
Research Article
Dynamic Behavior of Externally Prestressed Continuous
Beam considering Second-Order Effect

De-Ping Fang

College of Civil Engineering, Huaqiao University, Xiamen, China

Correspondence should be addressed to De-Ping Fang; fdp@hqu.edu.cn

Received 17 June 2020; Revised 5 November 2020; Accepted 10 November 2020; Published 28 December 2020

Academic Editor: Filippo Ubertini

Copyright © 2020 De-Ping Fang. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Considering precisely the second-order deformation of external tendon, the analytical solution of natural frequencies of 2-span
externally prestressed continuous beamwas obtained by the energymethod.+e effect of external prestress compression softening
is between the zero effect of unbonded prestress compression and the effect of axial outside compression and is determined by the
influence coefficient ranging within 0∼1. +e influence coefficient is mainly related to the number of deviators and slightly related
to tendon layout. Without deviator, the influence coefficient is 1, and the effect of external prestress compression softening is the
same as the effect of axial outside compression. As the number of deviators increases, the influence coefficient gradually decreases
from 1 to near 0, and the effect of external prestress compression softening is close to zero effect of unbonded prestress
compression. With one or more deviators, the effect of external prestress compression softening is negligible. As the eccentricity
and area of tendon increase, only the first symmetric frequency increases obviously, and other frequencies almost remain
unchanged. +e influence of tendon layout linear transformation on the frequency is negligible.

1. Introduction

Externally prestressed concrete structure has been widely
used in the strengthening of existing concrete bridges as well
as in the construction of various new structures. Lou et al.
[1, 2] and Anwar et al. [3] studied the static nonlinear be-
havior of beam externally prestressed with steel tendon and
FRP cables, and Fang [4] investigated the friction effect of
externally prestressed beam. However, the dynamic behavior
of externally prestressed beam was not investigated in detail.
+e analysis of the natural frequencies of externally pre-
stressed simply supported or continuous beams is of vital
importance in dynamic behavior. +e natural frequency of a
simply supported beam under axial outside compression is
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, i � 1, 2, 3, . . . , (1)

where EI is flexural stiffness of beam, m is the mass per unit
length of beam, l is beam span, i is the mode number, and N
is the axial outside compression. Equation (1) reveals that N

leads to compression softening (N softening effect herein-
after) and then decreases the natural frequencies. +e pre-
stress tendon applies axial inside compression to the beam.
+ere exists a problem whether the prestress compression
softening effect is the same as N softening effect. Different
researchers presented different conclusions.

Saiidi et al. [5] determined the natural frequencies of a
prestressed concrete bridge using equation (1). Dallasta and
Dezi [6] pointed out Saiidi et al.’s [5] approach to consider
the prestress compression as N is incorrect, and indicated
that the effect of prestress compression on the beam natural
frequencies is negligible based on a linear model. Deak [7]
also pointed out that prestress compression does not reduce
the natural frequencies. However, the view was not sup-
ported by any analytical or mathematical proof. Jain and
Goel [8] further pointed out that because the tendon be-
comes an integral part of the system, the prestress com-
pression cannot be treated as N and does not affect the
natural frequencies of beams. Jaiswal [9] investigated the
first natural frequency of beams by finite element method
(FEM). For the beams with bonded tendon, the prestress
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compression does not have any appreciable effect on the first
natural frequency. For the beams with unbonded tendon, the
first natural frequency significantly changes with the prestress
compression and eccentricity of the tendon. Jaiswal’s [9]
conclusions are only based on FEM results and are not
supported by any analytical or mathematical proof. Kanaka
[10] treated prestress compression as N and concluded that
the prestress compression reduces the natural frequency of
the lower modes based on a Rayleigh–Ritz formulation. Chan
[11] also treated prestress compression asN and indicated that
the natural frequencies of a prestressed bridge decrease as the
prestress compression increases. Dallasta and Leoni [12]
presented a general formulation for the vibration of concrete
beams, prestressed by internal frictionless tendons using
kinematic relations of small displacements. +e formulation
for the beams does not include the effect of the compression;
however, the natural frequencies decrease as the prestress
compression increases. Kerr [13] studied experimentally and
analytically the dynamic response of a prestressed beam and
pointed out that the magnitude of the prestress compression
for a tendon that passes through the centroid of the beam
cross section has zero effect on the dynamic response of the
beam.+e analytical model was based on a linear formulation
to study the dynamic response of the prestressed beam. It was
limited to straight tendons that pass through the centroid of
the beam. Simsek and Kocaturk [14] indicated that the de-
flections of the beams increase as the prestress compression
increases. +e prestress compression softening decreases the
beam stiffness and natural frequencies. Wang and Ren [15]
considered the additional potential energy of the prestress
compression and concluded that the prestress compression
reduces the low transverse natural frequencies of the bridge.
Jiang and Ye [16] transferred the eccentric unbonded pre-
stress compression to N and a couple and concluded the
prestress compression results in compression softening effect.
Hamed and Frostig [17] derived the equations of motion for a
prestressed beam using the variational principle of virtual
work following Hamilton’s principle. +e mathematical
model is rigorous and general and is valid for any kind of
boundary and continuity conditions as well as any tendon
layout. It was mathematically proven that the prestress
compression does not affect the natural frequencies of bonded
or unbonded prestressed beams as opposed to some research
conclusions.

Hamed and Frostig [17] pointed out zero softening effect
of prestress compression of bonded or unbonded tendon.
+e external tendon applies external prestress compression
EP to the beam; does EP lead to softening effect? Miyamoto
et al. [18] presented the dynamic behavior of prestressed
simply supported beam strengthened with external tendon.
EP effect is simply treated as N effect. Shi et al. [19] adopted
similar method of Miyamoto et al. [18] to treat EP effect asN
effect and obtained the analytical frequency expression of
externally prestressed concrete continuous beam. +e ana-
lytical values were compared with the measured frequencies.
Simsek and Kocaturk [20] treated the eccentric EP asN and a
couple, and the EP effect is equivalent toN effect. Ji et al. [21]
proposed sophisticated formulas to predict the vertical
bending vibration frequencies of prestressed concrete box

girders with corrugated steel webs based on Hamilton’s
energy variational principle. +e effects of external tendon
and EP were not taken into consideration.

+ere exists the eccentricity loss in external tendon, but
there is zero eccentricity loss in unbonded tendon.+e loss of
external tendon eccentricity decreases the flexural stiffness
and consequentially decreases the natural frequencies. +e
loss of eccentricity depends on the layout of external tendon.
+erefore, the influence of EP on the natural frequencies is
also related to the layout of external tendon. It can be il-
lustrated simply in Figure 1. During the vibration of a simply
supported beam, the internal unbonded tendon ACB along
the beam axis bends, but its length and strain energy remain
constant. +e prestress compression does not influence the
dynamic behavior. It conforms with Hamed and Frostig’s [17]
conclusion of zero effect of prestress compression on the
natural frequencies of bonded or unbonded prestressed
beams.+e external tendonAB anchored at two ends remains
straight; therefore it shortens. +e loss of tendon AB strain
energy transfers to the beam, increases the strain energy and
deformation of beam, and decreases the beam stiffness and
natural frequency. If N is equal to EP, the difference between
the loss of AB tendon strain energy and the work of N is high
order negligible; EP softening effect is the same asN softening
effect and influences the natural frequencies.

Based on energy method, adopting the vibration modes
of usual simply supported beam, considering precisely the
second-order effect, Fang [22] analyzed the natural fre-
quencies of externally prestressed simply supported beam
and EP softening effect. It was concluded that EP softening
effect depends on the loss of external tendon eccentricity. As
the number of deviators increases from zero to a large
number, the layout of the external tendon is close to
unbonded tendon. EP softening effect decreases from N
effect to almost zero. It is consistent with the conclusion of
Hamed and Frostig [17]. Fang [22] only discussed the simply
supported beam. +e continuous beams were widely
adopted in engineering, and the analysis of continuous beam
dynamic behavior is also indispensable. Using the method
proposed by Fang [22], adopting the vibration modes of
usual continuous beam, the natural frequencies of contin-
uous beam were also analyzed, and similar conclusions are
presented in this paper.

2. Natural Frequency Equations of Externally
Prestressed Beams

In the author’s view, there exist some problems inMiyamoto
et al.’s [18] and Shi et al.’s [19] natural frequency formulas.
+e derivation procedure is rewritten briefly in this section.

For free vibration, the governing partial differential
equation is

EI
z
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zt
2 � 0, (2)

where y is vibration displacement; Pt and ΔPt are prestress
compression and increment; P0

t is initial prestress com-
pression; Ptc, ΔPtc, and P0

tc are the horizontal components of
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Pt, ΔPt, and P0
t ; ΔMp is the bending moment due to ΔPt; e is

the eccentricity; and a is the position of deviators as shown in
Figure 2; the friction between the tendon and deviator is
neglected. +e effect of the prestress compression and the
effect of external tendon are represented by the terms Ptcy

and ΔMP, respectively, in equation (2)
To solve equation (2), two relationships must be

established, the relationship between Ptcy and y and the
relationship between ΔMP and y. Miyamoto [18] neglected
the term ΔPtcy in Ptcy Ptcy ≈ P0

tcy; since ymax≪ e, therefore
ΔPtcy≪ΔPtce (ΔPtce is included in ΔMP as shown in
Figure 3). In the author’s view, ΔPtcy is negligibly small, not
due to ymax≪ e. But it is due to the fact that ΔPtc is pro-
portional to y, and y can be infinitesimal; ΔPtcy becomes a
high-order infinitesimal; hence, ΔPtcy can be neglected in
comparison with infinitesimal P0

tcy. Acknowledge that, in
some beams, where e � 0, ymax≪ e is not a valid assumption.
+erefore, Ptcy can be replaced by P0

tcy; then, the rela-
tionship between Ptcy and y is established. Miyamoto et al.
[18] simplified ΔMP as a uniform bending moment ΔMPE as
shown in Figure 3 (equivalent-area principle hereinafter):

ΔMP ≈ ΔMPE � ΔPt(e cos θ + a sin θ). (3)

Miyamoto [18] assumed that ΔPt is proportional to
midspan displacement y(0.5l), called proportional as-
sumption hereinafter:

ΔPt � ηy(0.5l), (4)

ΔMP ≈ ΔMPE � η(e cos θ + a sin θ)y(0.5l), (5)

where η � 24EI(e cos θ + a sin θ)/l2(μ + 4λ cos θ)μ �

(4 cos θ − 3)(e cos θ + a sin θ)2; λ� I/A + EIlt/EtAtl;A is area
of the beam cross section; and Et, At, and lt are the elastic
modulus, cross section area, and length of tendon. Substituting
equation (5) into equation (2) gives
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(6)

and y(0.5l) in equations (4)–(6) is replaced by y(x) in
Miyamoto’s [18] equations. Due to this replacement,
equation (6) can be solved for natural frequencies:

ωi �
iπ
l
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, i � 1, 2, 3, . . . .

(7)

Using a similar method, Shi et al. [19] put forward the
natural frequency formula for continuous beam as shown in
Figure 4. To solve equation (2), Ptcy is replaced by P0

tcy,

ΔPt � ϕy(0.5l) by the proportional assumption. Based on
the equivalent-area principle, the areas of the bending
moment diagram ΔMP due to ΔPt are equal to the uniform
bending moment ΔMPE, as shown in Figure 5 ΔMP �

ΔMPE � Hϕy(0.5l). +e differential equation similar to
equation (6) is obtained:
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Replacing y(0.5l) by y(x), solving equation (8) for
natural frequencies of continuous beam, the expressions of
H, ϕ and frequencies are detailed in the paper by Shi et al.
[19].

3. Some Problems in Proportional Assumption
and Equivalent-Area Principle

In the derivation of Miyamoto et al.’s [18] and Shi et al.’s [19]
analytical expressions of the natural frequencies, in the
author’s view, there are 4 problems in the proportional
assumption and equivalent-area principle.

(1) In proportional assumption, the increment of ten-
don tension ΔPt is proportional to the vibration
displacement at midspan of beam y(0.5l); the pro-
portional coefficient is a constant in equation (4). But
for different vibration mode, the same y(0.5l) results
in different deformation and ΔPt of tendon, the
proportional assumption is not valid.

(2) In order to solve equations (6) and (8) conveniently,
y(0.5l) is replaced by y(x); i.e., ΔPt is not pro-
portional to y(0.5l) but is proportional to y(x). +is
replacement is wrong because ΔPt is constant along

ePt

aa
l

θ

Figure 2: Externally prestressed simply supported beam.
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ΔPtce

Figure 3: Bending moment diagrams ΔMP,ΔMPE of simply
supported beam.
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Figure 1: Deformation of external and internal unbonded tendons.
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Figure 4: Externally prestressed continuous beam.
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the whole tendon without friction, but the value y(x)

varies along x.
(3) Also for solving convenience, the equivalent-area

principle simplifies ΔMP into uniform ΔMPE, which
results in negligible error in simply supported beam
for small a in Figure 2, but it would result in obvious
error in continuous beam. In Figure 5, both midspan
bending moment above axis and bending moment
below axis near the middle support contribute to
stiffness of continuous beam in spite of plus-minus
sign. +e calculation of ΔMPE is the area of ΔMP
above axis minus the area of ΔMP below axis; two
bending moments originally strengthen together and
now wrongly counteract mutually. +e continuous
beam deflects upward under uniform ΔMPE, which
does not meet zero displacement at middle support,
so obvious error is expected in the equivalent-area
principle.

(4) P0
tcy in equations (6) and (8) implies EP effect is

treated as N effect without considering the influence
of deviators, which is not consistent with Fang [22]
conclusion.

+erefore, it is imperative to develop more accurate
analytical solution for continuous beam frequencies con-
sidering the second-order effects without the above
problems.

4. Energy Method to Analyze the Natural
Frequencies of Continuous Beam

In the present study, the energy method considering the
second-order effects is adopted to solve the problems that
existed in Shi et al.’s [19] solution, and to find the natural
frequencies of the continuous beam shown in Figure 4. +e
assumptions in the energy method are as follows:

(1) +e ith vibration mode yi �AiXi(x)sin(ωit); Ai:
amplitude of ith mode; antisymmetric ith mode: Xi

(x)� sin(kix),kil� iπ,i�1,2,3...symmetric ithmode:
Xi(x)�sin(kix)−fisinh(kix),fi �sin(kil)/sinh(kil),

kil�(i+0.25)π,i�1,2,3,... both symmetric and anti-
symmetric modes are the same as modes of usual
continuous beam.

(2) +e beam is straight after applying prestress and
before vibrating.

(3) +e axial deformation of the beam due to axial
compression and the mass of tendon and deviators
are neglected.

When _yi � max or yi � 0, the strain energy of the beam
is

Ub0 �
1

2EI
􏽚
2l

0
P
0
t mt􏼐 􏼑

2
dx, (9)

where P0
t mt is the bending moment due to P0

t and mt is the
bending moment due to the unit tension of external tendon;
mt � ΔMP/ΔPt in Figure 5.

+e kinetic energy of the beam is

Kb0 �
1
2

􏽚
2l

0
m _y

2
i dx � A

2
i ω

2
i rb0m. (10)

For antisymmetric ith mode, rb0 � l/2; for symmetric ith,
mode, rb0 � l/2 − 1/4ki + f2

i [sinh(2kil) − 2kil]/4ki − fi[sin
(kil)cosh(kil) − cos(kil)sinh(kil)]/ki. +e strain energy of
external tendon is

Ut0 �
P
0
t􏼐 􏼑

2
lt

2EtAt

. (11)

When yi � max or _yi � 0, the bending moment of beam
is Mb1 � −EIyi

″ − P0
t mt, and the strain energy of the beam is

Ub1 �
1

2EI
􏽚
2l

0
M

2
b1dx � EIA2

i rb1 + 􏽚
2l

0
yi
″P0

t mtdx + Ub0.

(12)

For antisymmetric ith mode, rb1 � k4
i l/2; for symmetric

ith mode, rb1 � k3
i kil/2 − 1/4 + f2

i􏼈 [sinh(2kil) − 2kil]/
4 + fi[sin(kil)cosh(kil) − cos(kil)sinh(kil)]}.

As for calculating the deformation of the external ten-
don, the deformation of line OA in Figure 6 is investigated
firstly. +e deformations of line OA in x and y axes are δx

and δy; considering the second differentiation, the defor-
mation of line OA is

OA − OA � sin θδy + cos θδx +
(sin θδx)

2

2lA

+
(cos θδy)

2

2lA
−
sin θ cos θδxδy

lA
,

(13)

where θ and lA are angle and length of line OA. It is in-
dispensable to consider the second differentiation in ana-
lyzing EP softening. +ere are n contact points between the
beam and external tendon, the first and the last contact
points are two anchorages at two ends of the beam, and the
remaining others are at the deviators. In the jth segment of
external tendon as shown in Figure 7, the coordinates of the
jth and (j+1)th contact points are (xj, ej) and (xj+1, ej+1)

before vibrating. Considering the horizontal displacement of
the point at beam axis due to the axis bending, the coor-
dinates of the contact points (xj, yj) and (xj+1, yj+1) when
_yi � 0 are

ΔMP
ΔMPE

Figure 5: Bending moment diagrams ΔMP,ΔMPE of continuous
beam.
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xj � xj −
1
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2dx − ejyi

′ xj􏼐 􏼑,

xj+1 � xj+1 −
1
2

􏽚
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0
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2dx − ej+1yi

′ xj+1􏼐 􏼑,

yj � ej + yi xj􏼐 􏼑,

yj+1 � ej+1 + yi xj+1􏼐 􏼑.

(14)

+e deformations of the jth segment in x and y axes δxj

and δyj are

δxj � xj+1 − xj􏼐 􏼑 − xj+1 − xj􏼐 􏼑 � bjA
2
i + cjAi,

δyj � yj+1 − yj􏼐 􏼑 − ej+1 − ej􏼐 􏼑 � djAi,

bj � f xj􏼐 􏼑 − f xj+1􏼐 􏼑,

cj � ejXi
′ xj􏼐 􏼑 − ej+1Xi

′ xj+1􏼐 􏼑,

dj � Xi xj+1􏼐 􏼑 − Xi xj􏼐 􏼑,

f(x) �
1
2

􏽚
x

0
Xi
′( 􏼁
2dx.

(15)

For antisymmetric ith mode, f(x) � 0.125ki[2kix + sin
(2kix)]; for symmetric ith, modef(x) � 0.125ki 2kix +􏼈

sin(2kix) + f2
i [sinh(2kix) + 2kix] − 4fi[sinh(kix)cos(kix)

+cosh(kix) sin(kix)]}. Substituting δxj and δyj into
equation (13), and neglecting the terms involving high-order
infinitesimal A3

i and A4
i (Ai can be infinitesimal), give the

deformation of the jth segment of external tendon:

Δlj � αjAi + βjA
2
i (16)

αj � dj sin θj + cj cos θj, βj � bjcosθj + (cjsinθj)
2/2lj +

(djcosθj)
2/2lj − cjdjsinθjcosθj/lj; θj and lj are the length

and angle of the jth segment of external tendon, respectively.
+e whole deformation of the external tendon is

Δlt � Aiψi + A
2
i ζ i, (17)

where ψi � 􏽐
n−1
j�1αj, ζ i � 􏽐

n−1
j�1βj Aiψi is the first-order de-

formation due to the ith vibration mode; i.e.,
Aiψi � −􏽒

2l

0 yi
″mtdx. For antisymmetric ith mode, Aiψi � 0.

A2
i ζ i is the second-order deformation, which involves not

only the horizontal projection variation of contact point due
to the axis bending, i.e., bj term, but also c2j , d2

j , cjdj terms in
equation (16). If considering only bj term, it results in
incorrect conclusion: EP effect is the same as N effect.
Precisely considering c2j , d2

j , cjdj terms leads to correct
conclusion: EP effect is between N effect and zero effect of
unbonded prestress compression. +e tension of external
tendon is

Pt1 � P
0
t +

EtAt Aiψi + A
2
i ζ i􏼐 􏼑

lt
. (18)

+e strain energy of external tendon is Ut1 � P2
t1lt/2EtAt;

neglecting the terms involving high-order infinitesimal A3
i

and A4
i gives

Ut1 � Ut0 + P
0
t Aiψi + A

2
i ζ i􏼐 􏼑 +

EtAt Aiψi( 􏼁
2

2lt
. (19)

Substituting each term in equations (9)–(12) and (19)
into the equation of energy method, Ub0 + Kb0 + Ut0 �

Ub1 + Ut1, and deducting the term 􏽒
2l

0 yi
″P0

t mtdx in Ub1 and
the term P0

t Aiψi � −P0
t 􏽒

2l

0 yi
″mtdx in Ut1 mutually give

A
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i ω

2
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2

2lt
. (20)

+e natural frequency is ωi �����������������������������

1/rb0m[EIrb1 + P0
t ζ i + EtAtψ2

i /2lt]

􏽱

. For antisymmetric ith
mode, ψi � 0; ωi can be simplified as
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, i � 1, 2, 3 . . . . (21)

+e influence coefficient Cpi � −2lζ i/(iπ)2 0<Cpi ≤ 1; it
reflects EP softening effect. For symmetric ith mode, there is
no concise analytical frequency solution of usual continuous
beam under N. Cpi is defined as follows: when P0

t � 0, yi �

max under N; the beam axial horizontal length shortens
2A2

i f(l) due to axis bending; the equation of energy method:
Kb0 � Ut1 + Ub1 − 2A2

i f(l)N, obtaining ωi �
�������������������������������
1/rb0m[EIrb1 − N2f(l) + EtAtψ2

i /2lt]
􏽱

; when P0
t � N, the

influence coefficient Cpi � −ζ i/2f(l) ωi for the symmetric
mode is

ωi �

������������������������������
1

rb0m
EIrb1 − CpiP

0
t 2f(l) +

EtAtψ
2
i

2lt
􏼢 􏼣

􏽳

, i � 1, 2, 3 . . . .

(22)

In comparison of equations (21) and (22) with equation
(1) under N, EP or P0

t does affect the natural frequencies of
beam, but its effect depends on the coefficient Cpi which is
related to the layout of external tendon. When Cpi � 1, EP

y

x
O

(xj, ej)

(xj+1, ej+1)(xj, yj)

θj

– –

(xj+1, yj+1)– –

Figure 7: Deformation of external tendon segment.

y

x
O

A (x, y)
A (x + δx, y + δy)

θ

–

Figure 6: Deformation of line OA.
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effect is the same as N effect, similar to the straight external
tendon AB in Figure 1 when Cpi � 0, zero EP softening
effect, similar to the internal unbonded tendon ACB in
Figure 1.

5. Numerical Examples

For the externally prestressed continuous concrete beam
shown in Figure 4, l� 5m, with width 0.4m and height
0.15m of rectangular cross section; E� 32.5 GPa; the mass
per unit length of the beam m� 0.8 t/m; external tendon
Et � 200GPa; the initial prestress σ0t � 1000MPa;
l1 � l2 � l3 � l4 �1.25m; and the deviators are distributed
uniformly spaced along the span. 8 beams were studied with
2 layouts of tendon (A, B), 2 two eccentricities (large ec-
centricity L, small eccentricity S), and two areas of the
tendon (1 tendon At1 � 137mm2, 2 tendons At2 � 274mm2),
which are listed in Table 1. For all layouts of tendon, e1 � 0
(see Figure 4); all deviators are located at parabola. A-layout
can be linearly transformed into B-layout. Large eccentricity
L is twice as large as small eccentricity S.

Table 2 shows the relationship between influence coef-
ficient Cpi and the number of contact points n for straight
tendon, the straight tendon is along the axis of beam, and the
contact points are uniformly distributed. Table 3 shows the
relationship between influence coefficient Cpi and the
number of contact points n for parabolic tendon; the contact
points are also uniformly distributed and located at the same
parabola of AL tendon.+e results of other parabolic tendon
layouts (AS, BL, BS) are almost the same as the results of AL
tendon. It is found that the influence coefficient Cpi is mainly
related to the contact points n and slightly related to tendon
layout. Table 2 indicates that, for the beam with only 3
contact points, i.e., without deviator along span, Cp � 1, EP
effect is the same as N effect, because the loss of eccentricity
is maximum, similar to the straight external tendon AB in
Figure 1. As the number of contact points increases, the loss
of eccentricityreduces, and the external tendon is gradually
close to the unbonded tendon. +e influence coefficient
decreases from 1 to almost 0, and EP softening effect also
decreases to almost 0. It conforms with the conclusion
pointed out by Hamed and Frostig [17], i.e., zero effect of
prestress compression of bonded or unbonded tendon on
the natural frequencies. As the number of vibration modes
increases, the distance between points of inflection (y’′�0)
shortens, and the number of contact points between two
inflection points decreases, which is equivalent to the re-
duction of contact points in the first antisymmetric mode;
hence, the influence coefficient increases.

M①, M②, and M③ represent the methods in this
paper, Shi et al. [19], and FEM, respectively. Generally
speaking, the validity of theoretical results would be tested
by experimental results. However, in the field and laboratory
experiments, Saiidi et al. [5] found that the natural fre-
quencies increase as the prestress compression increases,
which is not consistent with the theoretical conclusion. For
this disparity, they opined that the prestress compression
causes closure of microcracks in the concrete, which in-
creases the flexural stiffness and natural frequencies. In the

experiment, the frictionless slip does not occur; even friction
slip hardly occurs due to tight compression between deviator
and external tendon under small vibration amplitude, so the
experimental results may not validate the theoretical results.
For this reason, the theoretical results are validated by FEM
results in the present study.

+ere exists the frictionless slip between the external
tendon and deviator; the tension in external tendon is
constant along whole length and is decided by whole beam
deformation, which results in an additional difficult in FEM.
Fang [22] proposed a simple method to solve this difficulty
by adding a contact link element at angle bisector between
external tendon and deviator as shown in Figure 8.+e angle
bisector position ensures the uniform increment of tension
of external tendon, so the contact link element can simulate
the frictionless slip. +e length of contact link element is
1mm, small enough to maintain the tendon layout un-
changed; its axial stiffness is EtAt. +e external tendon is
subjected to only axial tension and is simulated by the link
element. +e deviator is simulated by the rigid beam ele-
ment. +e lumped mass method is adopted at two ends of
the beam element. +e beam is discretized into 16 beam
elements with the same length 0.625m, each lumped mass
0.5 t. +e equation to calculate the natural frequencies is

Table 1: Layouts and eccentricities of external tendons.

Beam code e2 (mm) e3 (mm) e4 (mm) e5 (mm)
AL 406 500 281 250
AS 203 250 141 125
BL 344 375 94 500
BS 172 188 47 250

Table 2: Relationship between influence coefficient Cpi and the
number of contact points n for straight tendon.

n
Antisymmetric mode Symmetric mode

Cp1 Cp2 Cp3 Cp1 Cp2 Cp3

3 1 1 1 1 1 1
5 0.189 1 0.91 0.275 0.97 0.928
7 0.088 0.316 1 0.161 0.335 0.939
9 0.05 0.189 0.385 0.098 0.241 0.372
11 0.033 0.125 0.263 0.065 0.169 0.296
13 0.023 0.088 0.189 0.046 0.122 0.225
17 0.013 0.05 0.11 0.026 0.072 0.137
21 0.008 0.033 0.072 0.017 0.047 0.091

Table 3: Relationship between influence coefficient Cpi and the
number of contact points n for AL tendon.

n
Antisymmetric mode Symmetric mode

Cp1 Cp2 Cp3 Cp1 Cp2 Cp3

5 0.197 0.898 0.967 0.304 0.901 0.944
7 0.036 0.335 0.96 0.15 0.362 0.921
9 0.025 0.127 0.428 0.078 0.214 0.412
11 0.012 0.045 0.208 0.037 0.135 0.271
13 0.01 0.02 0.113 0.013 0.081 0.195
17 0.006 0.011 0.018 0.01 0.019 0.093
21 0.003 0.006 0.01 0.005 0.01 0.037
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ω2
i [δ][M] φi􏼈 􏼉 � φi􏼈 􏼉, (23)

where φi􏼈 􏼉 is the ith natural mode, [M] is the diagonal
lumped mass matrix, and [δ] is the vertical flexibility matrix.
+e influence coefficients of Cpi and P0

t in equations (21) and
(22) are taken into consideration; hence, the stiffness matrix
of beam element is

[K] �
EI

l
3

12 6l −12 6l

6l 4l
2

−6l 2l
2

−12 −6l 12 −6l

6l 2l
2

−6l 4l
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−
CpiP

0
t

30l

36 3l −36 3l

3l 4l
2

−3l −l
2

−36 −3l 36 −3l

3l −l
2

−3l 4l
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(24)

CpiP
0
t reduces the stiffness of beam element, lowers the

frequency, and reflects EP softening. [δ] is computed by
standard procedures of structural analysis and involves
various parameters, such as EI, l, Cpi in beam stiffness matrix
EtAt, lt and the layout of external tendon, the frictionless
slip simulated by contact link element, etc. ω1∼ω14 are de-
termined by MATLAB software for 14 lumped masses. +e
lumped mass method provides high accuracy in calculating
low-order natural frequencies, so the high accuracy of ω1∼ω4
for 8 beams AS1∼BL2 listed in Table 4 is expected. Hence,
the results of M③ in Table 4 can be used to validate the
accuracy of the results of M① and M②.

+e first and second frequencies of antisymmetric modes
are ω1, ω3; the first and second frequencies of symmetric
modes are ω2, ω4; in Table 4, ω1∼ω4 values of M① are very
close to the values of M③, indicating the accuracy of M①
and M③. In M② method, the equivalent-area principle as
shown in Figure 5 wrongly assumes the mutually
strengthening effect of bending moment above axis and
bending moment below axis on beam stiffness as mutually
counteracting effect, which significantly underestimates the
effect of external tendon. +e equivalent-area principle
approximately neglects the effect of external tendon for all
frequencies. ωi of M② is slightly less than ωi of beam 0

without tendon in Table 5, the compression softening effect
of P0

t on frequencies is small, and the effect of external
tendon is significantly underestimated. +e error in M②
method is obvious. In M① method, for symmetric mode
ψ1≫ψi ≈ 0, i≥ 2 in equation (17). +e first-order tendon
deformation is caused almost only by the first symmetric
mode, very little by other symmetric modes; therefore, the
stiffness of tendon EtAt mainly increases the frequency of
the first symmetric mode (ω2) and slightly influences the
frequency of the other symmetric modes (ω4, ω6...) in
equation (22). +e stiffness of tendon EtAt does not in-
fluence the frequencies of the antisymmetric modes (ω1,
ω3...) in equation (21). Comparing ω2 values of M①
among 8 beams, it shows that as the eccentricity and
tendon area increase, ω2 values increase, but ω2 values are
slightly related to the tendon A or B layout, so the in-
fluence of tendon layout linear transformation on the
frequency is negligible. In M① method, the effect of
external tendon on ω1, ω3 is zero, and the effect of external
tendon on ω4 is negligible. In M② method, the effect of
external tendon on all ωi is negligible due to the equiv-
alent-area principle. Comparing results of M① and M②,
it is found that ω1, ω3, and ω4 of M① are slightly greater
than the results of M②, because M② method wrongly
treats EP effect as N effect in equation (8); i.e., Cpi � 1; ω2
of M① is obviously greater than ω2 of M②, because M①
considers the effect of external tendon ψ1 in equation (21);
M②method still neglects the effect of external tendon due
to the equivalent-area principle.

Due to zero effect of external tendon on ω1, ω3 and no
prestress compression P0

t � 0, ω1, ω3 for every beam are the
same in Table 5. +e frequencies of 8 beams AS1∼BL2
without prestress in Table 5 are quite close to M① fre-
quencies in Table 4 with the prestress, indicating EP effect is
negligible. In equation. (21), Cp1 is much less than 1 for one
or more deviators (n≥ 5 in Tables 2 and 3) along beam span;
usually P0

t ≪EI(π/l)2 the critical load of stability, EP effect,
or Cp1P

0
t on ω1 is slight. For high-order frequencies ωi, i≥ 2,

Cpi values increase, but the high-order critical loads of
stability EI(iπ/l)2 increase more rapidly, and EP effect on
high-order frequency is also slight. Equation (22) also
presents the same conclusion. In a word, EP effect on all
order frequencies is negligible for the beamwith one or more
deviators. Comparing ω1∼ω4 in M① Table 4 and in beam 0
Table 5, it is found that the effect of external tendon on ω2 is
obvious, and the effect of external tendon on other fre-
quencies is slight and negligible.

Beam

Deviator

Contact link element

Tendon

θ
θ

Figure 8: Contact link element.
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6. Conclusions

+e conclusion mathematically rigorously proven by Hamed
and Frostig [17] was introduced, i.e., zero effect of both bonded
and unbonded prestress compression on the natural fre-
quencies of beams as opposed to some research works. It is
pointed out that there does exist EP effect on the natural
frequencies of beams unlike the zero effect of both bonded and
unbonded prestress compression. Miyamoto et al.’s [18] and
Shi et al.’s [19] analytical solutions for externally prestressed
simply supported and continuous beams were introduced and
discussed. +e energy method considering the second-order
effects was adopted to obtain more accurate solution. +e
continuous beam frequency results of the energy method in
this study, Shi et al.’s [19] analytical solution, and FEM were
compared. +e results obtained from this study are summa-
rized below:

+ere exist 4 problems in Miyamoto et al.’s [18] and Shi
et al.’s [19] analytical solutions: 2 problems in the
proportional assumption that the increment of tendon
tension is proportional to the vibration displacement at
midspan of beam; 1 problem in the equivalent-area
principle that ΔMP is simplified into uniform ΔMPE; 1
problem in the treatment of EP as N.
+e influence coefficient of EP, i.e., EP softening effect,
mainly depends on the number of contact points and
slightly depends on tendon layout. Without deviator, the
influence coefficient is equal to 1, and EP effect is the same
as N effect. As the number of contact points increases
from minimum value 3 to a large number in continuous
beam, the deformation of external tendon is gradually
close to unbonded tendon, the loss of external tendon
eccentricity reduces, and the influence coefficient de-
creases from 1 to almost 0, which is consistent with the
conclusion pointed out by Hamed [17]. +e loss of ex-
ternal tendon eccentricity results in EP softening effect.

For the beam without deviator, EP effect is the same as
N effect, and it may not be negligible. For the beamwith
one or more deviators, EP effect is much less than N
effect and is negligible. As one or more deviators always
exist along the continuous beam span, therefore EP
effect on frequency is negligible in continuous beam.
+e effect of tendon layout linear transformation on
the frequency and influence coefficient is negligible.
+e first-order tendon deformation is not caused by all
antisymmetric modes but is caused mainly by the first
symmetric mode, and slightly by other symmetric modes.
+erefore, the influence of external tendon on the first
symmetric frequency (ω2) is obvious; the influence on
other frequencies is negligible. As the eccentricity and area
of tendon increase, the tendon improves the beam
stiffness, and the first symmetric frequency (ω2) increases,
but other frequencies almost remain unchanged.
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Table 5: ω2, ω4 of beams without prestress in M①.

Beam 0 AS1 AS2 AL1 AL2 BS1 BS2 BL1 BL2
ω2 (rad/s) 41.7 44.39 46.92 51.13 59.07 44.36 46.86 50.79 58.48
ω4 (rad/s) 135.11 135.13 135.16 135.19 135.26 135.13 135.15 135.14 135.18
Note: beam 0 denotes beam without external tendon; ω1 � 26.69 rad/s, ω3 �106.76 rad/s.

Table 4: +e 1st∼4th natural frequency calculation results of externally prestressed continuous beam.

Beam code
M① (rad/s) M② (rad/s) M③ (rad/s)

ω1 ω2 ω3 ω4 ω1 ω2 ω3 ω4 ω1 ω2 ω3 ω4

AS1 26.65 44.31 106.54 134.88 25.58 40.87 105.67 134.18 26.64 44.26 106.5 134.8
AS2 26.61 46.77 106.31 134.64 24.37 40 104.51 133.93 26.6 46.6 106.28 134.57
AL1 26.66 51.07 106.6 134.95 25.89 41.11 105.97 134.44 26.67 50.92 106.56 134.88
AL2 26.63 58.97 106.43 134.8 24.78 40.29 104.9 133.52 26.64 58.49 106.4 134.74
BS1 26.63 44.28 106.55 134.87 25.58 40.87 105.66 134.18 26.64 44.22 106.51 134.79
BS2 26.58 46.7 106.34 134.62 24.37 40 104.51 133.19 26.57 46.55 106.32 134.55
BL1 26.62 50.71 106.58 134.88 25.89 41.1 105.96 134.44 26.61 50.56 106.55 134.8
BL2 26.56 58.34 106.4 134.65 24.77 40.29 104.89 133.52 26.57 58.19 106.37 134.57
Note: M①,M②, and M③ represent the methods of this paper, Shi et al. [19], and FEM.
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