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In this paper, a time-varying gain design method is used to investigate the state feedback control problem of upper triangular
nonlinear systems. Firstly, the nonlinear term recognizes an incremental rate relying on the unknown constant and the function
with respect to time.(en, a time-varying gain designmethod is utilized to construct a state feedback controller.With the help of a
suitable coordinate transformation and a Lyapunov function, one obtains that all the signals of the closed-loop system converge to
zero. Finally, two numerical examples are presented to display the effectiveness of the time-varying gain design method.

1. Introduction

Many physical models can be described by nonlinear sys-
tems [1–4]. (erefore, the control problem of these physical
models can be transformed into the control problem of
nonlinear systems [5]. Compared with linear systems, the
behavior of nonlinear systems is more diverse [6–10]. (e
research of control algorithms is generally developed for the
specific type of nonlinear systems [11, 12].

In general, many results about nonlinear systems have
focused on nonlinear systems with triangular structures, that
is, lower triangular nonlinear systems [13, 14] and upper
triangular nonlinear systems [15]. (e common method for
studying lower triangular nonlinear systems is the back-
stepping design method [16], and the common method for
considering upper triangular nonlinear systems is the for-
warding design method [17]. Although, based on the iter-
ative design algorithm, these methods can effectively deal
with strong nonlinearities, the design procedure is more
complicated. In the past few decades, the gain designmethod
is a very effective tool to deal with the control problem of
upper triangular nonlinear systems [18].

Based on the coordinate transformation, the time-
varying gain design method is an effective strategy for

dealing with the uncertain parameter of upper triangular
nonlinear systems [19]. By introducing a time-varying
function in the controller, it can effectively deal with the
nonlinear terms of upper triangular nonlinear systems [20].
Compared with the commonly adaptive control strategy, the
time-varying gain design method is more concise, the cal-
culation process is less, and a lot of calculation work is
reduced. Furthermore, the time-varying gain design method
does not require too many design parameters and avoids
complicated calculation process.

(is paper uses the time-varying gain design method to
study the control problem of upper triangular nonlinear sys-
tems. (e nonlinear characteristics of the system considering
here are more obvious, that is, the unknown constant and the
function with respect to time are allowed in the nonlinear
terms. Compared with the assumption about the nonlinear
terms in [19, 20], the assumption in this paper is more general.
(us, a time-varying gain design method is introduced to
achieve the control goals of the concerned system.

2. Preliminaries

In this paper, we consider a class of nonlinear systems in the
following form:
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_ξ1(t) � ξ2(t) + ψ1(t, ξ(t), u(t)),

_ξ2(t) � ξ3(t) + ψ2(t, ξ(t), u(t)),

⋮
_ξn− 1(t) � ξn(t) + ψn− 1(t, ξ(t), u(t)),

_ξn(t) � u(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where ξ(t) � [ξ1(t), ξ2(t), . . . , ξn(t)]T ∈ Rn is the state and
u(t) ∈ R is the input; the uncertain continuous functions
ψi(t, ξ(t), u(t)): R+ × Rn × R⟶ R, i � 1, 2, . . . , n − 1,
satisfy the following growth condition.

Assumption 1. For all (t, ξ(t), u(t)) ∈ R+ × Rn × R, the
following inequalities hold:

ψi(t, ξ(t), u(t))


≤ θ(1 + t)
c ξi+2(t)


 + ξi+3(t)


 + · · ·

+ ξn(t)


 +|u(t)|, i � 1, 2, . . . , n − 1,

(2)

where θ is an unknown positive constant and c is a known
constant which satisfies 0≤ c< 1.

Remark 1. Assumption 1 is a reasonable condition.
According to Assumption 1, we can know that the nonlinear
terms of system (1) can include the unknown constant and the
function with respect to time. (erefore, compared with the
assumption in [19, 20], Assumption 1 is more general, and the
nonlinear characteristics of system (1) are more diverse. (e
controller designed in this paper is effective for a class of
nonlinear systems as long as the nonlinear terms satisfy (2).

(e control goal of this paper is to construct a state
feedback controller such that all the signals of the closed-
loop system converge to zero. As long as the context does not
cause confusion, the parameters of the function can be
simplified.

3. Main Results

Theorem 1. When the constant c satisfies 0< c< 0.5, all the
signals of system (1) can converge to zero by the following
controller:

u � −
β1

(t + 1)cnξ1 −
β2

(t + 1)c(n− 1)
ξ2 − · · · −

βn

(t + 1)cξn, (3)

where βi, i � 1, 2, . . . , n, are coefficients of the Hurwitz
polynomial ϕ(ρ) � ρn + βnρn− 1 + · · · + β2ρ + β1 and c � 2c.

Proof. Let c � 2c. One presents the coordinate transfor-
mations as follows:

ϵi � (t + 1)
ciξi, i � 1, 2, . . . , n. (4)

Based on (1) and (4), it is obtained that

_ϵi �
1

(t + 1)cϵi+1 +(t + 1)
ciψi +

ci

t + 1
ϵi, i � 1, 2, . . . , n,

(5)

where ϵn+1 � u.

Letting

u � −
1

(t + 1)c(n+1)
β1ϵ1 + β2ϵ2 + · · · + βnϵn( , (6)

where βi, i � 1, 2, . . . , n, are given in (3), the following
equation is satisfied:

_ϵ �
1

(t + 1)cΦϵ +
c

t + 1
Λϵ + Ψ, (7)

where ϵ � [ϵ1, ϵ2, . . . , ϵn]T, Λ � diag[1, 2, . . . , n], and

Φ �

0 1 · · · 0
⋮ ⋮ ⋱ 0
0 0 · · · 1

− β1 − β2 · · · − βn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ψ �

(t + 1)cψ1

⋮
(t + 1)(n− 1)cψn− 1

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(8)

Because βi, i � 1, 2, . . . , n, are coefficients of the Hurwitz
polynomial ϕ(ρ), there is a positive definite matrix Γ sat-
isfying ΓΦ +ΦTΓ ≤ − I [21]. Letting Vϵ � ϵTΓϵ, one gets

_Vϵ|(7) ≤ −
1

(t + 1)c‖ϵ‖2 +
2c‖ΛΓ‖

t + 1
‖ϵ‖2 + 2ϵTΓΨ. (9)

By Assumption 1 and (4), one has

(t + 1)
icψi(t, ξ, u)



≤
θ(1 + δ)

(t + 1)1.5c
ϵ1


 + ϵ2


 + · · · + ϵn


 

≤
�
n

√
θ(1 + δ)

(t + 1)1.5c
‖ϵ‖.

(10)

It follows from (10) that

2ϵTΓΨ≤ 2‖ϵ‖ · ‖Γ‖ · ‖Ψ‖≤
2‖Γ‖

�������
n(n − 1)


θ(1 + δ)

(t + 1)1.5c
‖ϵ‖2.

(11)

Substituting (11) into (9), one gets

_Vϵ|(7) ≤ −
1

(t + 1)c‖ϵ‖2 +
2c‖ΛΓ‖

t + 1
‖ϵ‖2

+
2‖Γ‖

�������
n(n − 1)


θ(1 + δ)

(t + 1)1.5c
‖ϵ‖2.

(12)

Since c � 2c< 1, there is a finite time T such that

−
1

(t + 1)c +
2c‖ΛΓ‖

t + 1
+
2‖Γ‖

�������
n(n − 1)


θ(1 + δ)

(t + 1)1.5c
< 0, t≥T.

(13)

(erefore, it is verified from (12) that
_V< − ‖ϵ‖2, for t≥T. (14)

Based on (14) and the definition of V, the states ϵi,
i � 1, 2, . . . , n, converge to zero. By (6), the controller u
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converges to zero. From (4), one has that the states ξi,
i � 1, 2, . . . , n, converge to zero.

Remark 2. From the proof of(eorem 1, we can see that the
constant c is a key design parameter. As long as the pa-
rameter c satisfies the condition 0< c< 0.5, one guarantees
that equation (13) holds, and then, one handles the effects of
the unknown parameter θ and the function on time in the
nonlinear terms. (e parameters in controller (3) consist of
two parts. One is the parameter c, which only needs to be
satisfied by c � 2c. (e other part is the Hurwitz polynomial
coefficients βi, i � 1, 2, . . . , n, which are also relatively easy to
choose. (erefore, the parameters in controller (3) are better
selected, which avoid excessive calculation process.

Theorem 2. In the case of c � 0, the states of system (1) can
converge to zero by the following controller:

u � −
β1ξ1

(t + 1)0.5n
−

β2ξ2
(t + 1)0.5(n− 1)

− · · · −
βnξn

(t + 1)0.5, (15)

where βi, i � 1, 2, . . . , n, are coefficients of the Hurwitz
polynomial ϕ(ρ) � ρn + βnρn− 1 + · · · + β2ρ + β1.

Proof. (e proof procedure is similar to the proof procedure
of (eorem 1. One chooses c � 0.5 in (4), and then, con-
troller (15) is designed. In order to avert repetition, the
detailed proof is omitted.

Theorem 3. When the constant c satisfies 0.5≤ c< 1, all the
signals of system (1) can converge to zero by the following
controller:

u � −
β1

(t + 1)nξ1 −
β2

(t + 1)n− 1ξ2 − · · · −
βn

t + 1
ξn, (16)

where βi, i � 1, 2, . . . , n, are coefficients of the Hurwitz
polynomial ϕ(ρ) � ρn + βnρn− 1 + · · · + β2ρ + β1.

Proof. One presents the coordinate transformations as
follows:

ϵi � (t + 1)
iξi, i � 1, 2, . . . , n. (17)

Based on (16) and (17), it is obtained that

_ϵi �
1

t + 1
ϵi+1 +(t + 1)

iψi +
i

t + 1
ϵi, i � 1, 2, . . . , n. (18)

Letting

u � −
1

(t + 1)n+1 β1ϵ1 + β2ϵ2 + · · · + βnϵn( , (19)

where βi, i � 1, 2, . . . , n, are given in (3), the following
equation is satisfied:

_ϵ �
1

t + 1
Φϵ +

1
t + 1
Λϵ + Ψ, (20)

where ϵ � [ϵ1, ϵ2, . . . , ϵn]T, Λ � diag[1, 2, . . . , n], and

Φ �

0 1 · · · 0

⋮ ⋮ ⋱ 0

0 0 · · · 1

− β1 − β2 · · · − βn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ψ �

(t + 1)ψ1

⋮

(t + 1)n− 1ψn− 1

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(21)

Because βi, i � 1, 2, . . . , n, are coefficients of the Hurwitz
polynomial ϕ(ρ), there is a positive definite matrix Γ sat-
isfying Γ(Φ + Λ) + (Φ + Λ)TΓ ≤ − I [21]. Letting Vϵ � ϵTΓϵ,
one gets

_Vϵ|(7) ≤ −
1

t + 1
‖ϵ‖2 + 2ϵTΓΨ. (22)

By Assumption 1 and (4), one has

(t + 1)
iψi(t, ξ, u)



≤
θ(1 + δ)

(t + 1)2− c
ϵ1


 + ϵ2


 + · · · + ϵn


 

≤
�
n

√
θ(1 + δ)

(t + 1)2− c
‖ϵ‖.

(23)

It follows from (10) that

2ϵTΓΨ≤ 2‖ϵ‖ · ‖Γ‖ · ‖Ψ‖≤
2‖Γ‖

�������
n(n − 1)


θ(1 + δ)

(t + 1)2− c
‖ϵ‖2.

(24)

Substituting (11) into (9), one gets

_Vϵ|(7) ≤ −
1

t + 1
‖ϵ‖2 +

2‖Γ‖
�������
n(n − 1)


θ(1 + δ)

(t + 1)2− c
‖ϵ‖2. (25)

Since c< 1, there is a finite time T such that

−
1

t + 1
+
2‖Γ‖

�������
n(n − 1)


θ(1 + δ)

(t + 1)2− c
< 0, t≥T. (26)

(erefore, it is verified from (12) that

_V< − ‖ϵ‖2, for t≥T. (27)

Based on (27) and the definition of V, the states ϵi,
i � 1, 2, . . . , n, converge to zero. By (20), the controller u

converges to zero. From (17), one has that the states ξi,
i � 1, 2, . . . , n, converge to zero.

Remark 3. In this paper, with the help of the Lyapunov
function, a new control strategy is proposed for upper tri-
angular nonlinear systems, and state feedback controllers
(3), (15), and (16) are designed such that all the signals of the
closed-loop system converge to zero. In (eorem 2, when
c � 0, one can choose c � 0.5. (en, controller (15) can
ensure the convergence performance of the states. In fact,
when c � 0, as long as the constant c< 1 is selected, the
effectiveness of controllers (15) and (16) can be ensured.
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4. Simulation Examples

Example 1. One considers the following nonlinear system:
_ξ1 � ξ2 + 0.1(1 + t)0.2 ξ3 + u( ,

_ξ2 � ξ3 + 0.1(1 + t)0.2u,

_ξn � u.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(28)

One gets that system (28) satisfies Assumption 1 with
θ � 0.1 and c � 0.2. Let c � 0.4, β1 � 0.3, β2 � 1.2, and
β3 � 0.7. Based on(eorem 1, a state feedback controller for
system (28) is designed as

u � −
3ξ1

10(t + 1)1.2 −
6ξ2

5(t + 1)0.8 −
7ξ3

10(t + 1)0.4. (29)

(e initial condition is chosen as ξ1(0) � 0.5,
ξ2(0) � 0.8, and ξ3(0) � 0.8. From Figures 1–3, one has that
the states ξ1, ξ2, and ξ3 of system (28) converge to zero. (e
controller u is shown in Figure 4.

Example 2. A practical example about the resonant circuit
system is investigated as follows [22]

_iη1 � −
vτ

η1
−

r1

η1
iη2 +

r1

2η1
sin vτ ,

_vτ �
iη2
τ

−
1
2τ

sin vτ ,

_iη2 � −
r2

η2
iη2 +

μ
η2

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

In system (30), the meaning of the parameters is found in
[22]. Following the coordinate transformation in [22], one
gets

_ξ1 � ξ2 + 2ξ3,
_ξ2 � ξ3,
_ξn � u.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(31)

One gets that system (30) satisfies Assumption 1 with
θ � 2 and c � 0. Let c � 0.5, β1 � 0.3, β2 � 1.2, and β3 � 0.7.
Based on (eorem 2, a state feedback controller for system
(30) is designed as

u(t) � −
β1ξ1

(t + 1)1.5 −
β2ξ2

(t + 1)
−

β3ξ3
(t + 1)0.5. (32)

(e initial condition is chosen as ξ1(0) � − 0.5,
ξ2(0) � − 0.3, and ξ3(0) � − 0.5. From Figures 5–7, one has
that the states ξ1, ξ2, and ξ3 of system (30) converge to zero.
(e controller u is shown in Figure 8.

Example 3. One considers the following nonlinear system:
_ξ1 � ξ2 + 0.5(1 + t)0.9 ξ3 + u( ,

_ξ2 � ξ3 + 0.5(1 + t)0.9u,

_ξn � u.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(33)
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Figure 1: Trajectory of ξ1(t).
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Figure 2: Trajectory of ξ2(t).
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Figure 3: Trajectory of ξ3(t).
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One gets that system (33) satisfies Assumption 1 with
θ � 0.5 and c � 0.9. Let β1 � 5, β2 � 10, and β3 � 5. Based on
(eorem 1, a state feedback controller for system (33) is
designed as

u � −
5ξ1

(t + 1)3
−

10ξ2
(t + 1)2

−
5ξ3

(t + 1)
, (34)

(e initial condition is chosen as ξ1(0) � 0.4,
ξ2(0) � 0.4, and ξ3(0) � 0.3. From Figures 9–11, one has
that the states ξ1, ξ2, and ξ3 of system (33) converge to zero.
(e controller u is shown in Figure 12.

Remark 4. In the two simulation examples, one can see that
the parameters in controllers (29), (32), and (34) are rela-
tively easy to select, which do not require a large amount of
calculation to deal with the unknown parameter in systems
(28), (30), and (33), respectively. In addition, controllers
(29), (32), and (34) are effective for a class of nonlinear
systems as long as the nonlinear terms satisfy (2). Compared
with the example of the results [18, 22], the unknown
constant and the function with respect to time are allowed in
the nonlinear terms. Compared with the commonly adaptive
control strategy, the time-varying gain design method is

0 10 20 30 40 50
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–1.5

–1

–0.5

0

0.5

1

Time (s)

u(t)

Figure 4: Trajectory of u(t).
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Figure 8: Trajectory of u(t).
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Figure 9: Trajectory of ξ1(t).
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Figure 7: Trajectory of ξ3(t).
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Figure 5: Trajectory of ξ1(t).
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Figure 6: Trajectory of ξ2(t).
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more concise, the calculation process is less, and a lot of
calculation work is reduced.

5. Conclusion

(is paper has investigated the state feedback control
problem of upper triangular nonlinear systems. One has
assumed that the nonlinear term recognizes an incremental
rate relying on the unknown constant and the function with
respect to time. A time-varying gain design method has been
used to construct a state feedback controller. With the help

of a Lyapunov function, one has obtained that all the signals
of the closed-loop system have converged to zero. Finally,
two numerical examples have been presented to illustrate the
effectiveness of the time-varying gain design method.
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