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A numerical analysis method for block failure is proposed that is based on continuum mechanics. First, a mesh model that
includes marked blocks was established based on the grid-based block identification method. ,en, expressions of the contact
force under various contact states were derived based on the explicit contact force algorithm, and a contact simulation method
between blocks and the surrounding rock was proposed. ,e safety factors of the blocks were calculated based on the strength
reduction method. ,is numerical analysis method can simulate both the continuous deformation of the surrounding rock and
the discontinuous failure processes of the blocks. A simple example of a sliding block was used to evaluate the accuracy and
rationality of the numerical method. Finally, combined with a deep underground excavation project under complex geological
conditions, the stability of the blocks and rock were analyzed.,e results indicate that the key blocks are damaged after excavation,
the potentially dangerous blocks loosen and undergo large deformations, and the cracks between the blocks and the rock gradually
increase as the excavation proceeds. ,e safety factors of the blocks change during the excavation. ,e numerical results
demonstrate the influence of the surrounding rock on the failure process and on the stability of the blocks, and an effective analysis
method is provided for the stability analysis of blocks under complex geological conditions.

1. Introduction

During the excavation of large underground caverns,
complex geological discontinuities (faults, cracks, joints, and
other kinds of discontinuities) are inevitably encountered.
,ese discontinuities cut the rock mass into numerous re-
gions. ,e opening, closing, and shearing of the disconti-
nuities led to deformation and destruction of the rock mass.
,ey facilitate the formation of rock blocks and local col-
lapse, especially for an underground powerhouse that is of
large size and has a high sidewall [1]. ,erefore, rock block
stability in a large underground excavation must be urgently
investigated.

For the stability analysis of rock blocks, the key block
theory proposed by Warburton [2] and Goodman and Shi
[3] is an effective approach. It established a strict mathe-
matical algorithm for block stability analysis via geometrical
and topological methods. ,e derived software, such as

Unwedge [4, 5] and GeneralBlock [6], were widely used in
the block analysis of underground caverns. Block theory
makes the following assumptions for its applications in
engineering: ,e blocks are considered as rigid bodies and
the movability and failure modes of blocks are determined
based only on the gravity stress and the force on the sliding
face. In routine analysis, there are three types of block failure
modes, namely, lifting, single-plane sliding, and double-
plane sliding, while the safety factor of a block is typically
determined via the rigid body limit equilibrium method
(RBLEM) [2, 7]. ,ese conventional stability analysis
methods yield more accurate safety factors for shallow
buried blocks. However, the accuracy is insufficient for deep
buried blocks. ,e high and complex compressive stress
from the surrounding rock, including the stress from
nonsliding faces, has a substantial influence on its stability
[8, 9]. According to engineering theory [10], neglecting the
interactions between blocks and rocksmay lead to deviations
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in the stability assessment and might increase the support
cost for blocks.

For blocks in complex geological conditions, analytical
methods (such as RBLEM) cannot calculate the complex
compressive stress accurately. In contrast, numerical
methods are more suitable for complex block problems.
Based on the DDA method, Fu et al. and Zhao et al. [11, 12]
studied the failure modes of blocks during the excavation
process of an underground powerhouse. Zhu et al. and Cui
et al. [13, 14] used the discrete element method to analyze the
interactions between blocks and calculated the block safety
factor using limit equilibrium theory. Scholars frequently
use the discontinuummethod to analyze the block problems
[15, 16]. Although it can reflect the deformation and failure
process of the block, it has low calculation accuracy for the
intact and homogenous surrounding rock [17, 18]. ,e
continuum method is highly mature in underground en-
gineering and it can effectively consider the geostress, ex-
cavation load, and deformation characteristics of the
surrounding rock. Few studies have been conducted based
on the continuummethod. Zhang et al. [19, 20] proposed an
element reconstruction modeling method for geological
discontinuities that could identify blocks based on a finite
element grid. It enables the introduction of the continuum
method into block stability analysis. Zhang et al. [21] further
proposed a general method for the stability evaluation of
blocks that is based on the Flac3D software. ,e current
numerical method for block stability analysis cannot con-
sider both the continuous deformation of the rock and the
discontinuous deformation of the block. ,e discontinuum
method and the continuum method differ in terms of their
advantages and the existing analysis methods cannot
combine the advantages of the two methods effectively.

,is paper proposes a numerical analysis method for
block failure that is based on continuum mechanics. It can
simulate both the deformation characteristics of the sur-
rounding rock and the failure process of blocks and solve for
the safety factors. First, a block identification method that is
based on a grid is introduced. ,en, based on the explicit
solution of the contact force algorithm [22, 23], the contact
simulation method between the block and rock is proposed.
,e numerical method considers the point-to-point and
point-to-surface contact types in the grid model, and it can
simulate three contact states between blocks and rock:
bonded, sliding, and separation. Finally, the safety factor of
each block is calculated via the strength reduction method
(SRM). For an underground powerhouse project that is
crossed by a fault, the stability of the block and the sur-
rounding rock were analyzed. ,e research results can
provide effective references for the block stability under
complex geological conditions.

2. Block Identification Based on a Grid

2.1. Basic Steps. ,e rock block can be divided into a finite
block and an infinite block. ,e infinite block is on the
boundary of the calculation model. Due to gravity and the
interaction of the surrounding rock, the finite block tends to
loosen or slide down after excavation. A finite block that is

exposed to the excavation face can be referred to as a key
block. After losing stability, it may cause a chain reaction and
lead to damage to entire caverns. A block that may cause a
chain reaction can be referred to as a potentially dangerous
block. As the volume of a potentially dangerous block in-
creases, the construction risk of cavern excavation also in-
creases [24]. Dangerous block regions need to be
investigated. ,erefore, identifying these blocks prior to
numerical calculation is highly important. It is necessary to
build a grid model that contains complex blocks. ,is paper
proposes a grid-based block identification method. Com-
bined with the example that is presented in Figure 1, the
basic steps are as follows:

(1) Obtain the necessary information on the geological
discontinuities via geological exploration. ,is in-
formation includes the occurrence, spacing, and
spatial distribution of the discontinuities. Using this
information, the spatial relationship between the
discontinuities and the excavation face is deter-
mined, as shown in Figure 1(a).

(2) Establish the finite element model, including geo-
logical discontinuities via existing mature gridding
techniques. ,e mesh tool of ANSYS is used to
generate the mesh automatically.,e element shapes
are mainly quadrilateral and partly triangular.

(3) Run the algorithm for generating blocks to generate
the finite blocks near the excavation face, which is
described in detail in Section 2.2. ,en, mark the
blocks. According to Figure 1(b), three key blocks
and four potentially dangerous blocks have been
identified and marked.

(4) Separate the common nodes on the interfaces be-
tween the marked blocks and the surrounding rock
and identify the initial contact point pairs. A contact
model on the interface will be constructed in a later
calculation.

Using the above basic steps, a finite element model that
contains marked blocks can be obtained, which will be used
for numerical calculation. ,e above basic steps can be
programmed to realize automatic processing in 2D and 3D
models. In contrast to conventional block theory, it can
effectively mark all key blocks and potentially dangerous
blocks around the excavation face.

2.2. Algorithm for Generating Blocks. Generating blocks is
one of the most important steps in identifying a block in a
grid model. ,e main objectives of the block generation
algorithm are to aggregate the elements in the same spatial
domain and determine the finite block.

Suppose the grid model in step (2) contains m elements
and n discontinuities. From the geometric point of view, the
discontinuity j can be described as follows:

Ajx + Bjy + Cjz + Dj � 0, (1)

where Aj, Bj, Cj, and Dj are parameters that define a spatial
plane of discontinuity j.
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Point (xi, yi, zi) is the centroid of element i. 
en, each
element’s spatial location relationships with all disconti-
nuities can be expressed by the following formulas:

Pi,j �
Ajxi + Bjyi + Cjzi +Dj�����������

A2
j + B2j + C

2
j

√ , (2)

Hi,j �
1, Pi,j > 0
− 1, Pi,j < 0

,{ (i � 1, . . . , m; j � 1, . . . , n). (3)

If Pi,j > 0, element i is judged to be at the upper wall of
discontinuity j andHi,j is marked as 1. If Pi,j < 0, element i is
judged to be at the footwall of discontinuity j and Hi,j is
marked as − 1. 
e elements that correspond to the same
value ofHi,j for all discontinuities are aggregated to generate
blocks. If elements E1, E2, E3, . . . , Ek− 1, and Ek form block B,
then these elements should satisfy

H1,j � H2,j � H3,j � . . . � Hk− 1,j � Hk,j(j � 1, 2, 3, . . . , n),
(4)

and block B can be generated:

B � E1 ∪E2 ∪E3 ∪ . . . ∪Ek− 1 ∪Ek. (5)

After searching and aggregating the elements, multiple
block systems are identi�ed. However, some blocks may be
in�nite blocks or may contain excavation elements. 
ese
blocks require further treatment.


e in�nite blocks are on the boundary and they are
stable. Combine the in�nite blocks into a single group. For the
blocks that are cut by the excavation faces, special treatment is
required. Mark all excavation elements as one group. 
e
excavation faces cut the blocks into one or more new blocks.
In the example that is shown in Figure 2, block A is identi�ed
by only considering the geological discontinuities. After

considering the excavation faces, it can be cut into block B and
block C. 
e blocks near the underground cavern are always
dangerous and require additional consideration.

3. Contact Simulation Method between Blocks
and the Surrounding Rock

Due to excavation unloading, a block may slide or separate
from the surrounding rock. During the failure process of a
block, complex contact actions occur at the interface be-
tween the block and the rock. 
erefore, based on the ex-
plicit solution of the contact force algorithm and considering
the various contact types, a contact simulation method
between a block and the surrounding rock is proposed.

3.1. Explicit Integration Format that Considers the Contact
Force. On the basis of the basic equation of the �nite ele-
ment method, the contact force of the interface and the
inertial force are considered. After the �nite element dis-
cretization and considering the contact force, the

Discontinuity
Excavation face

(a)

Infinite blocks
Excavation elementsKey blocks

Potential danger blocks

Mesh line

(b)

Figure 1: Simple example for block identi�cation. (a) Multiple discontinuities; (b) �nite element model and marked blocks.

A

C

B

Figure 2: Block identi�cation in consideration of excavation.
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equilibrium equation of the nodes of blocks and the sur-
rounding rock can be defined as follows:

M€u + C _u + Ku � F + R, (6)

where M, C, and K are the mass, damping, and stiffness
matrices, respectively, of the interface node; €u, _u, and u are
the acceleration, velocity, and displacement vectors, re-
spectively; F is the external load vector; R is the contact force
vector; and R � N + T, in whichN and Tare the normal and
tangential components of R.

,e velocity and acceleration of the node are calculated
via the central difference method and can be expressed as
follows:

_u
t

�
1
2Δt

ut+Δt
− ut− Δt

􏼐 􏼑, (7)

€u
t

�
1
Δt2

ut+Δt
− 2ut

+ ut− Δt
􏼐 􏼑. (8)

Substituting (7) and (8) into (6) yields the node dis-
placement at time step t + Δt:

ut+Δt
� u

t+Δt
+ Δut+Δt

, (9)

u
t+Δt

� ut
+ Δt _u

t
+
Δt2M− 1 Ft − Kut( 􏼁

2
, (10)

Δut+Δt
� Δt2M− 1Rt

, (11)

where t is the time, Δt is the time step size, ut+Δt is the nodal
displacement vector without considering the contact force,
andΔut+Δt is the vector of the additional displacement that is
caused by the contact force.

According to equation (9) to equation (11), the block
displacement at t + Δt is determined by the motion state and
the contact force at t, which is the main feature of the explicit
algorithm. ,e motion state at t is known, while the contact
force is unknown. ,e contact type and the contact force Rt

can be judged and calculated according to the contact types
and the contact states at t and t + Δt.

3.2. Calculation of theContact Force for Several Contact Types.
During the block identification, the initial contact point
pairs were established between the block and the rock. Prior
to excavation, the interface between the block and the rock is
well cemented and the contacts are of point-to-point type.
After the block slides, the interface node of the block slides
relative to the interface node of the rock. At this time, the
interface node is in contact with a surface of an element; this
contact type is called point-to-surface type. Figure 3 shows
sketches of point-to-point and point-to-surface contact
types. In each type, the contact state between the block and
the surrounding rock can be bonded, sliding, or separated.
,e following presents the calculation method for the
contact force under different contact types.

3.2.1. Contact Force Calculation for the Point-to-point Types.
Assume that the block and rock are in a bonded state at time
step t + Δt. ,erefore, for the contact node pair l and l′, they

should satisfy the deformation coordination conditions,
namely, nonmutual embedding in the normal direction and
nonrelative slip in the tangent direction:

nT
l ut+Δt

l′ − ut+Δt
l􏼐 􏼑 � 0, (12)

τT
l ut+Δt

l′ − ut+Δt
l􏼐 􏼑 � τT

l ut
l′ − ut

l􏼐 􏼑, (13)

where nl is the unit normal vector of the contact node pair,
which points to l from l′, and τl is the corresponding unit
tangent vector.

By substituting equation (9) into equations (12) and (13)
and according to Rt

l � − Rt
l , the normal contact force and

tangent contact force are obtained:

Nt
l �

2MlMl′

Ml + Ml′( 􏼁Δt2
Δ1lnl, (14)

Tt
l �

2MlMl′

Ml + Ml′( 􏼁Δt2
Δ2lτl, (15)

Δ1l � nT
l u

t+Δt
l′ − u

t+Δt
l􏼐 􏼑, (16)

Δ2l � τT
l u

t+Δt
l′ − u

t+Δt
l􏼐 􏼑 − ut

l′ − ut
l􏼐 􏼑􏽨 􏽩, (17)

where Δ1l and Δ2l are the relative normal and tangential
displacements, respectively, of the contact point pair without
considering the contact force; Ml and Ml′ are the lumped
masses of l and l′, respectively; andNt

l and T
t
l are the normal

and tangential components of Rt
l(R

t
l � Nt

l + Tt
l).

,e above formulas are obtained under the assumption
of a bonded contact state. However, the contact point pairs
may slide or separate during the failure process of the block.
,erefore, it is necessary to judge the contact state and
correct the contact force after each step.

If Δ1l > 0, the contact point pairs have a tendency to be
embedded with each other. Hence, the contact state may be a
bonded state or a sliding state. In addition, the tangential
contact force is compared with the shear strength of the
interface. If ‖Tt

l‖> μs · ‖Nt
l‖ + cA, the contact point is in a

sliding contact state. ,erefore, the contact force should be
corrected as follows:

Tt
l � μd · Nt

l

����
���� ·

Tt
l

Tt
l

����
����
. (18)

If Δ1l < 0, the contact point pairs tend to be separated
from each other. ,erefore, the contact state may be a
bonded state or a separation state. In addition, the contact
force and the cohesive force are compared. If�����������

(Tt
l)
2 + (Nt

l)
2

􏽱

> cA, the contact point is in a separation
state. Hence, the contact force should be

Nt
l � 0, Tt

l � 0, (19)

where μs and μd are the static friction coefficient and the
kinetic friction coefficient, respectively; A is the control area
of node l; and c is the cohesion force of the interface. If the
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contact point has not been in a sliding or separation state
prior to time step t + Δt, then c> 0; otherwise, c� 0.

3.2.2. Contact Force Calculation for the Point-to-Surface
Type. When the contact type is the point-to-surface type, it
is again assumed that the block and the rock are in a bonded
state at time step t + Δt. Hence, the contact point on the
contact surface that corresponds to the contact node l is l′,
and l′ is on the surface that belongs to element E. 
e
displacement �eld ut

l′ and the equivalent lumpedmassMl′ of
node l′ can be calculated via the shape function interpolation
of the �nite element:

utl′ �∑
j

ϕju
t
j,

mj �
ϕjMj

∑iϕ2i
,

Ml′ �∑
j

mj,

(20)

where ϕj is the shape function value of node j in E at l′,Mj is
the lumped mass of j, and mj is the mass contribution of j at
l′.

According to the deformation coordination conditions
and Rtl � − Rtl , the contact force expressions of l can also be
obtained as equations (14) and (15).

In addition, it is necessary to correct the contact state and
the contact force after each step. 
e cohesion under the
point-to-surface type is zero. 
erefore, the tensile strength
of the interface is zero and the shear strength is μs · ‖Nt

l‖.
If Δ1l > 0 and ‖Ttl‖> μs · ‖Nt

l‖, the contact point is in the
sliding contact state; hence, the contact force can be cal-
culated via equation (18). If Δ1l < 0, the contact point is in the
separation state; therefore, the contact force can be calcu-
lated via equation (19).

3.3. Basic Steps of the Contact Simulation Method. Prior to
excavation, the nodes on the interface are bonded in the
point-to-point contact type. When the contact point pairs
break the cohesive force and enter into a sliding or sepa-
rating state, the elements and the element surfaces that are in
contact with these points should be identi�ed via contact
search. 
e contact type and the contact force must be
determined at each time step. 
e basic steps of the cal-
culation method at time step t + Δt are illustrated in
Figure 4.


e contact simulation method need not determine the
spring sti�ness. It can realize the discontinuity characteristic
in the �nite element model.

4. Calculation Method for the Block
Safety Factor


e strength reduction method (SRM) is applied to calculate
the block safety factor and the block stability is quantitatively
evaluated. Since the mechanical properties of the interface
between the block and the rock play an important role in the
stability of the block, the critical instability state can be
calculated by reducing the strength parameters of the
interface:

c′ �
c

Fs
,

tanφ′ �
tanφ
Fs

,

(21)

where Fs is the strength reduction factor, c and c′ are the
cohesion before and after the strength reduction, and φ and
φ′ are friction angles before and after the strength reduction.

First, the calculation is conducted under Fs� 1. A stable
block can reach a force-balanced state and a stable dis-
placement value in �nite steps, of which the strength

l
Nl Tl

l′
Nl′

Tl′

(a)

l
Nl Tl

l′
Nl′

Tl′

(b)

Figure 3: Sketch of contact types between a block and a rock. (a) Point-to-point contact type; (b) point-to-surface contact type.

Through deformation coordination conditions,
contact gap formulas, and progressive integration 

equations, calculate Nl
t, Tl

t

Update and calculate at next step

Calculate final ut+Δt according to equation (9) to equation (11)

Calculate u‒t+Δt for all nodes without considering
 contact force 

Judge contact type
(point-to-point or point-to-surface)

Judge contact state (bonded, sliding, or seperation)
and correct contact force

Figure 4: Flowchart of the contact simulation method.
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reduction factor Fs is considered to be within [1, +∞].
Otherwise, the block is in an unstable state and Fs is within
[0, 1). In the corresponding interval, Fs is gradually increased
with a gradient of 0.01 until the block is in the critical in-
stability state. 
e critical state can be judged by the dis-
placement mutation criterion [25]. 
e reduction factor at
the critical state is considered to be the safety factor of the
block.

For a falling block in the top arch, the safety factor is
close to zero. For an unmovable block, the safety factor
approaches positive in�nity. If Fs< 0.1, the block falls freely,
and if Fs> 100, the block is unmovable.

5. Example Evaluation


e contact simulationmethod is embedded into the explicit
�nite element calculation framework in the Fortran language
to form a numerical analysis program for block failure.

To evaluate the accuracy and the rationality of the nu-
merical analysis program and the solution method for the
safety factor, a simple yet representative example of a sliding
block is used to compare the numerical results and the
analytical results. As shown in Figure 5, themodel consists of
a sliding block and a base. 
e dip angle of the base is 40°.

e size of the sliding block is 0.25m× 0.25m.
e materials
are both elastic. 
e elastic moduli are both 20MPa, the
Poisson ratio is 0.3, and the density is 2.0 g·cm− 3. Two
discontinuities are set on the left and bottom of the sliding
block. 
e cohesion of the discontinuities is 0MPa, and the
friction angle is represented as φ. 
e bottom and lateral
sides of the base are �xed. 
e block slides along the slope
from rest under gravity.

During the numerical calculation process, the sliding
block separates from the left discontinuity and the contact
state on the bottom discontinuity changes from the bonded
contact to sliding contact. 
e point-to-point contact type
and the point-to-surface contact type occur alternately.


e displacement of the block can be calculated ana-
lytically as follows:

s(t) �
1
2
g sin 40° − cos 40° tanφ( )t2, (22)

where s(t) is the displacement of the sliding block, g is the
gravitational acceleration, t is time, and φ is the friction angle
of the discontinuity. If φ< 40°, the resting block will slide.

In this example, the numerical calculations are con-
ducted under the friction angles of 25°, 30°, and 35°. 
e
displacement time-history of the sliding block that is cal-
culated via this numerical method is compared with the
analytical result, as shown in Figure 6. 
e numerical so-
lution accords with the analytical solution, thereby dem-
onstrating the accuracy of the contact simulation method
between a block and the surrounding rock. Overall, this
numerical analysis program can simulate various contact
types with satisfactory accuracy.


e safety factor of the sliding block is calculated by
reducing the strength parameters of the sliding surface, as
shown in Figure 7. In the case of a friction angle of 35°, when
the reduction factor exceeds 0.83, the block is in the critical

Sliding block

Discontinuity

40°

8.0 m

Figure 5: Sliding block model.

Numerical result – φ = 35°
Analytical result – φ = 35°
Numerical result – φ = 30°

Analytical result – φ = 30°
Numerical result – φ = 25°
Analytical result – φ = 25°
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Figure 6: Displacement results that were obtained numerically and
analytically.
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Figure 7: Safety factor of the sliding block.
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state. ,erefore, the safety factor Fs− 35 of the block is 0.83;
similarly, the safety factors under the friction angles of 30°
and 25° are 0.68 and 0.55, respectively. ,e expected safety
factors according to RBLEM are 0.834, 0.688, and 0.556,
respectively. ,e safety factors that are obtained via the
numerical method are very close to those that are obtained
via RBLEM.,erefore, the numerical method for calculating
the safety factor of a block is accurate and reliable.

6. Engineering Example

6.1. Engineering Profile and Calculation Model. Hydropower
stations in the southeast of China are always large in scale
and the underground powerhouses are complex in structure.
Moreover, the geological structure is complex and various
geological discontinuities have developed. An underground
powerhouse in the southeast of China has a size of
154.0m× 26m× 54.8m and a depth of approximately
200m. In the middle of the powerhouse, a fault F1 with a
thickness of 5.0m is obliquely crossed and it intersects with a
thin fault F2. ,ere are also two distinct fractures that in-
tersect with fault F1 at the top of the powerhouse. Under the
cut of multiple geological discontinuities, block failure tends
to occur at the top and the left sidewall of the powerhouse.
Figure 8 illustrates the relative spatial positions between
discontinuities and the excavation faces, the calculation
range, and the boundary conditions. ,e underground
cavern is excavated in 8 stages from top to bottom. In this
study, a 2D model is established for analyzing the stability of
the blocks and the surrounding rock.

,e finite element model, including geological discon-
tinuities, is shown in Figure 9. After using the block iden-
tification method, four blocks are identified near the
excavation faces: blocks B1 and B2 at the top and blocks B3
and B4 in the sidewall.

6.2. Calculation Conditions. ,e mechanical parameters of
the rock, fault, and interface are provided in Table 1. ,e
materials are based on the Mohr–Coulomb criterion. ,e
initial geostress field is obtained via stress inversion of
measured points. ,e horizontal lateral pressure coefficient
is approximately 1.10. According to the maximum principle,
the stress that surrounds the caverns is between − 6.0MPa
and − 7.6MPa. ,e bottom of the model is fixed and the left
and right sidewalls are fixed with a normality constraint.,e
top is a free boundary and is subject to the gravitational
stress of the overlying rock mass.

,e numerical analysis program for block failure is
adopted to analyze the failure process and the stability of the
blocks under 8 stages of excavation. ,e initial geostress
balance was carried out in 930 time steps. ,e simulation of
5000 time steps for each stage excavation could reach a stable
deformation of the surrounding rock.

6.3. Results and Analysis

6.3.1. Failure Process of Blocks during Excavation. A mon-
itoring scheme, which is illustrated in Figure 10, is used to

monitor the deformation process of the blocks. Figure 11
shows the deformation of the surrounding rock after the
2nd, 4th, 6th, and 8th stages of excavation of the powerhouse
(the displacement is magnified by a factor of 15). Figure 12
shows the monitored displacement. ,e monitored dis-
placement gradually increases as the excavation progresses.
,e point P1 in block B1 undergoes a large displacement and
continues to increase after the first stage of excavation.
Hence, block B1 falls freely during excavation. ,e dis-
placement of point P2 in block B2 is 14mm after the first
stage due to the excavation unloading. It slowly increases as
the excavation proceeds and stabilizes at approximately
30mm. Blocks B3 and B4 are completely exposed after the
5th stage of excavation and their displacements are increased
by 22mm and 18mm, respectively. According to
Figures 9(b)–9(d), blocks B3 and B4 undergo large defor-
mations and cracks are generated between the blocks and the

54
.8

m

26.0m

19
5m

185m

51°

21°

Figure 8: Sketch of the model for an underground powerhouse.

B1 B2

B4 B3

Figure 9: Calculation model and marked blocks.
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Table 1: Mechanical parameters of the materials.

Material Deformation modulus
(GPa)

Poisson
ratio

Cohesion force
(MPa)

Frictional angle
(°)

Density (g·cm-
3)

Tensile strength
(MPa)

Rock 15 0.3 0.6 35.0 2.7 1.5
Fault 2 0.4 0.5 25.0 2.0 0.5
Interface 0.0 30.0

P2

P3

P4P5

P1
F1
F2F3

Rock

Fault

Rock

Figure 10: Monitoring schemes.

(a) (b) (c) (d)

Figure 11: Deformation process during excavation (the displacement is amplified by a factor of 15): (a) 2nd stage; (b) 4th stage; (c) 6th stage;
(d) 8th stage.

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

D
isp

la
ce

m
en

t (
m

m
)

Step × 103

P1
P2
P3

P4
P5

Figure 12: Monitored displacement.
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rock.,e depth and width of the cracks gradually increase as
the excavation proceeds. Points P4 and P5 are a contact
point pair prior to excavation. After the 5th excavation stage,
they have a relative displacement of approximately 10mm
and a crack occurs in their interface. ,e relative dis-
placement eventually reaches approximately 25mm. Hence,
the interface deforms discontinuously. After the excavation
has been completed, except for block B1 falling off, the
blocks does not suffer from instability or damage. However,
the blocks have loosened from the surrounding rock and
there are high security risks.

If using key block theory, only blocks B1 and B3, which
are exposed on the excavation face, can be identified and it
cannot simulate the failure process of the blocks. ,e
proposed numerical method can effectively identify the key
blocks, timely discover potentially dangerous blocks, and
simulate the failure process of the blocks.

6.3.2. Deformation Characteristics of the Blocks and the
Surrounding Rock. To reflect the deformation law of blocks
and surrounding rock, an additional calculation in which
contact is not considered is conducted for comparison with
the result in which contact is considered, as shown in
Figure 13. ,e case of without contact means the blocks and
the surrounding rock are assumed to be tied together during
modeling, and the common nodes on the interfaces are not
separated. Without consideration of contact, the failure of
the blocks cannot be simulated. Only a large displacement of
the rock through which the fault passes is observed.With the
consideration of contact, a block falls or separates from the
surrounding rock and a discontinuous displacement field is
observed near the interface of the fault and the rock. ,e
maximum displacement when contact is considered ap-
proximately 35mm larger than without contact. In the upper
contact interface of block B4, the displacement changes

DISP(mm): 5 10 15 25 20 35 30 40 45 50 55 60

(a)

DISP(mm): 5 10 15 25 20 35 30 40 45 50 55 60

(b)

Figure 13: Deformation of the surrounding rock. (a) Without contact and (b) considering contact.

F1
F2
F3

2.0

3.0

4.0

5.0

6.0

7.0

N
or

m
 st

re
ss

 (M
Pa

)

0 5 10 15 20 25 30 35 40 45
Step × 103

(a)

F1
F2
F3

0.0

1.0

2.0

3.0

4.0
Sh

ea
r s

tre
ss

 (M
Pa

)

0 5 10 15 20 25 30 35 40 45
Step × 103

(b)

Figure 14: Stress evolutions of the interfaces. (a) Norm stress and (b) shear stress.
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substantially, which further indicates the loosening of block
B4.

When contact between the blocks and the surrounding
rock is considered, the simulation results are more con-
sistent with the learned empirical rules. ,erefore, this
numerical analysis method better accords with the actual
situation.

6.3.3. Stress Evolution of the Interfaces between the Blocks and
Rock. To analyze the stress evolution process of the inter-
faces between the blocks and rock, block B2 is selected as the
research object.,ree monitored points, namely, F1, F2, and
F3, are arranged in the middles of the interfaces, as illus-
trated in Figure 10. ,e normal stress and shear stress
evolutions at the three points are plotted in Figure 14.
During excavation, the interfaces are relieved of the initial
stress. ,e stresses of interfaces F2 and F3 gradually increase
as the excavation progresses, while the stress of interface F1
decreases. Nonsliding face F3 has the largest stress with
block B2. Hence, the block is subjected to multiple stresses
from the surrounding rock during its failure process, in
addition to the stress from the sliding face.

6.3.4. Safety Factors of the Blocks. During the calculation of
each excavation step, the safety factors of the blocks are
obtained via reduction of the shear strength parameters of
the interfaces. In the 1st stage of the excavation, the dis-
placement of block B1 is large and continuously growing,
even if the strength reduction factor is less than 0.1. Block B1
falls freely from the top of the cavern. Block B2 is fully
exposed after the 1st stage of the excavation and blocks B3
and B4 are fully exposed after the 5th stage of the excavation.
Figure 15 plots the displacements of the blocks as functions
of the strength reduction factor during the 5th stage of the
excavation. For block B2, when the reduction factor exceeds
4.51, the monitored displacement suddenly increases; hence,
the safety factor of block B2 is 4.51. Similarly, the safety
factors of blocks B3 and B4 are 1.45 and 1.49, respectively.

,e safety factors of the blocks during each stage of the
excavation are plotted in Figure 16.,e changes in the safety
factors vary among the stages. As the excavation progresses,
the safety factor of block B2, which is in the top arch,
gradually increases, while the safety factors of the blocks in
the sidewall gradually decrease. However, the magnitudes of
the changes among the stages are small. ,e block stability is
greatly affected by geostress. Although the excavation has
adjusted the stress of the surrounding rock, its influence
degree is not as great as that of the geostress. So, block depth
and excavation process are two important factors affecting
the safety degree of blocks, and the influences of the ex-
cavation process to the safety factors of deep buried blocks
are relatively small.

According to the safety factors of the blocks, in addition
to strengthening the support of key blocks B1 and B3, it is
also necessary to focus on potentially dangerous blocks B2
and B4.,e potentially dangerous block in the left sidewall is
more dangerous than that in the top arch.

7. Conclusions

,is paper proposed a numerical analysis method for block
failure that is based on continuummechanics. ,e following
conclusions can be drawn from this study:

(1) It considered the contact action between the blocks
and the surrounding rock and combined the ad-
vantages of the discontinuum method and the
continuum method. It can simulate the continuous
deformation characteristics of the surrounding rock
and the discontinuous failure processes of the blocks.
A simple siding block example demonstrates that the
simulation results are consistent with the results that
were obtained via RBLEM under specified condi-
tions.,emain advantages of this numerical method
are that it can effectively consider the influence of
excavation unloading on the stability of the blocks
and simulate the bonded, sliding, and separation
behaviors of the interfaces between the blocks and
the rock.
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Figure 15: Safety factors of three blocks after the 5th stage excavation.
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(2) ,e numerical example of the underground pow-
erhouse demonstrates that the key block is damaged
after excavation, the potentially dangerous blocks
undergo large deformations, and the safety factor is
low in the local area, which increases the safety risk
during excavation. ,e numerical results also
demonstrate the influence of the surrounding rock to
the stability of the blocks, and the discontinuous
deformation characteristics and various failure
modes of the complex blocks. ,e basic law is
consistent with the real scenario. ,is numerical
method provides an effective analysis method for the
stability analysis of blocks under complex geological
conditions.
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