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Due to the important role of the vaccines in the prevention of global epidemics, this paper focuses on a vaccine transportation
supply chain composed of one distributor and one retailer. Based on the assumption that the decision-maker does not make a
decision instantaneously, we present a decision-making time-delay model. Firstly, we captured some sufficient conditions of
delay-induced bifurcation for the model by regarding different combinations of the decision delay periods as the bifurcation
parameters and analyzed how the speed of decision-making adjustment of distributor or retailer affects the critical point of system
stability. Secondly, we made a numerical simulation on the model by using a two-dimensional bifurcation diagram, largest
Lyapunov exponent, and entropy and chaotic attractor, respectively. Finally, we used two coordination methods to control chaos
and compared them.*e results show that when the decision delay exceeds a certain threshold, the system will lose stability or go
into chaos. *e precipitous speed of decision variable adjustment of the distributor or retailer will increase the entropy of the
system and lead the system into a chaotic state. When the vaccine supply chain is in chaos, the effect of external control on chaos is
better than that of internal control on chaos.

1. Introduction

Due to the important role of vaccines in the prevention of
infectious diseases spread, researchers have been interested
in the vaccine supply chain from many perspectives. It has
been proven that vaccination is the most effective method to
stop the transmission of all kinds of infectious diseases [1].
For example, regular measles vaccination and supplemen-
tary immunization activities greatly reduce the incidence
rate and mortality of measles worldwide. It was estimated
that measles vaccination had averted about 23.2 million
deaths during 2000–2018 [2]. Unfortunately, there are still
tens of millions of children who have been not covered by
routine vaccines in low and middle-income countries and
there are also considerable challenges in achieving a high
level of vaccination coverage. One of the main obstacles to
the delivery of vaccines is that strict cold chain condition
requires vaccines to be stored between 2°C and 8°C at all
times [3].

*e transport conditions of vaccines are noticeable
problems at present. Lee and Haidari [4] explored how
vaccine supply chains may make substantial influence on the
decision-making of ten examples of different members in the
vaccine community. According to many open questions,
including how the devices should be sized, the interaction
between their price and size, and how often they should be
replenished, Chen et al. [5] examined a model that captured
the various tradeoffs in order to better guide the develop-
ment of passive cold storage devices. Lemmens et al. [6]
examined whether decisions at the strategic, tactical, and
operational levels can figure out key issues in the vaccine
supply chain, such as cold chain delivery, limited shelf life,
and access to remote region. Shittu et al. [7] established a
simulation model to examine the effects of variance in
vaccine supply or demand on storage capacity requirements,
and the results showed that the storage of vaccine can be
reduced to 30% by reorganizing the supply chain. Leidner
et al. [8] assessed the ability of different types of vaccine
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storage devices to maintain an appropriate temperature for
vaccine storage and identify deviations from the recom-
mended temperature. In addition, unreliable power systems
and poor road conditions often lead to cold chain failures in
many developing countries [9].

From operation management perspective, some re-
searchers have explored coordination of a vaccine supply
chain. Tebbens et al. [10] proposed a mathematical frame-
work of a vaccine stockpile over time and discussed the
problems of capacity constraints, production and filling
delay in the development and use of the polio vaccine re-
serve. Brison and Letallec [11] thought that one of the
common factors limiting full and fair access to effective
immunization was the gap between cold chain and logistics
system. Lin et al. [12] examined that the distributor decided
whether a cold chain or noncold chain is used to transport
vaccines, while the retailer checked when the vaccine in a
vaccine supply chain is received. Dai et al. [13] presented the
delivery-time-dependent quantity flexibility contract and
the late-rebate contract when there were uncertainties in the
design, delivery, and demand of influenza vaccine based on
the background of the influenza vaccine industry. Based on
the profit goal and social responsibility of foreign vaccine
suppliers, Niu et al. [14] explored two typical channel
structures (i.e., exclusive retailing and competitive retailing)
with the overseas vaccine supplier’s profit and social re-
sponsibility objectives and acquired equilibrium on vaccine
prices, supply quantities, and vaccine supplier’s utilities.

Many scholars have conducted chaotic behavior analysis
on various aspects of supply chain. Xie and Ma [15] in-
vestigated the game between two recyclers and one processor
in a duopoly market of color TV recycling and analyzed the
response of the system to government decision-making. Wu
and Ma [16] considered the dynamics of the game model of
the epiphytic supply chain with two players and horizontal
diversification of products and analyzed the equilibrium
point and stable regions. Li et al. [17] established Nash game
model and Stackelberg game model in multichannel supply
chain and discussed the entropy diagram, the largest Lya-
punov exponent and the chaotic attractor. Tu et al. [18]
considered a dynamic hybrid supply chain model composed
of twomanufacturers and one retailer and explored the Nash
equilibrium point and its stability region. Zhou and Chen
[19] established two dynamic Stackelberg game models
without (with) unit profit allocation and analyze the in-
fluence of relevant parameters on dynamic system stability,
complexity, and channel revenue.

Some scholars have been interested in stability problems
of system with time delay. Zou et al. [20] established a
delayed susceptible-infectious-recovered model for the
transmission of porcine reproductive respiratory syndrome
virus and acquired properties of the Hopf bifurcation by the
normal form theory and center manifold theorem. Zhang
et al. [21] proposed a delayed tobacco smoking model
containing users in the form of snuffing and presented global
exponential stability results for smoking present equilibrium
by LMI techniques. Rajchakit and Rajchakit [22] investi-
gated mean square robust stability of stochastic switched
discrete-time-delay systems with convex polytopic

uncertainties. Li and Liu [23] examined the bullwhip effect
problem of supply chain with vendor order placement lead
time delays, and the results showed that vendor order
placement lead time delays played an important role in
supply chain dynamics and contributed to its turbulence and
volatility. References [24–28] analyzed the stability of several
complex neural networks with kinds of time delays by using
a Lyapunov-Krasovskii. In addition, Pratap et al. [29] ex-
plored the global existence of Filippov solutions and the
robust generalized Mittag-Leffler synchronization of frac-
tional order neural networks with discontinuous activation
and impulses. References [30, 31] are devoted to the results
of dissipative control for kinds of switched neutral time-
delayed systems whose sufficient conditions for bounded-
ness are obtained by using Lyapunov stability theory. Ref-
erences [32, 33] discussed the local stability and Hopf
bifurcation of kinds of viruses (heroin or worm) model with
time-delay and investigated the properties of the Hopf bi-
furcation by using center manifold theorem and the normal
form theory. References [34, 35] investigated the problems
of robust dissipative control for kinds of discrete-time
systems and analyzed a set of sufficient conditions by using
Lyapunov technique and linear matrix inequality approach.

As far as we know, most existing researches on vaccine
supply chains are related to medical research and public
environmental health. Many scholars have been interested in
vaccine supply chains from operation management per-
spective, but few of them are involved to stability of the
channel system with time-delay. Many existing researches
assume that decision-makers make decisions instantaneously,
but decisions with time-delay often occur for information
transmission delay.*us, it ismore practical that time-delay is
introduced into a vaccine supply chain. In this paper, we
consider a time-delay supply chain composed of a distributor
and a retailer, in which the for-profit distributor purchases
temperature-sensitive vaccines from the manufacturer and
then resells them to the retailer. Because the vaccines become
inactive in storage at unsuitable temperature, the distributor
chooses the transportation mode with cold chain and in-
creases the order quantity of the vaccines. *e retailer often
checks the effect of cold chain transportation and makes the
distributor choose an appropriate cold chain transportation
mode. We established a time-delay model of dynamic deci-
sion-making and analyzed the influence of time-delay pa-
rameter on the stability of supply chain system. We not only
illustrated theHopf bifurcation diagram of the system but also
derived the condition that the adjustment speeds of the de-
cision variables led to the period-doubling bifurcation of the
system. In addition, we analyzed the chaotic behavior of the
system by abundant simulation diagrams, such as Lyapunov
exponent, entropy, and chaotic attractor.

*e remainder of this paper is organized as follows. *e
model conceptualization and the assumptions of the
problem are described in Section 2. *e problem is modeled
in Section 3. Equilibrium points and Hopf bifurcation are
analyzed in Section 4. Numerical analysis and managerial
insights are presented in Section 5. Chaos control is dis-
cussed in Section 6. Section 7 concludes this paper with
discussion of the possible future research direction.
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2. Description and Assumption of the Problem

2.1.ModelConstructionandAssumptions. *is paper mainly
considers a vaccine supply chain composed of a distributor
and a retailer in which the for-profit distributor purchases
temperature-sensitive vaccines from the manufacturer and
then resells them to the retailer. Because the vaccines become
inactive in storage at unsuitable temperature, the distributor
chooses the cold chain mode of transportation and increases
the order quantity of the vaccine. *e retailer often checks
the effects of cold chain transportation that the distributors
chose to make them choose a cold chain transportation
mode that is as appropriate as possible. *e structure of
vaccine supply chain system is shown in Figure 1.

*e main assumptions of this paper are as follows.

(i) *e distributor and the retailer are bounded
rational.

(ii) *is paper only considers one-time investment. *e
distributor uses a cold chain to transport vaccines, the
cold chain transportation level that needs to be invested
isy, and distributor incurs the investment cost k1y

2/2.
*e retailer checks whether vaccines are transported by
cold chain with the inspection level s and incurs the
inspection cost k2s

2/2, where k1 and k2 are investment
parameter and inspection parameter, respectively.

(iii) In order to ensure that distributor and the retailer
can make normal profits, let p>w> c.

(iv) In order to ensure the vaccines’ activity, the distributor
must choose the cold chain to transport the vaccines,
and retailer will check the cold chain transportation of
vaccines to ensure the vaccines’ activity.

(v) *e influence of y on demand function is greater
than the influence of s, so η1 > η2.

2.2. Symbolic Description. *e meanings of α, β, p, w, and c

are described concisely in Table 1.
*e demand D is considered as a function on trans-

portation level, inspection level, and selling price of the
vaccines. *e functional form of market demand on the
vaccines can be written as follows [36]:

D � α(1 − βp) η1y + η2s( 􏼁, (1)

where η1 and η2 represent the influence coefficients of the
distributor’s cold chain transportation level y and the re-
tailer’s inspection level s on demand, respectively.

3. Multiperiod Decision-Making Game
Model with Delay

*e profit functions of the distributor and retailer are
expressed as follows:

πd � (w − c)α(1 − βp) η1y + η2s( 􏼁 −
k1y

2

2
, (2)

πr � (p − w)α(1 − βp) η1y + η2s( 􏼁 −
k2s

2

2
. (3)

From (2) and (3), the decision variable of the distributor
is y, and the retailer’s decision variables are p and s. *us,
the marginal profit function can be written as

zπd

zy
� η1(w − c)α(1 − βp) − k1y,

zπr

zp
� α(1 − 2βp + βw) η1y + η2s( 􏼁,

zπr

zs
� η2(p − w)α(1 − βp) − k2s.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Because of the complexity of the market, the distributor
and retailer do not fully know the market demand and the
decisions of the competitors in the most cases. *erefore,
they adjust their own decisions according to their marginal
profit. *e distributor and retailer make decisions based on
bounded rationality. *e values of decision variables in
period t+ 1 under bounded rational decision are the values
of decision variables at period t plus the changes of decision
variables at period t.

y(t + 1) � y(t) + v1y(t)
zπd

zy
,

p(t + 1) � p(t) + v2p(t)
zπr

zp
,

s(t + 1) � s(t) + v3s(t)
zπr

zs
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where v1, v2, v3 are the decision variables adjusting speed of
the distributor and the retailer, respectively.

In classical research on supply chains by using dynamics,
scholars always assumed that decision-makers make deci-
sions instantaneously; however, this assumption seems not
to be realistic, because decision-makers are often bounded
rational and risk averse and need to be considered before
making a decision. τ is the time of the decision-maker’s
recognition of the need to take a decision to making a
decision. So, we introduce the time-delay parameter into the
differential equations.
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y(t + 1) � y(t) + v1y(t) η1(w − c)α(1 − βp(t)) − k1y(t − τ)􏼂 􏼃,

p(t + 1) � p(t) + v2p(t) α(1 − 2βp(t) + βw) η1y(t − τ) + η2s(t − τ)( 􏼁􏼂 􏼃,

s(t + 1) � s(t) + v3s(t) η2(p(t) − w)α(1 − βp(t)) − k2s(t − τ)􏼂 􏼃.

⎧⎪⎪⎨

⎪⎪⎩
(6)

*e flow diagram of model (6) is as shown in Figure 2.

4. Equilibrium Points and Hopf
Bifurcation Analysis

4.1. Positive Equilibrium Characteristic and Characteristic
Equation ofModel (6). We studied the equilibrium points of
model (6). According to the calculations, we obtained nine
equilibrium points of model (6):

E1(0, 0, 0),

E2 0, 0, −
αη2w

k2
􏼠 􏼡,

E3 0,
1
β

, 0􏼠 􏼡,

E4
αη1(w − c)

k1
, 0, 0􏼠 􏼡,

E5 0,
1 + βw

2β
,
αη2(1 − βp)

2

4βk2
􏼠 􏼡,

E6
αη1(w − c)

k1
, 0,

− αη2w
k2

􏼠 􏼡,

E7
αη1(1 − βp)(w − c)

2k1
,
1 + βw

2β
, 0􏼠 􏼡,

E8 y
∗
1 , p
∗
1 , s
∗
1( 􏼁, E9 y

∗
2 , p
∗
2 , s
∗
2( 􏼁,

(7)

where

y
∗
1 �

α(c − w)(βw − 1)η1
2k1

,

p
∗
1 �

βw + 1
2β

,

s
∗
1 �

α(βw − 1)
2η2

4βk2
,

y
∗
2 �

α(c − w)η1 βk2η
2
1(c − w) + k1η

2
2(βw − 1)􏽨 􏽩

k
2
1η

2
2

,

p
∗
2 �

k1η
2
1(c − w) + wk1η

2
2

k1η
2
2

,

s
∗
2 � −

α(c − w)η1 βk2η
2
1(c − w) + k1η

2
2(βw − 1)􏽨 􏽩

k
2
1η

3
2

.

(8)

In order to analyze the stability of E1 ∼ E8, the Jacobian
matrix of model (6) is given as follows:

J �

A1 B1 0

B2 A2 B3

0 B4 A3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

, (9)

where

Distributor Retailer

y

w

s

p
Customers

Figure 1: *e vaccine supply chain system.

Table 1: *e parameters description for the system.

α *e initial demand
p Retail price of unit vaccine
β Sensitivity coefficient of consumers to the retail price
w Wholesale price of unit vaccine
c *e initial demand
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A1 � 1 + v1C1,

A2 � 1 + v2C2,

A3 � 1 + v3C3,

B1 � v1y η1αβ(c − w)( 􏼁,

B2 � v2pαη1(1 − 2βp + βw),

B3 � v2pαη2(1 − 2βp + βw),

B4 � v3s αη2(1 − βp) − η2αβp − w( 􏼁,

C1 � η1(w − c)α(1 − βp) − 2k1y,

C2 � α(1 − 4βp + βw) η1y + η2s( 􏼁,

C3 � η2(p − w)α(1 − βp) − 2k2s.

(10)

According to the eigenvalues of the Jacobian matrix
evaluated at the corresponding equilibrium points, if all the
nonzero eigenvalues of the Jacobian matrix are less than 1,
this equilibrium point is stable.

Take E1 as an example. *e values of E1 are taken into
Jacobian matrix J, and then the Jacobian matrix J1 at the
equilibrium point E1 is acquired. *us, J1 can be written as

J1 �

1 + v1 η1(w − c)α􏼂 􏼃 0 0

0 1 0

0 0 1 − v3η2wα

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

. (11)

Obviously, the eigenvalues of J1 are not all less than 1, so
the equilibrium point E1(0, 0, 0) is an unstable equilibrium
point. Similarly, it can be proved that E2 ∼ E7 are unstable
points.

Because of the high cost of vaccine production, w≫ 1
and βw≫ 1, so we can see from the calculation that y∗1 < 0
and the values of decision variables by the decision-maker is
impossible to be nonpositive in economics, which means
that the equilibrium point E8 is unstable.

Next, we analyzed the stability of the equilibrium point
E9(y∗2 , p∗2 , s∗2 ), and the characteristic polynomial of the
Jacobian matrix in E9 can be written as

F(λ) � λ3 − T1λ
2

+ T2λ + T3, (12)

where

T1 � C1 + C2 + C3,

T2 � C1C2 + C1C3 + C2C3 − B3B4 − B1B2,

T3 � C1B3B4 + C3B1B2 − C1C2C3.

(13)

According to the Jury criterion, all eigenvalues of the
characteristic equation are in the unit circle of the complex

plane, which is a necessary and sufficient condition for the
stability of the discrete system. *e conditions that
E9(y ∗2 , p∗2 , s∗2 ) is stable must be met as follows:

F(1)> 0,

F(− 1)< 0,

1> T3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

T
2
3 − 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> − T3T1 − T2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

For the sake of convenience, let u1 � y(t) − y∗, u2 �

p(t) − p∗, u3 � s(t) − s∗, and we can transform the stability
of model (6) at the equilibrium point E9(y∗2 , p ∗2 , s∗2 ) into
the stability at the point (0, 0, 0) to study. Let u1 � y(t), u2 �

p(t), u3 � s(t), and model (6) can be linearized at equilib-
rium point E9(y∗2 , p∗2 , s∗2 ).

y(t + 1) � a1y(t) + a2p(t) + b1y(t − τ),

p(t + 1) � a3p(t) + b2y(t − τ) + b3s(t − τ),

s(t + 1) � a4p(t) + a5s(t) + b4s(t − τ),

⎧⎪⎪⎨

⎪⎪⎩
(15)

where

a1 � 1 + v1 η1(w − c)α 1 − βp
∗

( 􏼁 − k1y
∗

􏼂 􏼃,

a2 � − v1y
∗η1β(w − c)α,

a3 � 1 + v2 α 1 − 4βp
∗

+ βw( 􏼁 η1y
∗

+ η2s
∗

( 􏼁􏼂 􏼃,

a4 � v3s
∗ αη2(1 − 2βp + βw)􏼂 􏼃,

a5 � 1 + v3 η2 p
∗

− w( 􏼁α 1 − βp
∗

( 􏼁 − k2s
∗

􏼂 􏼃,

b1 � − v1y
∗
k1,

b2 � v2p
∗η1 α 1 − 2βp

∗
+ βw( 􏼁􏼂 􏼃,

b3 � v2p
∗η2 α 1 − 2βp

∗
+ βw( 􏼁􏼂 􏼃,

b4 � − v3s
∗
k2.

(16)

Next,

λ − a1 − b1e
− λτ

− a2 0

− b2e
− λτ λ − a3 − b3e

− λτ

0 − a4 λ − a5 − b4e
− λτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

. (17)

*en, we obtain the characteristic polynomial of model
(6):

f(λ) � λ3 − λ2t1 + λt2 − a1a3a5

+ − λ2 b1 + b4( 􏼁 + λt3 + t4􏽨 􏽩e
− λτ

+ λb1b4 + t5􏼂 􏼃e
− 2􏽢λτ

,

(18)

where

t1 � a1 + a3 + a5,

t2 � a1a3 + a1a5 + a3a5,

t3 � a1b4 + a5b1 + a3b1 + a3b4 − a4b3 − a2b2,

t4 � a1a4b3 + a2a5b2 − a1a3b4 − a3a5b1,

t5 � a4b1b3 + a2b2b4 − a3b1b4.

(19)

Distributor Retailer

y (t – τ)

w

s (t – τ)

p
Customers

Figure 2: *e flow diagram of model (6).
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4.2. Case 1, τ � 0, Sufficient Conditions for Local Stability at
EquilibriumPointE9(y∗2 , p∗2 , s∗2 ). When τ � 0, f(λ) can be
simplified as follows:

λ3 − λ2 t1 + b1 + b4( 􏼁 + λ t2 + t3 + b1b4( 􏼁 + t4 + t5 − a1a3a5.

(20)

Let f(λ) � 0; according to Routh-Hurwitz criterion, if
(H1): − (t1 + b1 + b4)> 0, (t2 + t3 + b1b4)> 0, − (t1 + b1 +

b4)(t2 + t3 + b1b4)> (t4 + t5 − a1a3a5) and (t4 + t5 −

a1a3a5)> 0, hold, then model (6) is asymptotically stable at
the equilibrium point.

4.3. Case 2, τ > 0, Sufficient Conditions for Local Stability at
Equilibrium Point E9(y∗2 , p∗2 , s∗2 ). Let f(λ) � 0 and mul-
tiply both sides by eλτ , and then

− λ2 b1 + b4( 􏼁 + λt3 + t4 + λ3 − λ2t1 + λt2 − a1a3a5􏼐 􏼑e
λτ

+ λb1b4 + t5􏼂 􏼃e
− λτ

� 0.

(21)

Assume that λ � iω(ω> 0) is the root of (21); then,

Δ1cos(ωτ) + Δ2sin(ωτ) � − ωt3,

Δ3cos(ωτ) + Δ4sin(ωτ) � − ω2
b1 + b4( 􏼁 − t4,

􏼨 (22)

where

Δ1 � − ω3
+ ωb1b4 + ωt2,

Δ2 � ω2
t1 − a1a3a5 − t5,

Δ3 � ω2
t1 − a1a3a5 + t5,

Δ4 � ω3
+ ωb1b4 − ωt2.

(23)

By the aid of (22), we can obtain

sin(ωτ) �
− ω2

b1 + b4( 􏼁 − t4􏽨 􏽩Δ1 + ωt3Δ3
Δ1Δ4 − Δ2Δ3

,

cos(ωτ) �
− ωt3Δ4 + ω2

b1 + b4( 􏼁 + t4􏽨 􏽩Δ2
Δ1Δ4 − Δ2Δ3

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(24)

By the aid of (24), we have

ω12
+ ω10

r1 + ω8
r2 + ω6

r3 + ω5
r4 + ω4

r5 + ω2
r6 + r7 � 0,

(25)

where

r1 � b1 + b4( 􏼁
2

+ 2t
2
1 − 4t2􏼐 􏼑,

r2 � 6t
2
2 − 2 b1b4( 􏼁

2
+ t

4
1 − 4t1a1a3a5 − t

2
1 b1 + b4( 􏼁

2
− t

2
3

+ 2t1t3 − 2t4( 􏼁 b1 + b4( 􏼁 + 2b1b4 + 2t2( 􏼁 b1 + b4( 􏼁
2
,

r3 � b1b4 + t2( 􏼁
2 2b1b4 − 2t2( 􏼁 − b1b4 − t2( 􏼁

2 2b1b4 + 2t2( 􏼁

− 4t
3
1a1a3a5 − 2 a1a3a5( 􏼁

2
+ 2t

2
5 − t

2
3 2b1b4 − 2t2( 􏼁 − 2t

2
1t4 b1 + b4( 􏼁 + 2t1 b1 + b4( 􏼁

2
,

r4 � 2t1t3 b1 + b4( 􏼁,

r5 � b1b4 + t2( 􏼁
2

b1b4 − t2( 􏼁
2

+ 2t
2
1 a1a3a5( 􏼁

2
+ t

2
5 + 4t

2
1 a1a3a5( 􏼁

2
− t

2
5􏼐 􏼑

− t
2
3 b1b4 − t2( 􏼁

2
+ t

2
1t

2
4 + a1a3a5 + t5( 􏼁

2
b1 + b4( 􏼁

2
+ t

2
4 2b1b4 + 2t2( 􏼁,

r6 � − 2t1 a1a3a5 + t5( 􏼁
2

a1a3a5 − t5( 􏼁 − 2t1 a1a3a5 − t5( 􏼁
2

a1a3a5 + t5( 􏼁

+ 2t1t
2
4 a1a3a5 + t5( 􏼁

2
− t

2
4 b1 + b4( 􏼁

2
,

r7 � a1a3a5 + t5( 􏼁
2

a1a3a5 − t5( 􏼁
2
.

(26)

Define g(ω) � ω12 + ω10r1 + ω8r2+ ω6r3 + ω5r4+ ω4r5 +

ω2r6 + r7. Without loss of generality, we assume that
(H2): g(ω) has at least one positive real root. In order to

establish the main results of this article, we assume g(ω) has
n positive roots, denoted by g1, g2, . . . , gn, 0< n≤ 12. From
(24), we can get

τ(j)

k �
1
ωk

arccos
− ωt3Δ4 + ω2

b1 + b4( 􏼁 + t4􏽨 􏽩Δ2
Δ1Δ4 − Δ2Δ3

⎧⎨

⎩

⎫⎬

⎭ +
2jπ
ωk

, k � 1, 2, 3, . . . , n; j � 0, 1, . . . . (27)

Let
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τ0 � min τ(j)

k

􏼌􏼌􏼌􏼌􏼌 k � 1, 2, 3, . . . , n; j � 0.1, . . .􏼚 􏼛 � min τ(0)
k

􏼌􏼌􏼌􏼌􏼌 k � 1, 2, 3, . . . , n􏼚 􏼛 � τ(0)
k0

. (28)

Differentiating both sides of (21) with regard to τ, we can
get

dλ
dτ

􏼢 􏼣

− 1

�
− 2λ b1 + b4( 􏼁 + t3 + 3λ2 − 2λt1 + t2􏼐 􏼑e

λτ
+ b1b4e

− λτ

λe
λτ λ3 − λ2t1 + λt2 − a1a3a5􏼐 􏼑 − λe

− λτ λb1b4 + t5( 􏼁
−
τ
λ
.

(29)

When τ � τ0 and substituting λ � iω0 into (31), it can be
achieved that

Re
dλ
dτ

􏼢 􏼣

− 1

τ�τ0

�
X1X2 + Y1Y2

X
2
1 + Y

2
1

, (30)

where

X1 � ω4
0 − ω2

0t2 + ω2
0b1b4􏼐 􏼑cos ω0τ0( 􏼁 + − ω3

0t1 + ω0a1a3a5 − ω0t5􏼐 􏼑sin ω0τ0( 􏼁,

Y1 � ω3
0t1 − ω0a1a3a5 − ω0t5􏼐 􏼑cos ω0τ0( 􏼁 + ω4

0 − ω2
0t2 − ω2

0b1b4􏼐 􏼑sin ω0τ0( 􏼁,

X2 � − 3ω2
0 + t2 + b1b4􏼐 􏼑cos ω0τ0( 􏼁 + 2ω0t1sin ω0τ0( 􏼁 + t3,

Y2 � − 2ω0t1cos ω0τ0( 􏼁 + − 3ω2
0 + t2 − b1b4􏼐 􏼑sin ω0τ0( 􏼁 − 2ω0 b1 + b4( 􏼁.

(31)

To ensure the condition of the occurrence for Hopf
bifurcation, we have the following hypothesis
(H3): X1X2 + Y1Y2 ≠ 0, and then we have the following
results.

Theorem 1. For model (6), if the conditions (H1), (H2), and
(H3) hold, the equilibrium point E9(y∗2 , p∗2 , s∗2 ) is asymp-
totically stable when τ ∈ [0, τ0); when τ � τ0, model (6)
undergoes a Hopf bifurcation at equilibrium point
E9(y∗2 , p∗2 , s∗2 ); and model (6) is unstable at equilibrium
point E9(y∗2 , p∗2 , s∗2 ) whenτ > τ0.

5. Numerical Simulation

In order to further verify the obtained theoretical results,
two-dimensional bifurcation diagram is used to analyze the
influence of the time-delay and adjustment speed of decision
variables on the stability of the system. We use the largest
Lyapunov exponent and entropy to measure system com-
plexity, respectively. *e principle of the largest Lyapunov
exponent is that when exponent value is less than zero the
system is stable; in contrast, when the exponent value is
greater than zero, the system is unstable.*e rules of entropy
to judge system complexity is as follows: the system is in a
stable state when the entropy is low; in contrast, the system is
in chaos when the entropy is large.

5.1. Hopf Bifurcation Diagram Caused by Delay. We set the
parameters as follows: α � 1, β � 0.29, p � 200, w � 100, c �

50, η1 � 0.6, η2 � 0.3, k1 � 0.1, k2 � 0.4 and by some com-
putations we obtained τ0 � 0.304, ω0 � 1.68. First, the two-
dimensional bifurcation diagram of the system stability
domain changes with the time-delay as shown in Figure 3(a).

As can be seen from Figure 3(a), model (6) gradually
produces Hopf bifurcation from stability with the increase of
τ and then changes to unstable state, and the critical point of
bifurcation is τ0 � 0.304. When τ < 0.304, equilibrium point

E9(y ∗2 , p∗2 , s∗2 ) is asymptotically stable; and when τ > 0.304,
model (6) goes fromHopf bifurcation to the unstable state at
equilibrium point E9(y∗2 , p∗2 , s∗2 ).

From Figure 3(a), it has been shown that the vaccine
supply chain equilibrium is locally asymptotically stable if
the time-delay parameter below the critical value. *e
advantage of a stable state is that the decision-makers in
the system generally know the development law of the
decision variables; at this time, the decision-maker can
control the vaccine transportation more easily. However,
once the time-delay parameter exceeds a certain thresh-
old, the system undergoes a Hopf bifurcation and goes
into chaos. *e emergence of Hopf bifurcation means that
model (6) changes from the vaccines transportation
equilibrium to a limit cycle. At this time, the vaccine
transportation is out of control. Figure 3(b) shows the
largest Lyapunov exponent when τ increases. Comparing
Figure 3(a) with Figure 3(b), when bifurcation occurs and
the system gets in chaos, it can be seen that the largest
Lyapunov exponents are consistent with the bifurcation
diagram shown in Figure 3(a). Similarly, comparing
Figure 3(a) with Figure 3(c), it can be seen that the entropy
of the system is increasing rapidly when bifurcation oc-
curs and gets in chaos.

5.2. Bifurcation Diagram Caused by Adjusting Speed of De-
cision Variable. In this paper, we show the dynamic char-
acteristics of the system in four ways: bifurcation diagram,
maximum Lyapunov exponent, entropy, and chaos
attractor.

5.2.1. Chaos and Bifurcation Phenomenon. When τ � 0.1
and other parameters remain unchanged, the influence of
time-delay on the stability of the system can be eliminated.
Assume v2 � 0.7, and v3 � 0.6, and the value of v1 ranges
from 0 to 0.5. We examine the effect of the adjusting speed v1
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of the cold chain transportation level on the system stability.
Figure 4(a) demonstrates that when v1 increases from 0 to
0.251, the cold chain transportation level y, retail price of
unit vaccine p, and inspection level s are stable at 5.2, 2.472,
and 1.837, respectively; by contrast, when v1 increases to
0.251, the system turns into stable cycles of period 2, which
means that each decision’s variables have two possible
values; when v1 > 0.38, the cold chain transportation level y,
retail price of unit vaccine p, and inspection level s have a lot
of possible values.

Ceteris paribus, assuming that v1 � 0.45, and v3 � 0.32,
Figure 5 presents the effect of the adjustment speed v2 of
retail price of vaccine on system stability. When v2 changes
at [0, 0.5], the changes of decision variables are shown in
Figure 5(a). When v2 ∈ [0, 0.166), the cold chain trans-
portation level y, retail price of unit vaccine p, and in-
spection level s are stable at 1.148, 1.627, and 2.809,
respectively; when v2 increases to 0.166, the first bifurcation
occurs, and the system turns into stable cycles of period 2,
which means that each decision variables have two possible
values; with the further increase of v2, the cold chain

transportation levely, retail price of unit vaccine p. and
inspection level s become chaotic; that is, each decision
variables have a lot of possible values.

Furthermore, assuming that v1 � 0.19 and v2 � 0.36,
Figure 6 analyzes the effect of v3 on system stability.When v3
changes at [0, 0.5], the changes of decision variables are
shown in Figure 6(a). When v3 ∈ [0, 0.151), the cold chain
transportation level y, retail price of unit vaccine p, and
inspection level s are stable at 2.492, 1.814, and 1.844, re-
spectively; when v3 increases to 0.151, the system turns into
stable cycles of period 2; with the increase of v3, eventually
the cold chain transportation level y, retail price of unit
vaccine p, and inspection level s become chaotic; that is, each
decision’s variables have a lot of possible values.

From Figures 4(a)–6(a), it can be seen that as the ad-
justment speed of decision variables increases, the number of
system cycles increases, and finally the chaotic state appears.
*e increasing of adjustment speed of decision variables
means that there are irrational decisions in the vaccine
supply chain. It is difficult to obtain the sustainable devel-
opment of the vaccine supply chain structure.
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Figure 3: *e impact of τ on the stability and complexity of model (6). (a) Bifurcation diagram of model (6) with (b) Lyapunov exponents
with respect to τ τ of Figure 3(a). (c) *e entropy diagram of Figure 3(a).
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5.2.2. Largest Lyapunov Exponent. *e largest Lyapunov
exponent can be used to determine whether the system is in a
chaotic state. If the largest Lyapunov exponent is less than 0,
the system is in a stable state; if the largest Lyapunov ex-
ponent is close to 0, the system is in a periodic motion; if the
largest Lyapunov exponent is greater than 0, the system is in
a chaotic state. Take Figure 4(b) for example; when the
largest Lyapunov exponent first returns to the 0 axis, the
system reaches two times periodic bifurcation point. When
the system returns for the second time and passes through
the 0 axis, the system enters a chaotic state. Comparing the
largest Lyapunov exponent with Figure 4(a), when bifur-
cation occurs and the system becomes in chaos, it can be
seen that the largest Lyapunov exponents are consistent with
the bifurcation diagram shown in Figure 4(a). Figures 5(b)–
6(b) show similar results, which are not repeated here.

5.2.3. Entropy. Whenmany scholars analyze the influence of
time-delay parameter in the system, they only prove and give
the conditions for the stability of the system. However, there

are few people discussing what the chaotic behavior will
bring to the system. *e essence of entropy is the internal
chaos of a system. According to information theory, the
higher the entropy is, the higher the chaos of the system’s
internal information is, which also results in the decision-
maker making more effort to acquire useful information.
From Figure 4(c), we can know that when v1 ∈ (0, 0.251),
the entropy of model (6) is equal to 0, and the cold chain
transportation levely, retail price of unit vaccine p, or in-
spection level s has a unique value. When v1 > 0.251, model
(6) undergoes a doubly periodic bifurcation state and falls
into chaos finally, the entropy of model (6) continues to
increase, and the cold chain transportation level y, retail
price of unit vaccine p, or inspection level s becomes un-
stable and has lots of values. From the information theory,
the large entropy can increase uncertainty of information on
decision variables, which may cause the distributor and
retailer to miss the best decision-making opportunity to
maintain vaccines’ activity in the process of vaccine trans-
portation. Figures 5(c)–6(c) show similar results.
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Figure 4: Dynamic evolution of decision variables with v1. (a) v2 � 0.7, v3 � 0.6. (b) Lyapunov exponents for v1 varying from 0 to 0.5 of
Figure 4(a). (c) *e entropy diagram of Figure 4(a). (d) Chaotic attractor of the system.
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5.2.4. Chaotic Attractor. *e chaotic attractors are shown in
Figures 4(d)–6(d) and are analyzed. When the system goes
into a chaotic state, the structure of the chaotic attractor can
be more complicated. Take Figure 4(d) for example; when
v1 > 0.251, the system is in a chaotic state, and the chaotic
attractor is complicated. Figures 5(d)–6(d) show similar
results.

5.3. Influence of Adjustment Speed of Decision Variables on
Stability Critical Point. Compared with Figure 4(a),
Figure 7(a) shows the change of system stability with v1
when v3 is constant and v2 is reduced to 0.3. Obviously, with
the decrease of retailer’s adjustment speed v2, the critical
point of stability moves to the right. Figure 7(b) shows the
change of system stability with v1 when v2 is constant and v3
is reduced to 0.27. In the same way, with the decrease of
retailer’s adjustment speed v3, the critical point of the sta-
bility moves to the right. It is not hard to see that, in terms of
the goal of affecting the critical point of the stable state of the

vaccine supply chain, there exist reverse changes in the
relationship between the adjustment speed of the distribu-
tor’s decision variable v1 and the adjustment speed of the
retailer’s decision variable v2 andv3. *is interesting con-
clusion can imply powerful suggestions for distributor and
retailer to find a balance in the process of vaccines
transportation.

6. Chaos Control

In the vaccine supply chain especially, chaos can make the
vaccines transportation difficult to be carried out smoothly,
which inactivates the vaccines. In order to avoid chaos, we
try to control the chaos by adjusting the parameter control
method and variable feedback control method, respectively.
*e chaotic control effects of adjusting parameters on model
(6) are demonstrated by numerical simulation. As can be
seen from the foregoing, let τ � 0.5, v1 � 0.4, v2 � v3 � 0.5.

When other parameters keep fixed, the system is in a chaotic
state.
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Figure 5: Dynamic evolution of decision variables with v2. (a) v1 � 0.45, v3 � 0.32. (b) Lyapunov exponents for v2 varying from 0 to 0.5 of
Figure 5(a). (c) *e entropy diagram of Figure 5(a). (d) Chaotic attractor of the system.
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6.1. Adjustment Parameter Control Method. *e control
methods are mainly divided into feedback control method
and nonfeedback control method. *e adjusting parameter
control method is one of the feedback control methods. *is

method is to change the internal structure of the original
system to achieve control effect. *e original system is as
follows:

y(t + 1) � y(t) + v1y(t) η1(w − c)α(1 − βp(t)) − k1y(t − τ)􏼂 􏼃,

p(t + 1) � p(t) + v2p(t) α(1 − 2βp(t) + βw) η1y(t − τ) + η2s(t − τ)( 􏼁􏼂 􏼃,

s(t + 1) � s(t) + v3s(t) η2(p(t) − w)α(1 − βp(t)) − k2s(t − τ)􏼂 􏼃.

⎧⎪⎪⎨

⎪⎪⎩
(32)
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Figure 6: Dynamic evolution of decision variables with v3. (a) v1 � 0.19, v3 � 0.36. (b) Lyapunov exponents for v3 varying from 0 to 0.5 of
Figure 6(a). (c) *e entropy diagram of Figure 6(a). (d) Chaotic attractor of the system.
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*e system is transformed into the following one by
parameter adjustment control [37]:

y(t + 1) � (1 − u) y(t) + v1y(t) η1(w − c)α(1 − βp(t)) − k1y(t − τ)􏼂 􏼃􏼈 􏼉 + uy(t),

p(t + 1) � (1 − u) p(t) + v2p(t) α(1 − 2βp(t) + βw) η1y(t − τ) + η2s(t − τ)( 􏼁􏼂 􏼃􏼈 􏼉 + up(t),

s(t + 1) � (1 − u) s(t) + v3s(t) η2(p(t) − w)α(1 − βp(t)) − k2s(t − τ)􏼂 􏼃􏼈 􏼉 + us(t).

⎧⎪⎪⎨

⎪⎪⎩
(33)

With the change of the added adjustment parameter, the
system changes as shown in Figure 8. When u � 0, the
system is in a chaotic state, which indicates that the dis-
tributor and the retailer cannot make joint decisions to
control chaos. With the increase of u, the system reaches a
stable state from chaotic state, which indicates that the
distributor and retailer can effectively control the chaos by
taking joint measures, such as signing contracts and so on.

6.2. State Variable Feedback Control Method. *e state
variable feedback control is a characteristic of modern
control theory. State variable feedback control means that

each state variable of the system is multiplied by the cor-
responding feedback coefficient and fed back to the input
end and added to the reference input, and the sum is used as
the control signal of the controlled system. *e state vari-
ables of a system can show the internal characteristics of the
whole system without knowing the internal structure of the
system, and the control signals can be collected from the
whole space or from the local. *erefore, compared with the
traditional feedback control, the state variable feedback
control can not only be amore excellent and effective control
method, but also the form of its controller is more abundant
[38].

y(t + 1) � y(t) + v1y(t) η1(w − c)α(1 − βp(t)) − k1y(t − τ)􏼂 􏼃 − uy(t),

p(t + 1) � p(t) + v2p(t) α(1 − 2βp(t) + βw) η1y(t − τ) + η2s(t − τ)( 􏼁􏼂 􏼃 − up(t),

s(t + 1) � s(t) + v3s(t) η2(p(t) − w)α(1 − βp(t)) − k2s(t − τ)􏼂 􏼃 − us(t).

⎧⎪⎪⎨

⎪⎪⎩
(34)

Figure 9 shows that the chaotic system gradually
returns to a stable state through variable feedback control
method. When u � 0, the system is in a chaotic state,
which indicates that the government does not take ef-
fective control measures for chaotic systems at this time.
When u> 0.253, the system returns to a stable state, which

indicates that the government takes external intervention
measures to accelerate the system to a stable state and
ensure stable economic development.

From the comparison between Figures 8 and 9, it is
obvious that the control system in Figure 9 enters the
stable state earlier than in Figure 8, which means that the
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Figure 7: Dynamic evolution of decision variables with v1. (a) v2 is reduced to 0.3. (b) v3 is reduced to 0.27.
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control effect of the variable feedback control method is better
than that of adjusting parameter control method. *e reason
is that the structure of cold chain transportation in the vaccine
supply chain is complex, and chaos control can bring about
extra cost. It is difficult for the distributor and retailer to
control the chaotic vaccine supply chain. At this time, it is
imperative that external forces are used to control the chaos in
the vaccine supply chain.

7. Conclusion

In this study, we focus on the vaccine supply chain composed
of a distributor and retailer. We assume that the distributor
chooses cold chain transportation to ensure vaccines activity,
and the retailer checks whether the cold chain transportation
effect that the distributor chose is qualified each time. We
thought that the decisions of the distributor and retailer are
not instantaneous and established a decision-making time-
delay model. By using two-dimensional bifurcation diagram,

Largest Lyapunov exponent, and entropy and chaotic
attractors, we not only acquired the condition that the time-
delay causes the system to produce a Hopf bifurcation, but
also the condition that the adjustment speed of the decision
variable causes the system to produce a period-doubling
bifurcation. In addition, we used two different methods to
control the chaotic system and compared the control effect.
We drew the following conclusions.

(1) When time-delay parameter τ ∈ [0, τ0), the vaccines
transportation equilibrium is locally asymptotically
stable. At this time, the distributor and retailer can
cooperate well to ensure vaccines’ activity. When
time-delay parameter τ ≥ τ0, the vaccine trans-
portation system produces Hpof bifurcation and
loses stability, which means that the vaccine supply
chain changes from the vaccines transportation
equilibrium to a limit cycle.

(2) If the distributor and retailer adjust the decision
variables too quickly, the vaccine supply chain will
bifurcate and fall into chaos and the entropy of the
system will increase, which will cause the decision-
maker to collect more additional information to find
out the appropriate results, and it may make the
decision-maker miss the best time to keep the vac-
cines active.

(3) In terms of the goal of affecting the critical point of
the stable state of the vaccine supply chain, there
exist reverse changes in the relationship between the
adjustment speed of the distributor’s decision vari-
able v1 and the adjustment speed of the retailer’s
decision variable v2 (or v3).

(4) Compared with the internal joint control of the
distributor and retailer, external control, such as
government intervention, will have a better control
effect of the chaos of the system.

In order to simplify the problem, we established a
simplified vaccine supply chain model, while ignoring many
important features of the vaccine supply chain. For example,
there may be some loss of vaccines during transportation. A
supply chain considering the wastage rate of vaccines will
make the model closer to reality. Also, vaccines are different
from ordinary profitable products, and a supply chain
considering social responsibility is also a research hotspot.
We will study these issues in the future.
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