)I)Γ(A +(n + 1)I)

(n − m)!

× 2F
(P)
1 (− n + m)I, A +(n + m)I;􏼒

· A+; A +(m + 1)I;
1 − z

2
􏼓

� 2− m
(A + B +(n + 1)I)mP

(A+mI,B+mI;P)
n− m (z).

(38)

)is completes the proof of )eorem 4. □

Theorem 5. Let A, B, C, D, andP are positive stable matrices
in Cr×r and suppose that

P
(C,D;P)
n (z) � 􏽘

n

m�0
δnm(A, B, C, D)P

(A,B;P)
m (z). (39)

)en,

δnm(A, B, C, D) �
(C + D +(n + 1)I)k(C +(m + 1)I)n− m

(m − n)!

× Γ− 1
(A + B +(2m + 1)I)

· Γ(A + B +(m + 1)I)

× 3F2((− n + m)I, C + D +(m + n + 1)I,

· A +(m + 1)I;

· C +(m + 1)I, A + B + 2(m + 1)I; 1).

(40)

Proof. Substitution of (40) into the RHS of (39) andmaking
use of the extended of Jacobi matrix polynomial (32), we
find

􏽘
m�0

n

δnm(A, B, C, D)P
(A,B;P)
m (z)

�
(C + D +(n + 1)I)k(C +(m + 1)I)n− m

(m − n)!

× Γ− 1(A + B +(2m + 1)I)Γ(A + B +(m + 1)I)

× 3F2((− n + m)I, C + D +(m + n + 1)I, A +(m + 1)I;

C +(m + 1)I, A + B + 2(m + 1)I; 1)

Γ− 1(A + I)Γ(A +(m + 1)I)

m! 2F
(P)
1

· − mI, A + B +(m + 1)I; A + I;
1 − z

2
􏼒 􏼓,

(41)

since

3F2(− nI, A, B; C, D; 1) � (C)n􏼂 􏼃
− 1

(C − A − B)n􏼂 􏼃
− 1

(C − A)n(C − B)n,

(42)

and we have
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􏽘

n

m�0
δnm(A, B, C, D)P

(A,B;P)
m (z)

� 􏽘
n

m�0

Γ− 1(A + B +(2m + 1)I)(C + D +(n + 1)I)kΓ(A + B +(m + 1)I)

(m − n)!

×[(− (A + D +(n + m + 1)I))]
− 1

(− nI + D)n− m(C − A)n− m

Γ− 1(A + B +(m + 1)I)Γ− 1(− (B + mI))
Γ(A +(m + 1)I)

m!

􏽘
r�0

∞ Γ(− m + r)

Γ(− m)
B(A + B +(m + r + 1)I, − B − mI;P)

((1 − z)/2)r

r!
.

(43)

Expanding (43) and collecting similar terms, we obtain

􏽘

n

m�0
δnm(A, B, C, D)P

(A,B;P)
m (z)

� Γ− 1(C + D +(n + 1)I)Γ− 1(− (D + nI))
Γ(C +(n + 1)I)

n!
,

􏽘

∞

r�0
(− nI)rB(C + D +(n + r + 1)I, − D − nI;P)

((1 − z)/2)r

r!

�
C + I)

n! 2F
(P)
1 − nI, C + D +(n + 1)I; C + I;

1 − z

2
􏼒 􏼓

� P
(C,D;P)
n (z).

(44)

)is completes the proof of )eorem 5.
Finally, for the definition of extended of Jacobi matrix

polynomial, we consider some of the extended special matrix
polynomial as follows. □

Definition 6. Let A and P be positive stable matrices in Cr×r

whose eigenvalues, z, all satisfy Re(z)> − 1. For any positive
integer n, the nth extended ultraspherical matrix polyno-
mials are

C
(A;P)
n (z) �

(2A)n

n! 2F
(P)
1 − nI, A + nI; A +

I

2
;
1 − z

2
􏼒 􏼓. (45)

4.1. Special Cases. Upon assigning particular values to the
parameters and variables, we interestingly get a range of
special cases for (32) and (45) as discussed below:

(i) Setting A � 0 in (45), we find

T
(0;P)
n (z) � 2F

(P)
1 − nI, nI;

I

2
;
1 − z

2
􏼒 􏼓, (46)

where T(0;P)
n (z) is called the extended Chebyshev

matrix polynomial of the first kind.
(ii) Putting A � I in (45), we have

U
(0;P)
n (z) �

1
n + 1

������
1 − nz2

√

2F
(P)
1 (− n + 1)I, (n + 1)I;

3I

2
;
1 − z

2
􏼒 􏼓,

(47)

where U(0;P)
n (z) is called the extended Chebyshev

matrix polynomial of the second kind.
(iii) Furthermore, taking A � I/2 in (45), we get

P
(0;P)
n (z) � 2F

(P)
1 − nI, (n + 1)I; I;

1 − z

2
􏼒 􏼓, (48)

where P(0;P)
n (z) is called the extended Legendre

matrix polynomial.
(iv) For P � 0 in (32), we get of Jacobi matrix poly-

nomial in (15).
(v) Taking P � 0 and putting {A � α ∈ C1×1, and B �

β ∈ C1×1, } in (32), we get Jacobi polynomial as
follows:

P
(α,β)
n (z) �

(α + 1)n

n! 2F1

· − n, 1 + α + β + n; α + 1;
1
2
(1 − z)􏼒 􏼓.

(49)
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