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Atom search optimization algorithm has good searching ability and has been successfully applied to calculate hydrogeological
parameters and groundwater dispersion coefficient. Since the atom search optimization algorithm is only based on the atom force
motionmodel in molecular dynamics, it has some shortcomings such as slow search speed and low precision during the later stage
of iteration. A modified atom search optimization based on the immunologic mechanism and reinforcement learning is proposed
to overcome the abovementioned shortcomings in this paper. ,e proposed algorithm introduces a vaccine operator to better
utilize the dominant position in the current atom population so that the speed, accuracy, and domain search ability of the atom
search optimization algorithm can be strengthened. ,e reinforcement learning operator is applied to dynamically adjust the
vaccination probability to balance the global exploration ability and local exploitation ability. ,e test results of 21 benchmark
functions confirm that the performance of the proposed algorithm is superior to seven contrast algorithms in search accuracy,
convergence speed, and robustness. ,e proposed algorithm is used to optimize the permutation flow shop scheduling problem.
,e experimental results indicate that the proposed algorithm can achieve better optimization results than the seven comparative
algorithms, so the proposed algorithm has good practical application value.

1. Introduction

Optimization has been a hot topic in scientific research and
engineering application [1] such as industry, society,
economy, and management. ,e optimization methods
include traditional exact solution method, constructive al-
gorithm, and swarm intelligence algorithm [2]. ,e tradi-
tional exact solution method can obtain the exact solution,
but it requires the objective function to be continuous and
differentiable. ,e algorithm of traditional exact solution
method is too complex, so it is suitable for solving small-
scale problems. Meanwhile, the traditional exact solution
method is not good at optimizing multipeak, nonlinear, and
dynamic problems. ,e constructive algorithm [3] can
quickly obtain the solution, but the solution quality is poor
and difficult to meet the actual engineering needs. ,e
swarm intelligence algorithm simulates the swarm behavior
of social organisms to optimize the given objectives and

embodies the characteristics of randomness, parallel, and
distribution. ,e swarm intelligence algorithm provides a
solution to complex problems without centralized control
and without providing the global mathematical model.
Compared with traditional optimization methods, the
swarm intelligence algorithm has simple principle and fewer
parameters and does not need gradient information of the
problem. At present, the common swarm intelligence al-
gorithms include particle swarm optimization algorithm [4],
differential evolution algorithm [5], cuckoo search algorithm
[6], flower pollination algorithm [7], sine-cosine search
algorithm [8–10], and artificial bee colony algorithm [11].
,ey are widely used in function optimization [12–14],
combinatorial optimization [15], image segmentation [16],
and flow shop scheduling [17–19].

,e atom search optimization (ASO) was proposed by
Zhao et al. in 2018 based on the force motionmodel of atoms
in molecular dynamics [20]. ASO is a type of physics-
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inspired swarm intelligence algorithm. ,e algorithm needs
fewer parameters and has good global exploration ability in
the optimization process, so it has been successfully applied
to calculate hydrogeological parameters and groundwater
dispersion coefficient [21, 22]. Experimental results have
proved that the ASO is significantly better than particle
swarm optimization and genetic algorithm [20]. Since ASO
is proposed only based on the forced motion model of atoms
inmolecular dynamics, it has the shortcomings of low search
accuracy and slow convergence speed as other swarm in-
telligence algorithms.

,e particles distribute approximately evenly in nature
and constitute a complex group. ,e individuals of particles
exchange locally acquired information and interact in group.
Inspired by the above facts, the modified atom search op-
timization algorithm based on immunologic mechanism
and reinforcement learning (MASO) is proposed to enhance
the ASO. ,e immunologic mechanism can make better use
of the dominant positions in the current atomic population
to promote the speed and accuracy of the MASO. ,e re-
inforcement learning is applied to dynamically adjust the
vaccination probability to balance the global exploration
ability and local exploitation ability of the MASO.

2. Atom Search Optimization Algorithm

Matter is composed of molecules. Atoms are connected by
covalent bonds to form molecules. Atoms have mass and
volume. ,e interaction forces between atoms are shown as
repulsions or attractions according to the different distances
between atoms. In the repulsive region, the repulsion forces
between atoms increase sharply as the distances decrease. In
the attractive region, when the distances increase to a certain
extent, the attraction forces reach maxima. As the distances
continue to increase, the attraction forces gradually decrease
to zero. When two atoms are at an equilibrium distance, the
interaction force between them is zero. In molecules, atomic
forces also need to consider the effects of geometric con-
straints and atoms’ internal motions. ,e geometric con-
straints and atoms’ internal motions are called binding force.
,erefore, the constrained atomic motion equation can be
simply written as follows:

Fi + Gi � miai, (1)

where Fi is the resultant force of the interaction on atom i, Gi

is the resultant force of the constraining force on atom i, mi

is the mass, and ai is the acceleration of atom i.
In ASO, each atom represents a feasible solution in the

search space. ,e mass of an atom represents the quality of a
feasible solution. ,e better the solution is, the higher the
mass of the atom will be, and vice versa. All atoms in a
population attract or repel each other according to their
distances, which cause lighter atoms to move toward heavier
atoms. Heavier atoms have less accelerations, which allow
them to exploit local space better. Lighter atoms have more
accelerations, which allow them to explore a wider search
space. ,e mass mit of the atom i at the iteration t can be
simply measured by the fitness function. ,e expression of
mit is shown in equation (3):

Mi(t) � e
− Fiti(t)− Fitbest(t)/Fitworst(t)− Fitbest(t)( ), (2)

mi(t) �
Mi(t)


N
j�1Mj(t)

, (3)

where N is the total number of atoms, Fiti(t) is the fitness
function value of the atom i at the iteration t, and Fitworst(t)

and Fitbest(t) are the fitness function values of the worst and
best atoms at iteration t, respectively.

In ASO, Kbest is defined as a set of the first K atoms that
have the best fitness values in the atomic population. ,e set
is also called the K-nearest neighbors of atom i. ,e atom i
needs to interact with its K-nearest neighbors as much as
possible to strengthen exploration at the early iteration stage.
,e atom i needs to interact with its K neighbor as little as
possible to enhance the exploitation at the late iteration
stage. ,erefore, K decreases as the number of iterations
increases. When the total number of iterations is T, K can be
calculated as follows:

K(t) � N − (N − 2) ×

��
t

T



. (4)

Since ASO needs to increase the attraction force and
reduce the repulsive force with the increase of iteration
times, Zhao et al. [20] proposed a simplified model of the
interaction Fij. ,e expression of Fij is as follows:

Fij � − η(t) 2 hij(t) 
13

− hij(t) 
7

 , (5)

η(t) � α 1 −
t − 1

T
 

3
e

− (20t/T)
, (6)

hij(t) �

hmin,
rij(t)

σ(t)
< hmin,

rij(t)

σ(t)
, hmin ≤

rij(t)

σ(t)
≤ hmax,

hmax,
rij(t)

σ(t)> hmax
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where ηt is a depth function used to adjust the repulsion
region and the attraction region. ηt is defined in equation
(6), where α is the depth weight. According to equation (7),
the distance function hij(t) is updated, where hmin � 1.1 and
hmax � 1.4 are the upper and lower limits of h, respectively.
rijt is the Euclidean distance between atom i and atom j in
the iteration t. σt is the length, which is defined as follows:

σ(t) � Xij(t),
ϵKbestXij(t)

K(t)

��������

��������2
, (8)

where Xij is the position component of atom i in the di-
mension j of the search space.,e dynamically changed hmin
and hmax are defined in the following equation:

hmin � g0 + g(t),

hmax � u,
 (9)
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where g is the drift component and is defined as follows:

g(t) � 0.1 × sin
π
2

×
t

T
 . (10)

,e resultant force of the interaction force on atom i is
expressed in the following equation, where randj is a
random number that obeys the uniform distribution of 0-1:

F
d
i(t) � 

j∈Kbest
randjF

d
ij(t). (11)

Geometric constraints in molecular dynamics theory
play an important role in atomic motion. Suppose that every
atom has covalent bonds with every atom in Kbest, every

atom is constrained by Kbest. ,e constraining force of the
atom i can be described by the following equation:

G
d
i (t) � λ(t) X

d
best(t)− X

d
i (t), (12)

λt � βe
− (20t/T)

, (13)

where λ is the Lagrange multiplier, β is the multiplier weight,
and Xd

best(t) is the position component in dimension d of the
best atom at iteration t. According to equations (1), (5), and
(12), the updated equation of acceleration can be deduced as
follows:

a
d
i (t) �

Fd
i (t)

md
i (t)

+
Gd

i (t)

md
i (t)

� α 1 −
t − 1

T
 

3
e

− (20t/T)Σj∈Kbest randj 2× hij(t)( 
13

− hij( 
7

 /mi(t) × Xd
j
(t)− xd

i
(t) / Xi(t),Xj(t)

����
����2

 

+ βe
− (20t/T) Xd

best(t)− Xd
i
(t)/mi(t)( ).

(14)

According to the above equations, the velocity and
position update equations of atom i at iteration t+ 1 are
equations (15) and (16), respectively:

v
d
i (t + 1) � randd

i v
d
i (t) + a

d
i (t), (15)

X
d
i (t + 1) � X

d
i (t) + v

d
i (t + 1). (16)

,e pseudocode of ASO is given in Algorithm 1.

3. ModifiedAtomSearchOptimizationBasedon
Immunologic Mechanism and
Reinforcement Learning

3.1. Chaos. Chaos is a nonlinear phenomenon widely
existing in nature. It has the characteristics of randomness,
ergodicity and inherent regularity [23–25]. Randomness
means that the chaotic behavior has the disorderly features
similar to random variable. Ergodicity means that chaos can
traverse all states according to its own laws without repe-
tition. Regularity means that chaos is generated by deter-
ministic iteration. ,erefore, the chaos strategy is used to
initialize the swarm intelligence algorithm and avoid the
algorithm falling into the local optimum.

,ere are defects in random initialization of the ASO.
,ese defects can be well solved by the chaotic strategy. In
MASO, nine different chaotic maps are used to initialize the
atomic population. ,ese nine kinds of mapping will be
called circularly to ensure that different problems can be
properly initialized. Table 1 displays the basic information
about the nine maps. In this paper, the chaos strategy used to
initialize population is called the chaos initialization
operator.

3.2. Artificial Immune Algorithm and Vaccine Operator.
Artificial immune system is an intelligent method inspired
by the biological immune system. It is a new information
processing system based on the theory of the human im-
mune system. ,e artificial immune system provides evo-
lutionary learning mechanisms such as noise tolerance,
nonteacher learning, no negative examples, and self-orga-
nization. ,e artificial immune system provides a new way
to solve the optimization problem of high dimension
[26, 27].

,e artificial immune algorithm is essentially a group of
operators. ,e artificial immune algorithm can generate and
maintain the diversity of population and has the ability of
self-regulation, so it is suitable for optimizing and improving
the swarm intelligent algorithm.

,e ASO does not make full use of the dominant po-
sition in the population, so the accuracy and speed of
convergence are not outstanding enough. ,ese defects can
be improved by introducing the vaccine operator [28–31].
,e vaccine operator consists of three parts: vaccine ex-
traction operator, vaccination operator, and immune de-
tection operator.

(1) Vaccine Extraction Operator. In the artificial immune
algorithm, vaccine is the prior knowledge of the
solving problem. ,e vaccine extraction operator
uses the iteration results of ASO as the prior
knowledge and extracts the best current position of
atoms as vaccine. ,e formula of vaccine extraction
operator is shown below:

vaccine �
Xi(t), Fiti(t)≤ Fitbest,

Xi(t − 1), Fiti(t)> Fitbest.
 (17)
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Fiti(t) expressed the fitness function value of Xi in
the t iteration, and Fitbest represents the fitness
function value of the best position obtained by the
iteration so far.

(2) Vaccination Operator. Vaccination uses prior
knowledge to locally adjust the solutions so that the
qualities of the candidate solutions are significantly
improved. ,e vaccination operator will be used to
inoculate atomic population. Firstly, a part of the
individuals is selected from the atomic population,
and then the position of the selected atomic indi-
viduals is modified by the following equation:

Xnewij
�

Vaccineij, Pv ≥ r,

Xij, Pv < r,

⎧⎨

⎩ (18)

where Xnew is the atomic population after vaccina-
tion. r is a random number that obeys the uniform
distribution of 0-1.

(3) Immunoassay Operator. After the operation of the
vaccination operator, the immune detection opera-
tor compares the fitness values of the vaccinated

individuals and the original individuals. If the fitness
values of vaccinated individuals are not as good as the
original individuals, it means that there is degradation
in the process of inoculation. ,en the original in-
dividuals become the parents of the next generation
directly according to equation (19). Otherwise, the
vaccinated individuals become the parents of next
generation according to the following equation:

Xi(t + 1) �
Xnewi

(t), Fiti(t)>Newfiti(t),

Xi(t), Fiti(t)≤Newfiti(t).


(19)

,e process of using the immune mechanism to enhance
ASO is shown in Figure 1.

3.3. Reinforcement Learning Mechanism Updates
Vaccination Probability

3.3.1. Reinforcement Learning. Machine learning includes
supervised learning, unsupervised learning, and reinforce-
ment learning. Reinforcement learning takes environmental

(1) Randomly initialize a set of atoms X (solutions) and their velocity v, and FitBest � Inf.
(2) While the stop criterion is not satisfied do
(3) For each atom Xi do
(4) Calculate the fitness value Fit;
(5) If Fiti < FitBest then
(6) FitBest � Fiti;
(7) XBest � Xi;
(8) End If.
(9) Calculate the massing using equations (2) and (3);
(10) Determine its K neighbors using equation (4);
(11) Calculate the interaction force Fi and the constraint force Gi using equations (11) and (12), respectively;
(12) Calculate the acceleration using equation (14);
(13) Update the velocity using equation (15);
(14) Update the position using equation (16);
(15) End For.
(16) End While.
(17) Find the best solution so far XBest

ALGORITHM 1: Pseudocode of the atom search optimization algorithm.

Table 1: Chaotic mapping transform kernel and parameter range.

,e name of the map Transform core Parameter range
Circle map xn+1 � xn + b − (a/2π)sin(2π/xn) a, b ∈ R

Gauss/mouse map xn+1 � e− αx2
n + β α, β ∈ R

Sine map xn+1 � sin(πxn)

Logistic map xn+1 � μxn(1 − xn) μ ∈ (0, 4]

Iterative map xn+1 � sin(απ/xn) ∝∈ (0, 1]

Singer map xn+1 � u(7.86xn − 23.31x2
n) + 28.75x3

n − 13.302875x4
n u ∈ (0, 4]

Tent map xn+1 �
(xn/q), 0<xn ≤ q

(1 − xn/1 − q), q<xn < 1
 q ∈ (0, 1)

Sinusoidal map xn+1 � 2.3x2
n sin(πxn)

Chebyshev map xn+1 � cos(μa cos(xn)) μ ∈ [0, 1]

4 Mathematical Problems in Engineering



feedback as input. �is method is dierent from the su-
pervised learning and unsupervised learning.�e supervised
learning and unsupervised learning tell the Agent what
behavior to take through positive and negative examples, but
reinforcement learning �nds the optimal behavior strategy
through trial and error [32].

�e principle of reinforcement learning is shown in
Figure 2. Reinforcement learning regards learning as a test
evaluation process. �e Agent chooses an action for the
environment, and the environment produces a reinforce-
ment signal (award or punish) feedback to the Agent after its
state changes. �en the Agent selects the next action
according to the reinforcement signal and the current state
of the environment. �e principle of selection is to increase
the probability of receiving positive reinforcement (award).
�e action of selection aects not only the immediate re-
inforcement value but also the state of the environment at
the next moment and the �nal reinforcement value [33, 34].

3.3.2. Adjust Vaccination Probability Dynamically. In the
MASO, the vaccination probability Pv is determined
according to the actual situation.�e reinforcement learning
method is used to determine the vaccination probability
dynamically. In this paper, this method is collectively called
the reinforcement learning operator.

�e reinforcement learning method used here is based on
snap-drift neural network [35–37]. �e reinforcement
learning method switches between snap mode and drift mode
[38]. In the snap mode, as Pv decreases, global exploration
increases, thus avoiding premature convergence. In the drift
mode, as Pv decreases, local exploitation increases, thus
improving convergence speed. �e Pv value is updated with
equation (20). Agent (MASO) accepts the state (snap or drift)
and reward value (Pm) at time t and then takes an action
(increase Pv or decrease Pv) to convert to a new state.�e Pm
value is updated with the following equation:

Pv �
max(0, Pv − ω)(decrease rule), μ � snap,

min(1, Pv + ω)(increase rule), μ � drift,




(20)

Pm � Se
N
, (21)

where Se is the number of atomic individuals updated in this
iteration. Pm is the conversion probability. �e value of Pm
is determined by the ratio of updated individuals in the
population. When Pm is less than 50%, the snap mode is
used; when Pm is more than 50%, the drive mode is used. ω
is the step size of Pv for each change. Figure 3 illustrates how
reinforcement learning operator works.

3.4.AlgorithmFlow. After summarizing the above improved
methods of ASO, the pseudocode of MASO is given in
Algorithm 2.

4. Simulation Experiment

�e performance ofMASOwill be veri�ed by experiments in
three aspects: (1)�eMASO will compare with seven swarm
intelligence algorithms using 21 benchmark functions
[39–41] of 30 dimensions. (2) �e signi�cance of MASO
improvement will be analyzed by the T test. (3) �e sig-
ni�cance of MASO improved by individual strategies will be
analyzed with the Wilcoxon rank sum test.

4.1. Test Platform and Benchmark Functions

4.1.1. Test Platform. �e server model is the dawning 5000A
server.�e server con�gures Xeon X5620 CPU (4 cores) ∗ 2,
24GB memory, and 300GB SAS hard disk. �e server is

Initialization

Vaccine extraction
operator

Update the population

Vaccine operator

Immune detection
operator

Does the end condition has been
satisfied?

Yes

No

Start

End

Figure 1: Immune mechanism improves ASO.

Agent Environment

State

Reward

Action

Figure 2: Principle of reinforcement learning.
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equipped with Rhel5.6 operating system. �e programming
tool is MATLAB 2012a (for Linux).

4.1.2. Benchmark Functions. 21 benchmark functions are
selected to evaluate the algorithm performance. �is set of
benchmark functions has widely been used to evaluate the
ability of the swarm intelligence algorithm [38]. �e
number, range, type, and formulation of functions are
listed in Table 2. �e 21 benchmark functions can be di-
vided into three categories. F1∼F6 are the unimodal
functions (U) and are applied to investigate the search
convergence accuracy. F7–F17 are the complex multimodal
functions (M) with multiple local extremum points. �ese
functions are employed to test the global search capability
and the ability to avoid prematurity. F18–F21 are the ro-
tating multimodal functions (R). �ese functions have
more extreme points, thus increasing the di¡culty of
searching. F18–F21 can be adopted to further detect the
overall performance of the algorithm.

4.2. Experimental Results Analysis of MASO and Comparison
Algorithms. In this experiment, the parameters setting of the
comparison algorithms are displayed in Table 3. For each

benchmark function, each algorithm runs 20 times inde-
pendently. �e population number is 100. �e evaluation
times of MASO and CS are 2∗ 100 in each iteration, and
evaluation times of other algorithms are 100 in each iter-
ation. For each benchmark function, MASO and CS will
iterate 2500 times and other algorithms will iterate 5000
times. So all algorithms will be compared under the eval-
uations of 100∗ 5000 in each run. �e various performances
of algorithms are measured by the four indexes of optimal
value, average value, worst value, and standard deviation.
�e experimental statistical results are shown in Table 4.
Take 500 points to draw the convergence curve. MASO and
CS take one point every 50 iterations, and other algorithms
take one point every 100 iterations. Figures 4–24 are the
convergence curves of each function successively.

�e capacities of MASO in three kinds of functions will
be analyzed based on the results of Table 4 and Figures 4–24.

�e MASO has a strong overall performance for single
mode functions F1–F6. �e single mode functions are rel-
atively smooth, with only one extreme point at the origin, so
the MASO is easy to converge to global optimum. In F1, F2,
F3, and F5, the minimum, average, maximum, and variance
of MASO are the best among the all algorithms. In F4, except
BAT, CS, and PSO, the minimum, average, maximum, and

(1) Chaotic initialize a set of atoms X (solutions) and randomly initialize their velocity v, evaluate the �tness values by using the
objective function, and then calculate XBest and FGbest. Determine the parameters.

(2) While the stop criterion is not satis�ed do
(3) For each atom Xi do
(4) Calculate the massing using equations (2) and (3);
(5) Determine its K neighbors using equation (4);
(6) Calculate the interaction force Fi and the constraint force Gi using equations (11) and (12), respectively;
(7) Calculate the acceleration using equation (14);
(8) Update the velocity using equation (15);
(9) Update the position using equation (16);
(10) Check out, update the �tness values;
(11) Invoke the reinforcement learning operator by equations (20) and (21);
(12) Invoke the vaccination operator by equations (17) and (18);
(13) Invoke the immune detection operator by equation (19);
(14) End For.
(15) End While
(16) Find the best solution so far XBest

ALGORITHM 2: Pseudocode of the modi�ed atom search optimization based on the immunologic mechanism and reinforcement learning.

MASO

Solution
space

Actiont

Statet

Rewardt

Statet+1

Rewardt+1

Figure 3: Principle of the reinforcement learning operator.
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variance of other algorithms get the optimums. In F6, only
MASO converges to the best minimum compared with other
algorithms.

In complex multimodal functions F7–F17, MASO
generally performs better among the all algorithms. In F9,
F10, F12, F13, F14, and F17, the minimum, average, max-
imum, and variance of MASO are the best among the all
algorithms. In F7, F11, and F16, only MASO converges to
the global optimum, compared with other algorithms. In
F14, the performance of MASO is worse than ASO.

In the rotated multimodal functions F18–F21, the per-
formance of MASO is not significantly superior to other
comparison algorithms. ,ere are too many extreme points
in the rotating multimodal function, so MASO needs a
strong global exploration ability to converge to the global
optimum. On the contrary, MASO needs to consider both
local development and global search, so it cannot unilaterally

maximize the global search capability. ,is will affect the
performance of MASO in optimizing rotating multimodal
functions. In F18, F19, and F21, onlyMASO converges to the
global optimum compared with other algorithms. In F20,
MASO and ASO converge to the global optimum. ,e
stability of MASO is the best in F19, but in F18, F20, and F21,
the stability of MASO is not good enough.

4.3. Effectiveness Analysis of Improved Strategies. ASO is
improved in the following three aspects to obtain MASO: (1)
,e atomic population is initialized by the chaotic operator
to make the population location more uniform so that the
MASO does not fall into local optimum easily. (2) ,e
dominant positions in the population are used more fully by
the vaccine operator to accelerate the MASO convergence.
(3) ,e vaccination probability Pv will be determined

Table 2: ,e benchmark functions.

No. Range Type Formulation
F1 [− 100, 100] U f(x) � 

d
i�1x

2
i

F2 [− 10, 10] U f(x) � 
d
i�1|xi| + 

d
i�1 |xi|

F3 [− 10, 10] U f(x) � 
d
i�1ix

2
i

F4 [− 100, 100] U f(x) � 
d
i�1xi + 0.52

F5 [− 1.28, 0.64] U f(x) � 
d
i�1ix

4
i + R

F6 [− 1.28, 1.28] U f(x) � 
d
i�1ixi

4

F7 [− 32, 32] M f(x) � − 20 exp[− 0.2
�����������

(1/d)
d
i�1xi

2


] − exp[(1/d)
d
i�1cos(2πxi)] + (20 + e)

F8 [− 600, 600] M f(x) � (1/4000) · 
d
i�1x

2
i − 

d
i�1 cos(xi/

�
i

√
) + 1

F9 [− 5.12, 5.12] M f(x) � 10∗(d) + 
d
i�1[x2

i − 10 cos(2πxi)]

F10 [− 500, 500] M f(x) � 418.9829∗(d) + 
d
i�1[− xi sin(

���
|xi|


)]

F11 [− 10, 10] M f(x) � 
d
i�1|xi · sin(xi) + 0.1 · xi|

F12 [− 10, 10] M f(x) � 
d− 1
i�1 (xi − 1)2[1 + sin2(3πxi+1)] + sin2(3πx1)

F13 [− 100, 100] M f(x) � 0.5 + (sin2(
d
i�1x

2
i ) − 0.5/(1 + 0.001(

d
i�1x

2
i )))2 + |xn − 1|[1 + sin2(3πxn)]

F14 [− 5.12, 5.12] M f(x) � 
d
i�1[yi

2 − 10 cos(2πyi) + 10], yi �
xi, |xi|< (1/2)

(round(2xi)/2), |xi|≥ (1/2)


F15 [− 5, 10] M f(x) � 
d− 1
i�1 [(1 − xi)

2 + 100(xi+1 − xi
2)2]

F16 [− 50, 50] M
f(x) � (π/d) 10 sin2(πz1) + 

d− 1
i�1 (zi − 1)2[1 + 10 sin2(πzi+1)] + (zd − 1)2  +


d
i�1u(xi, 10, 100, 4), zi � 1 + (1/4)(xi + 1), uxi,a,k,m �

k(xi − a)m, (xi > aorxi < − a)

0, otherwise

F17 [− 50, 50] M
f(x) �

(1/d) sin2(πx1) + 
d− 1
i�1 (xi − 1)2[1 + sin2(3πxi+1)] + (xd − 1)2[1 + sin2(2πxi+1)]  +


d
i�1u(xi, 5, 100, 4)

F18 [− 32, 32] R f(x) � − 20 exp − 0.2
�����������

(1/d)
d
i�1yi

2


  − exp (1/d)
d
i�1cos(2πyi)  + 20 + e

F19 [− 5.12, 5.12] R f(x) � 10∗(d) + 
d
i�1[y2

i − 10 cos(2πyi)]

F20 [− 600, 600] R f(x) � (1/4000) · 
d
i�1y

2
i − 

d
i�1 cos(yi/

�
i

√
) + 1

F21 [− 500, 500] R f(x) � 418.9829∗(d) + 
d
i�1[− yi sin(

���
|yi|


)]

U: unimodel, M: multimodel, and R: rotated.
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Table 3: ,e parameters set of contrast algorithms.

Algorithm Parameters
MASO N� 100; depth� 50; multiplier� 0.2; Pv� 0.1; w � 0.05.
ASO N� 100; depth� 50; multiplier� 0.2.
FPA N� 100; P� 0.8.
BAT N� 100; A� 0.5; r� 0.5; Qmin � 0; Qmax � 2.
PSO N� 100; c1� 1.49445; c2�1.49445.
CS N� 100; pa� 0.25.
ACOR N� 100; nSample� 50; q� 0.5; zeta� 1.
CSA N� 100; AP� 0.2; fl� 2.

Table 4: Test statistical results of functions f1∼f21.

Functions Algorithms Min Mean Max STD

f1(x)

MASO 2.99E− 45 1.82E− 40 3.5E− 39 7.82E− 40
ASO 7.33E − 27 2.64E − 26 1.05E − 25 3.08E − 26
FPA 0.006587 0.013937 0.023855 0.004844
BAT 1.09E − 05 155.0339 891.9841 257.7465
PSO 3.869551 20.12067 77.25433 16.40947
CS 0.004142 173.506 1688.332 391.8062

ACOR 6.98E − 13 2.01E − 12 3.85E − 12 7.74E − 13
CSA 1.29E − 12 8.89E − 09 7.83E − 08 1.9E − 08

f2(x)

MASO 2.41E− 34 1.63E− 29 1.34E− 28 3.9E− 29
ASO 2.16E − 13 5.32E − 13 9.67E − 13 2.51E − 13
FPA 0.677651 1.159856 1.89272 0.340836
BAT 0.014345 42.11026 124.5488 48.56557
PSO 6.26162 9.511573 16.34641 2.636531
CS 0.024397 1.543266 8.754166 2.237715

ACOR 3.46E − 07 0.000387 0.006348 0.001411
CSA 9.9E − 07 4.2E − 05 0.000133 3.52E − 05

f3(x)

MASO 1.5E− 47 5.73E− 42 8.19E− 41 1.87E− 41
ASO 5.73E − 26 1.73E − 25 3.92E − 25 1.03E − 25
FPA 0.000957 0.001794 0.002651 0.000518
BAT 0.000105 0.000156 0.000193 2.85E − 05
PSO 1.681533 8.073872 24.85504 6.662011
CS 0.138672 63.08822 290.7739 80.09947

ACOR 7.82E − 14 2.16E − 13 4.42E − 13 1.09E − 13
CSA 1.27E − 12 1.63E − 09 1.89E − 08 4.14E − 09

f4(x)

MASO 0 0 0 0
ASO 0 0 0 0
FPA 0 0 0 0
BAT 4214 10180.7 16319 3108.576
PSO 57 191.7 405 90.82435
CS 9 1558.45 6328 1791.922

ACOR 0 0 0 0
CSA 0 0 0 0

f5(x)

MASO 2.34E− 06 1.47E− 05 3.73E− 05 9.24E− 06
ASO 0.003764 0.00772 0.011135 0.002189
FPA 0.006508 0.020989 0.029649 0.005437
BAT 0.218579 0.403253 0.531159 0.080489
PSO 0.273095 0.62667 1.206052 0.285222
CS 0.94235 4.144344 13.32052 2.939838

ACOR 0.016274 0.032401 0.053185 0.009913
CSA 3.99E − 06 5.29E − 05 0.000164 4.22E − 05
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Table 4: Continued.

Functions Algorithms Min Mean Max STD

f6(x)

MASO 2.41E− 60 6.82E − 51 1.26E − 49 2.82E − 50
ASO 2.19E − 52 1.46E− 51 5.24E− 51 1.51E− 51
FPA 3.28E − 11 3.39E − 10 1.43E − 09 3.33E − 10
BAT 6.29E − 11 1.02E − 10 1.45E − 10 2.17E − 11
PSO 0.001601 0.010088 0.038612 0.010173
CS 0.000168 0.34018 2.726353 0.655415

ACOR 2.22E − 14 2.49E − 13 1.82E − 12 3.95E − 13
CSA 3.56E − 31 1.06E − 23 1.02E − 22 2.42E − 23

f7(x)

MASO 2.22E− 14 3.83E − 13 5.36E − 12 1.18E − 12
ASO 4.35E − 14 7.41E− 14 1.47E− 13 2.97E− 14
FPA 0.17994 0.618946 1.286978 0.260178
BAT 10.99074 13.41295 19.95889 1.88331
PSO 3.213753 5.385464 7.818361 1.282747
CS 8.631765 13.19331 16.18969 1.882678

ACOR 2.3E − 07 4.2E − 07 5.56E − 07 1.07E − 07
CSA 2.84E − 07 1.95E − 05 4.98E − 05 1.54E − 05

f8(x)

MASO 1.11E − 16 1.65E − 15 5.66E − 15 1.65E − 15
ASO 0 0 0 0
FPA 0.086888 0.136963 0.230776 0.044916
BAT 19.19178 53.02061 94.33961 21.77808
PSO 0.939324 1.178857 1.343306 0.102008
CS 0.610131 4.621765 33.27042 8.201352

ACOR 4.88E − 12 0.022291 0.247193 0.069061
CSA 3.57E − 10 4.25E − 08 4.24E − 07 9.87E − 08

f9(x)

MASO 0 4.97E− 13 3.18E− 12 9.06E− 13
ASO 9.949591 14.5264 20.89413 3.356089
FPA 53.45329 72.74809 84.86339 8.314181
BAT 38.80531 79.29986 169.1439 35.18297
PSO 75.51275 110.7482 169.454 25.42386
CS 30.82795 51.57561 84.51111 14.55878

ACOR 183.2672 214.6805 237.272 12.35372
CSA 1.76E − 12 2.82E − 09 7.92E − 09 2.7E − 09

f10(x)

MASO 0.000382 0.000382 0.000382 1.35E− 11
ASO 4106.132 4650.915 5626.077 521.8557
FPA 3244.947 3698.782 4219.299 237.132
BAT 5972.237 7099.381 8123.466 576.3557
PSO 3897.536 5375.416 6743.524 814.7786
CS 1848.715 2793.954 4026.17 610.2232

ACOR 1478.361 5880.244 7607.56 360.132
CSA 0.000382 0.000382 0.000382 7E− 08

f11(x)

MASO 3.44E− 33 1.83E − 05 9.49E − 05 3.11E − 05
ASO 4.23E − 14 8.76E − 14 1.97E − 13 4.72E − 14
FPA 3.227243 6.669646 9.146383 1.526006
BAT 0.834363 3.926399 9.459001 2.576305
PSO 2.748819 6.186047 10.35792 2.432746
CS 0.039447 0.854302 2.652989 0.811748

ACOR 0.034574 0.302129 5.21918 1.157372
CSA 7.64E − 08 5.4E− 06 2.31E− 05 5.86E− 06

f12(x)

MASO 1.15E− 31 6.29E− 28 1.18E− 26 2.63E− 27
ASO 2.78E − 27 6.39E − 27 2.1E − 26 5.59E − 27
FPA 1.055809 2.341216 3.399438 0.776936
BAT 3.166887 8.757063 15.72329 3.538368
PSO 1.089431 7.019646 16.18996 3.659522
CS 9.73E − 09 0.005653 0.104223 0.02323

ACOR 1.69E − 11 9.04E − 11 4.43E − 10 9.82E − 11
CSA 1.24E − 13 5.21E − 11 4.53E − 10 1.13E − 10
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Table 4: Continued.

Functions Algorithms Min Mean Max STD

f13(x)

MASO 2.22E− 16 9.1E− 16 5.33E− 15 1.14E− 15
ASO 0.111929 0.171566 0.247934 0.04255
FPA 0.164183 0.23541 0.288289 0.035616
BAT 0.493711 0.498347 0.499585 0.001342
PSO 0.213232 0.336072 0.442089 0.05312
CS 0.470226 0.493116 0.498482 0.006452

ACOR 0.018867 0.036172 0.046726 0.006468
CSA 1.33E − 15 4.72E − 12 2.33E − 11 6.56E − 12

f14(x)

MASO 1.78E− 15 1.44E− 14 4.09E− 14 1.04E− 14
ASO 12 18.70114 35.0005 6.254622
FPA 58.21314 75.72416 92.27162 10.98064
BAT 142.0001 225.425 320.25 43.94807
PSO 51.61432 97.72042 154.1477 27.68505
CS 22.03245 65.54915 124.1758 23.27628

ACOR 159.1282 193.0334 215.8543 15.42857
CSA 5.74E − 11 5.9E − 09 2.73E − 08 8.01E − 09

f15(x)

MASO 9.9E− 13 7.77E− 09 8.32E− 08 2E− 08
ASO 13.22012 14.72793 15.51416 0.63515
FPA 23.19234 26.9907 29.18676 1.618782
BAT 0.095172 18.58866 73.64575 30.2613
PSO 305.1689 574.6557 1477.057 316.5058
CS 92.87089 4700.287 44298.9 10461.76

ACOR 24.81962 25.10222 25.36799 0.158517
CSA 2.24E − 11 1.35E− 09 5.65E− 09 1.97E− 09

f16(x)

MASO 3.12E− 32 1.12E− 29 2.02E − 28 4.51E − 29
ASO 3.53E − 29 8.02E − 29 1.31E− 28 3.4E− 29
FPA 0.795144 1.715761 2.908752 0.550818
BAT 0.519122 11.97827 28.55629 9.510974
PSO 3.03539 7.040329 11.93878 2.719544
CS 7.55E − 08 0.019757 0.366427 0.081707

ACOR 9.06E − 09 2.61E − 07 2.1E − 06 4.61E − 07
CSA 2.13E − 14 3.58E − 11 1.54E − 10 4.63E − 11

f17(x)

MASO 1.26E− 32 2.26E− 31 1.86E− 30 4.61E− 31
ASO 6.55E − 28 2.14E − 27 5.54E − 27 1.53E − 27
FPA 0.075634 0.159202 0.383942 0.076028
BAT 28.02352 59.78051 75.72239 10.54314
PSO 3.843779 71.81837 922.9239 200.6675
CS 3.36E − 22 8.9E − 22 1.77E − 21 4.31E − 22

ACOR 3.17E − 08 8.81E − 07 6.2E − 06 1.69E − 06
CSA 9.23E − 13 2.67E − 10 8.43E − 10 2.34E − 10

f18(x)

MASO 2.22E− 14 1.37E − 13 8.96E − 13 2.02E − 13
ASO 4.71E − 14 9.18E− 14 1.75E− 13 3.96E− 14
FPA 1.169421 1.510639 2.147189 0.28967
BAT 12.84255 14.03792 16.05812 0.884501
PSO 3.803351 5.659908 7.923137 0.986783
CS 14.20253 16.00982 17.58788 1.084051

ACOR 3.56E − 07 8.04E − 07 1.54E − 06 3.01E − 07
CSA 6.75E − 07 2.1E − 05 5.99E − 05 1.93E − 05

f19(x)

MASO 0 5E− 13 4.66E− 12 1.05E− 12
ASO 8.954632 16.01884 19.89918 3.492605
FPA 59.36055 76.74372 100.1136 10.82332
BAT 31.84028 84.16432 198.9923 34.74113
PSO 68.84252 109.8572 159.7136 22.65396
CS 65.6753 109.6626 154.4972 25.50229

ACOR 202.1726 219.1054 230.5434 8.423366
CSA 6.31E − 12 5.12E − 09 3.79E − 08 1.01E − 08
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dynamically by the reinforcement learning mechanism so
that Pv adapts the problem automatically in a more scienti�c
and reasonable way. �e MASO improved from the above
three aspects has high search accuracy and convergence
speed. �e improvement eectiveness of MASO will be
analyzed by the T test and rank sum test, respectively.

4.3.1. �e T Test Analysis between MASO and Comparative
Algorithms. Table 5 lists the results of T test, where “+”
means that MASO has obvious advantages when compared
with other algorithms, “�” indicates that the T test results of
MASO equals other algorithms, and “≈” means that the T
test results of MASO are approximately equal to other
algorithms.

In F5, F7, F9, F10, F11, F12, F13, F14, F18, F19, and F21,
MASO is more prominent than the most comparative al-
gorithms. In F1, F3, F4, F6, F8, F15, F17, and F20, although
performance of MASO is not outstanding, but its advantages

are still better than most comparative algorithms. In F2 and
F16, the eect of MASO is almost the same as the corre-
sponding comparison algorithm. �e improvement of
MASO is not signi�cant enough in F2 and F16 because most
algorithms can optimize the two functions easily. Except F2
and F16, the eect of MASO is obviously better than most
other algorithms, so the improvement of MASO is evidently
eective. �erefore, MASO is a successful improvement to
ASO.

4.3.2. Wilcoxon Rank Sum Test for Improved Strategies.
MASO is obtained by using the chaotic initialization op-
erator, vaccine operator, and reinforcement learning oper-
ator to ameliorate ASO. �e ASO enhanced by the chaotic
initialization operator is named ASO_chaos. �e ASO en-
hanced by the vaccine operator is named ASO_vaccine. �e
ASO enhanced by the reinforcement learning operator is
named ASO_rl.

Table 4: Continued.

Functions Algorithms Min Mean Max STD

f20(x)

MASO 0 1.46E − 15 8.99E − 15 1.99E − 15
ASO 0 0 0 0
FPA 0.053602 0.127282 0.226275 0.05216
BAT 30.91076 58.58257 119.8216 20.73163
PSO 0.744758 1.095692 1.310903 0.116757
CS 0.868257 3.707799 19.43772 4.708682

ACOR 8.4E − 10 0.00311 0.062197 0.013908
CSA 2.6E − 13 3.35E − 08 1.31E − 07 4.47E − 08

f21(x)

MASO 1140.688 2142.009 2596.788 363.9108
ASO 4046.881 4920.749 5321.667 391.9594
FPA 2480.206 2843.365 3076.285 173.4922
BAT 3444.441 5378.728 7371.65 998.61
PSO 1906.464 4896.28 6944.173 1242.374
CS 3032.338 4125.281 5258.021 555.419

ACOR 2691.551 3918.742 5687.103 463.1189
CSA 7233.943 8295.476 9227.791 487.6725

�e best results are shown in bold.
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In this experiment, each algorithm runs 20 times in-
dependently in each benchmark function. �e population
number is 100. �e evaluation times of ASO_vaccine and
ASO_rl are 2∗ 100 in each iteration, and evaluation times of
ASO and ASO_chaos are 100 in each iteration. For each
benchmark function, ASO_vaccine and ASO_rl will iterate
2500 times, and ASO and ASO_chaos will iterate 5000 times.
So the four algorithms will be compared under the evalu-
ation of 100∗ 5000 in each run.

Table 6 lists the statistical results with dierent strategies.
Among the three improved methods, the improvement
eect of ASO_chaos is relatively general, and its stability is
not good too. ASO_vaccine and ASO_rl are slightly im-
proved compared with the ASO, but the improvement eect
is not signi�cant. Generally, the minimums of ASO_vaccine
and ASO_rl are at most several orders of magnitude lower
than the minimum of ASO. Only the MASO algorithm, that

is, enhanced by three operators, can achieve remarkable
results.

Table 7 displays the statistical results of the Wilcoxon
rank sum test, where “+” means that MASO has obvious
advantages when compared with other algorithms and “≈”
means that the Wilcoxon rank sum test results of MASO
approximately equal to other algorithms. In F5, F9, F10, F13,
F14, F19, and F21, ASO_chaos, ASO_vaccine, and ASO_rl
are more eective than the ASO. �e ASO_chaos has better
performance than ASO in F15. �e improved eect of
ASO_chaos, ASO_vaccine, and ASO_rl is not signi�cant in
functions F1–F4, F6–F8, F11–F12, F16–F18, and F20. �e
eect of MASO is signi�cantly better than ASO and com-
parative algorithms in most benchmark functions. �ere-
fore, the remarkable eect of MASO can only be achieved by
using three operators together.
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5. Application of MASO in Optimization of
Permutation Flow Shop Scheduling Problem

In order to verify the optimization capability of MASO for
practical engineering problems, MASO will be used to
optimize the permutation ªow shop scheduling problem.

5.1. Permutation Flow Shop Scheduling Problem. �e ªow
shop scheduling problem studies the process of n jobs on m
machines. According to dierent constraints, ªow shop
scheduling can be divided into the following dierent
problems: permutation ªow shop scheduling problem, no-
wait ªow shop scheduling problem, no-idle ªow shop
scheduling problem, blocking ªow shop scheduling prob-
lem, ªow shop scheduling problem with limited buers, lot-
streaming ªow shop scheduling problem, and hybrid ªow
shop scheduling problem [42].

�e solution of the permutation ªow shop scheduling
problem is to �nd a scheduling sequence so that a certain
production index can reach the optimal value. �e opti-
mization objective is the minimum makespan. �e mini-
mum makespan equals to the completion time of the last
workpiece on the last machine.

5.2. Model Assumptions. Some assumptions are made to
establish the mathematical model of permutation ªow shop
scheduling problem:

(1) N workpieces are processed on M machines. Each
workpiece must be processed in sequence on dif-
ferent machines without interruption.

(2) �ere is an in�nite buer area between machines.
(3) In each process, a workpiece can only be processed

on one machine without interruption and a machine
can only process one workpiece at the same time.
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Figure 11: Convergence rates for F8.

Be
st 

va
lu

e o
f f

un
ct

io
n 

f 9(
lo

g1
0(

f 9(
x)

))

1E – 11

1E – 9

1E – 7

1E – 5

1E – 3

0.1

10

1000

×100
0

Number of evaluations

FPA
BAT
PSO

ACOR
CSA

CS ASO
MASO

1000 2000 3000 4000 5000
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Figure 13: Convergence rates for F10.

Mathematical Problems in Engineering 13



Be
st 

va
lu

e o
f f

un
ct

io
n 

f 11
(lo

g1
0(

f 11
(x

))
)

1E – 11

1E – 9

1E – 7

1E – 5

1E – 3

0.1

10

1000

×100
0

Number of evaluations

FPA
BAT
PSO

ACOR
CSA

CS ASO
MASO

1000 2000 3000 4000 5000
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Figure 15: Convergence rates for F12.
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Figure 16: Convergence rates for F13.
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Figure 17: Convergence rates for F14.

Be
st 

va
lu

e o
f f

un
ct

io
n 

f 15
(lo

g1
0(

f 15
(x

))
)

1E – 10

1E – 6

0.01

100

1000000

×100
0

Number of evaluations

FPA
BAT
PSO

ACOR
CSA

CS ASO
MASO

1000 2000 3000 4000 5000

Figure 18: Convergence rates for F15.
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Figure 19: Convergence rates for F16.
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(4) �e processing time of the workpiece is known, and
the preparation time of the workpiece and the start
time of themachine are all included in the processing
time.

�e mathematical models of permutation ªow shop
scheduling problems are shown in equations (22), (23), and
(24) [43].

(1) Objective function:

objective � Min Max Cj,s( )[ ], (j � 1, . . . , n). (22)

(2) Constraint conditions:

Cj,k � Sj,k + Pj,k, (j � 1, . . . , n; k � 1, . . . , s), (23)

Cj,k ≤ Sj,k+1, (j � 1, . . . , n; k � 1, . . . , s). (24)
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Figure 20: Convergence rates for F17.
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Figure 21: Convergence rates for F18.
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Figure 23: Convergence rates for F20.
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Figure 22: Convergence rates for F19.
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Table 5: ,e comparisons of T test for f1∼f21.

Algorithm f1(x) f2(x) f3(x)
H P Sig H P Sig H P Sig

MASO/FPA 1 0.016614 + 0 0.290266 ≈ 1 0.023023 +
MASO/BAT 1 3.24E − 09 + 1 0 + 0 0.14638 ≈
MASO/PSO 1 9.2E − 105 + 1 1.1E − 302 + 1 1.4E − 181 +
MASO/CS 1 0.000179 + 1 1.36E − 07 + 1 1.7E − 17 +
MASO/ACOR 0 0.094316 ≈ 0 0.273106 ≈ 0 0.09149 ≈
MASO/CSA 0 0.304726 ≈ 0 0.259636 ≈ 0 0.310844 ≈
MASO/ASO 1 0.000526 + 0 0.481441 ≈ 1 0.003881 +

f4(x) f5(x) f6(x)
H P Sig H P Sig H P Sig

MASO/FPA 1 0.004565 + 0 0.050501 ≈ 1 0.049963 +
MASO/BAT 1 8.7E − 204 + 1 1.45E − 09 + 1 5.04E − 28 +
MASO/PSO 1 1.7E − 183 + 1 2.5E − 128 + 1 6.04E − 80 +
MASO/CS 1 1.47E − 09 + 1 7.87E − 73 + 1 0.001168 +
MASO/ACOR 0 0.089476 ≈ 1 0.029733 + 0 0.111095 ≈
MASO/CSA 0 0.303911 ≈ 1 0.009487 + 0 0.318903 ≈
MASO/ASO N/A N/A � 1 4.62E − 05 + 1 0.0 03612 +

f7(x) f8(x) f9(x)
H P Sig H P Sig H P Sig

MASO/FPA 1 2.28E − 11 + 1 0.011808 + 1 1.6E − 30 +
MASO/BAT 1 0 + 1 4.66E − 84 + 1 0 +
MASO/PSO 1 9.1E − 295 + 1 1.1E − 188 + 1 9.5E − 210 +
MASO/CS 1 8.9E − 104 + 1 5.45E − 09 + 1 1.03E − 47 +
MASO/ACOR 1 0.001019 + 0 0.079069 ≈ 1 1.21E − 68 +
MASO/CSA 0 0.193249 ≈ 0 0.249111 ≈ 1 1.75E − 09 +
MASO/ASO 1 4.02E − 04 + 0 0.134598 ≈ 1 0.005241 +

f10(x) f11(x) f12(x)
H P Sig H P Sig H P Sig

MASO/FPA 1 1.96E − 56 + 1 1.91E − 25 + 1 1.21E − 07 +
MASO/BAT 1 7.53E − 91 + 1 1.15E − 40 + 1 9.57E − 87 +
MASO/PSO 1 7E − 250 + 1 2.3E − 209 + 1 1.6E − 269 +
MASO/CS 1 1.51E − 46 + 1 3.31E − 08 + 1 1.6E − 278 +
MASO/ACOR 1 0.003855 + 1 7.06E − 20 + 1 0.006418 +
MASO/CSA 1 0.003995 + 0 0.128471 ≈ 0 0.278777 ≈
MASO/ASO 1 1.88E − 05 + 1 0.006584 + 1 0.001213 +

f13(x) f14(x) f15(x)
H P Sig H P Sig H P Sig

MASO/FPA 1 2.66E − 57 + 1 6.46E − 32 + 1 0.041413 +
MASO/BAT 1 0 + 1 0 + 0 0.18106 ≈
MASO/PSO 1 7.1E − 227 + 1 3E − 290 + 1 5.2E − 275 +
MASO/CS 1 9.9E − 189 + 1 9.78E − 36 + 1 0.010623 +
MASO/ACOR 1 1.34E − 17 + 1 1.93E − 69 + 1 0.024626 +
MASO/CSA 1 0.001114 + 1 1.65E − 16 + 0 0.165226 ≈
MASO/ASO 1 0.009734 + 1 3.09E − 11 + 1 9.92E − 53 +

f16(x) f17(x) f18(x)
H P Sig H P Sig H P Sig

MASO/FPA 0 0.128943 ≈ 1 0.048392 + 1 4.89E − 15 +
MASO/BAT 0 0.272098 ≈ 1 0.045067 + 1 0 +
MASO/PSO 1 6.8E − 214 + 1 2.5E − 252 + 1 2.6E − 255 +
MASO/CS 0 0.266098 ≈ 0 0.276366 ≈ 1 5.9E − 177 +
MASO/ACOR 0 0.116175 ≈ 1 0.049686 + 1 0.001027 +
MASO/CSA 0 0.307291 ≈ 0 0.319772 ≈ 0 0.156388 ≈
MASO/ASO 1 0.008508 + 1 3.3E − 04 + 0 0.206133 +

f19(x) f20(x) f21(x)
H P Sig H P Sig H P Sig

MASO/FPA 1 5.92E − 23 + 1 0.01143 + 1 5.7E − 21 +
MASO/BAT 1 0 + 1 8.67E − 78 + 1 3.82E − 62 +
MASO/PSO 1 1.1E − 178 + 1 1.8E − 185 + 1 1.05E − 80 +
MASO/CS 1 5.5E − 54 + 1 2.14E − 05 + 1 3.74E − 28 +
MASO/ACOR 1 7.36E − 78 + 0 0.097076 ≈ 1 7.62E − 51 +
MASO/CSA 1 3.03E − 52 + 0 0.237911 ≈ 1 2.72E − 86 +
MASO/ASO 1 0.000142 + 0 0.643876 ≈ 1 2.28E − 36 +
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Table 6: Test statistical results with different strategies.

Functions Algorithms Min Mean Max STD

f1(x)

ASO 7.33E − 27 2.64E − 26 1.05E − 25 3.08E − 26
ASO_chaos 2.69E − 27 38220.86 134747.6 49900.47
ASO_vaccine 9.34E − 27 3.35E − 26 6.9E − 26 2.51E − 26

ASO_rl 5.59E − 27 4.05E − 26 9.19E − 26 3.97E − 26

f2(x)

ASO 2.16E − 13 5.32E − 13 9.67E − 13 2.51E − 13
ASO_chaos 2.99E − 13 1.58E+ 18 2.84E+ 19 6.35E+ 18
ASO_vaccine 5.68E − 13 7.88E − 13 1.01E − 12 1.6E − 13

ASO_rl 3.18E − 13 1.25E − 12 2.35E − 12 7.73E − 13

f3(x)

ASO 5.73E − 26 1.73E − 25 3.92E − 25 1.03E − 25
ASO_chaos 3.79E − 26 5651.508 17487.91 7310.399
ASO_vaccine 8.75E − 26 2.01E − 25 5.32E − 25 1.86E − 25

ASO_rl 1.23E − 25 3.62E − 25 5.3E − 25 1.63E − 25

f4(x)

ASO 0 0 0 0
ASO_chaos 0 42588.7 116706 53955.46
ASO_vaccine 0 0 0 0

ASO_rl 0 0 0 0

f5(x)

ASO 0.003764 0.00772 0.011135 0.002189
ASO_chaos 0.003324 72.91083 301.5848 100.3357
ASO_vaccine 0.003663 0.005553 0.008711 0.00202

ASO_rl 0.024793 0.032927 0.046203 0.010069

f6(x)

ASO 2.19E − 52 1.46E − 51 5.24E − 51 1.51E − 51
ASO_chaos 2.34E − 53 94.61799 345.6983 134.9649
ASO_vaccine 1.02E − 51 3.62E − 51 8.42E − 51 3.45E − 51

ASO_rl 5.22E − 52 9.87E − 51 3.93E − 50 1.67E − 50

f7(x)

ASO 4.35E − 14 7.41E − 14 1.47E − 13 2.97E − 14
ASO_chaos 5.42E − 14 8.462759 21.3434 10.63432
ASO_vaccine 6.84E − 14 9.25E − 14 1.29E − 13 2.22E − 14

ASO_rl 7.55E − 14 1.02E − 13 1.82E − 13 4.54E − 14

f8(x)

ASO 0 0 0 0
ASO_chaos 0 344.9339 956.8887 437.1594
ASO_vaccine 0 0 0 0

ASO_rl 0 0 0 0

f9(x)

ASO 9.949591 14.5264 20.89413 3.356089
ASO_chaos 7.959672 230.112 648.2703 274.7404
ASO_vaccine 11.93951 16.11833 20.89413 4.065958

ASO_rl 7.959672 12.33749 14.92438 2.68823

f10(x)

ASO 4106.132 4650.915 5626.077 521.8557
ASO_chaos 4312.996 5089.873 5718.976 566.3842
ASO_vaccine 4500.827 5160.146 5625.985 471.8367

ASO_rl 3928.42 4852.266 5823.46 748.2354

f11(x)

ASO 4.23E − 14 8.76E − 14 1.97E − 13 4.72E − 14
ASO_chaos 2.55E − 14 37.10606 116.9176 47.21336
ASO_vaccine 7.52E − 14 1.12E − 13 1.6E − 13 3.61E − 14

ASO_rl 7.19E − 14 1.3E − 13 2.7E − 13 8.45E − 14

f12(x)

ASO 2.78E − 27 6.39E − 27 2.1E − 26 5.59E − 27
ASO_chaos 2.46E − 27 172.4654 562.9697 222.5449
ASO_vaccine 2.06E − 27 1.86E − 26 6.71E − 26 2.73E − 26

ASO_rl 3.9E − 27 1.11E − 26 1.95E − 26 7.21E − 27

f13(x)

ASO 0.111929 0.171566 0.247934 0.04255
ASO_chaos 0.006224 0.221173 0.5 0.239022
ASO_vaccine 0.18622 0.268834 0.353136 0.072799

ASO_rl 0.094156 0.109595 0.122451 0.010779

f14(x)

ASO 12 18.70114 35.0005 6.254622
ASO_chaos 9 226.4739 622.2764 263.4471
ASO_vaccine 16.08234 23.04624 27.001 4.654738

ASO_rl 13 23 30 6.892024
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,e number of workpieces is n, and a single workpiece is
marked as j (j� 1, . . ., n). ,e number of machines is s, and a
single machine is marked k (k� 1, . . ., s). Sj,k is the start time
of workpiece j in machine k. Pj,k is the processing time of
workpiece j on machine k. Cj,k is the makespan of workpiece
j in machine k.

5.3. Engineering Sample. An engineering example of per-
mutation flow shop scheduling problem is given below.
Suppose three jobs A, B, and C are processed on three ma-
chines in the order of A, B, and C, respectively. ,e starting
time of the first job on the first machine is 0. ,e processing
time of all jobs on each machine is listed in Table 8.,e Gantt
chart and the makespan are shown in Figure 25.

5.4. Experimental Design. ,e configuration data about the
size and structure of the problem need to be obtained to
systematically evaluate the performance of algorithm. ,e
actual data in industry are difficult to obtain, so the test data
will be generated randomly.,ese test data will represent the
industrial data. ,e test is divided into nine problem
combinations. Each problem can be identified in the form of
“number of jobs-number of machines.” For example,
problems with 20 jobs and 4 machines can be expressed as
“20-4.” ,e factors of level and scope are given in Table 9.

,e setting of experimental parameters is the same as in
Section 3.2. But for each test problem, MASO is compared
with ASO, FPA, BAT, PSO, CS, ACOR, and CSA by running
ten times separately.

5.5. Analysis of Experimental Results. ,e above eight al-
gorithms have been tested ten times on nine combinations of
problems, and the test results are listed in Table 10. ,e
minimum makespan and average are two important per-
formance evaluation indexes. ,e minimum makespan
represents the optimization ability of the algorithm. ,e
average represents the stability of the algorithm.

In the “10-2” problem, theminimummakespan obtained
by MASO is better than BAT, PSO, and ACOR and is equal
to FPA and CS but is worse than the ASO. ,e stability of
MASO is in the middle of all the test algorithms. Generally,
the effect is not ideal. In “10-4,” the search effect of MASO is
general, but the average is the best, and the stability is good.
In the “10-8” problem, the search ability of MASO is the best,
but it is equal to CSA, ACOR, and BAT, respectively. And
the average of MASO is the best in all algorithms. In
summary, MASO has almost the same performance as other
algorithms under the problem scale of 10 jobs because the
scale of the problem is too small to reflect the good search
capability of MASO.

Table 6: Continued.

Functions Algorithms Min Mean Max STD

f15(x)

ASO 13.22012 14.72793 15.51416 0.63515
ASO_chaos 14.05125 1691798 5141408 2180894
ASO_vaccine 15.5044 15.89732 16.17919 0.26884

ASO_rl 15.80763 16.45844 17.09231 0.562882

f16(x)

ASO 3.53E − 29 8.02E − 29 1.31E − 28 3.4E − 29
ASO_chaos 2.17E − 29 2.2E+ 09 8.17E+ 09 2.87E+ 09
ASO_vaccine 3.97E − 29 1.23E − 28 1.94E − 28 6.21E − 29

ASO_rl 3.35E − 29 1.49E − 28 4.22E − 28 1.59E − 28
MASO 3.53E − 29 8.02E − 29 1.31E − 28 3.4E − 29

f17(x)

ASO 6.55E − 28 2.14E − 27 5.54E − 27 1.53E − 27
ASO_chaos 6.04E − 28 1.47E+ 09 5.17E+ 09 1.96E+ 09
ASO_vaccine 7.69E − 28 2.92E − 27 7.94E − 27 2.89E − 27

ASO_rl 7.23E − 28 2.19E − 27 5.26E − 27 1.84E − 27

f18(x)

ASO 4.71E − 14 9.18E − 14 1.75E − 13 3.96E − 14
ASO_chaos 5.06E − 14 8.510808 21.42481 10.69466
ASO_vaccine 6.13E − 14 1.59E − 13 4.34E − 13 1.55E − 13

ASO_rl 1.04E − 13 1.34E − 13 1.82E − 13 2.95E − 14

f19(x)

ASO 8.954632 16.01884 19.89918 3.492605
ASO_chaos 9.949591 226.8982 594.1118 268.2596
ASO_vaccine 11.9395 22.28707 31.83867 7.629455

ASO_rl 9.949591 14.5264 19.89917 4.750859

f20(x)

ASO 0 0 0 0
ASO_chaos 0 375.431 1145.34 482.6689
ASO_vaccine 0 0 0 0

ASO_rl 0 0 0 0

f21(x)

ASO 4046.881 4920.749 5321.667 391.9594
ASO_chaos 4561.110 5235.886 3421.026 339.6557
ASO_vaccine 4817.261 5210.066 5626.202 326.6599

ASO_rl 4540.61 5634.291 6731.833 945.2253
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Table 7: Test statistical results of the Wilcoxon rank sum test.

Algorithm f1(x) f2(x) f3(x)
H P Sig H P Sig H P Sig

ASO_chaos/ASO 0 0.314619 ≈ 0 0.324488 ≈ 0 0.328083 ≈
ASO_vaccine/ASO 0 0.488314 ≈ 0 0.641407 ≈ 0 0.195942 ≈
ASO_rl/ASO 0 0.701861 ≈ 0 0.925725 ≈ 0 0.920272 ≈

f4(x) f5(x) f6(x)
H P Sig H P Sig H P Sig

ASO_chaos/ASO 0 0.244594 ≈ 0 0.062368 ≈ 0 0.701051 ≈
ASO_vaccine/ASO 0 0.553674 ≈ 1 0.030511 + 0 0.315137 ≈
ASO_rl/ASO 0 0.893699 ≈ 1 0.000289 + 0 0.706156 ≈

f7(x) f8(x) f9(x)
H P Sig H P Sig H P Sig

ASO_chaos/ASO 0 0.321172 ≈ 0 0.307772 ≈ 1 0.000331 +
ASO_vaccine/ASO 0 0.41769 ≈ 0 0.457487 ≈ 1 0.004432 +
ASO_rl/ASO 0 0.801112 ≈ 0 0.636002 ≈ 1 0.03666 +

f10(x) f11(x) f12(x)
H P Sig H P Sig H P Sig

ASO_chaos/ASO 1 8.67E − 08 + 0 0.301404 ≈ 0 0.321245 ≈
ASO_vaccine/ASO 1 7.45E − 07 + 0 0.205611 ≈ 0 0.231387 ≈
ASO_rl/ASO 1 1.61E − 07 + 0 0.898369 ≈ 0 0.914785 ≈

f13(x) f14(x) f15(x)
H P Sig H P Sig H P Sig

ASO_chaos/ASO 1 2.53E − 18 + 1 0.018586 + 1 0.02315 +
ASO_vaccine/ASO 1 8.18E − 05 + 0 0.064058 ≈ 0 0.479393 ≈
ASO_rl/ASO 1 0.000381 + 1 0.000728 + 0 0.075423 ≈

f16(x) f17(x) f18(x)
H P Sig H P Sig H P Sig

ASO_chaos/ASO 0 0.449624 ≈ 0 0.385929 ≈ 0 0.311159 ≈
ASO_vaccine/ASO 0 0.462677 ≈ 0 0.458521 ≈ 0 0.555353 ≈
ASO_rl/ASO 0 0.769354 ≈ 0 0.753607 ≈ 0 0.8118 ≈

f19(x) f20(x) f21(x)
H P Sig H P Sig H P Sig

ASO_chaos/ASO 1 0.000516 + 0 0.389344 ≈ 1 4.02E − 07 +
ASO_vaccine/ASO 1 0.003634 + 0 0.412808 ≈ 1 1.92E − 08 +
ASO_rl/ASO 1 0.013797 + 0 0.636028 ≈ 1 6.05E − 07 +

Table 8: ,e processing time of the workpiece on each machine.

Workpieces
A B C

Machines
1 3 5 1
2 4 2 2
3 1 1 3

1

2

3

Times

M
ac

hi
ne

s

Makespan

Workpiece A
Workpiece B
Workpiece C

0 2 4 6 8 10 12 14 16

Figure 25: Gantt chart of permutation flow shop scheduling with makespan.

Mathematical Problems in Engineering 19



In the “20-2” problem, MASO has the better perfor-
mance. ,e minimum makespan of MASO is equal to CSA
and is slightly inferior to PSO. In the “20-4” problem, the
minimum makespan of MASO is equal to ACOR and CSA
and is slightly inferior to FPA. ,e minimum makespan of
MASO ranks second among all the algorithms. In the “20-8”
problem, the optimization capability of MASO is only in-
ferior to BAT, ranking second among all algorithms, but its
average is the best. In summary, the overall performance of
MASO is better than all other algorithms under the scale of
20 workpieces because MASO has strong optimization ac-
curacy and can coordinate the balance between global ex-
ploration and local development. In addition to MASO,
ACOR performs well on the scale of the problem, so ACOR
is also suitable for optimizing this complex permutation flow
shop scheduling problem.

In the problem of “50-2,” the search effect of MASO is
the best, but the average of MASO is worse. In the “50-4”
problem, the search effect of MASO is only slightly worse
than ACOR. In the “50-8” problem, the search ability of
MASO is the best and far better than other algorithms.

,erefore, MASO works better on the problem of higher
complexity, especially on the problem of 20 and 50 work-
pieces. ,e reason is that the immune operator and rein-
forcement learning operator strengthen the utilization of the
dominant position in the atom population, so the search

speed and accuracy of MASO are promoted. Experiments
confirm that MASO has advantages to optimize engineering
problem.

6. Conclusion

,e MASO is proposed to improve ASO in this paper. ,e
chaotic operator, immune operator, and reinforcement
learning operator are introduced to enhance ASO. ,e
chaotic operator overcomes the disadvantages of nonuni-
form initialization in ASO. ,e immune operator and re-
inforcement learning operator can make better use of the
dominant position in the atom population and employs
adaptive parameters to avoid human interference factors.
,e experimental results in 21 benchmark functions indicate
that MASO is better than the seven comparison algorithms
in global search ability and convergence speed. T test proves
that the performance of MASO is significantly better than
the seven comparison algorithms on most benchmark
functions. ,e Wilcoxon rank sum test illustrates that the
excellent performance of MASO is obtained by the inter-
action of three operators. When MASO is applied to opti-
mize the permutation flow shop scheduling problem, the
search accuracy of MASO is better than the seven contrast
algorithms. MASO does not require the objective function to
be convex, continuous, or derivable, so it has strong

Table 9: ,e factors of level and range.

Factors Level Number of level
Number of jobs 10, 20, and 50 3
Number of machines 2, 4, and 8 3
,e processing time of each workpiece on each
machine Discrete uniform [1, 5] 1

Table 10: Permutation flow shop scheduling test results.

Problem MASO ASO FPA BAT
Min Mean Max Min Mean Max Min Mean Max Min Mean Max

10-2 28 33.7 39 26 32.9 41 28 33.5 38 29 34.7 38
10-4 36 39.1 44 36 40.7 46 38 41.5 46 39 41.2 43
10-8 50 55.2 63 51 55.8 60 52 56.1 61 50 56.8 60
20-2 56 63.7 71 58 65.3 75 59 64.2 71 57 64.2 75
20-4 64 72.6 76 66 74.7 83 62 70 78 68 73.9 80
20-8 81 87.6 95 85 89.3 97 84 88.4 93 80 88.4 92
50-2 147 158.3 180 150 159.1 169 145 157 167 150 157.6 172
50-4 153 164.2 180 155 164.4 186 154 167.2 184 157 166.6 176
50-8 171 180.4 191 173 178.6 185 180 186.6 194 181 185.2 190

PSO CS ACOR CSA
Min Mean Max Min Mean Max Min Mean Max Min Mean Max

10-2 30 35.3 40 30 35.4 39 29 34.6 44 28 33.5 40
10-4 35 40.6 46 35 43.5 50 35 39.1 42 34 40.2 44
10-8 51 57.2 64 51 57.1 62 50 54.2 57 50 55.5 61
20-2 55 66.4 74 57 61.3 67 62 65.5 69 56 62 70
20-4 69 74.8 83 68 71.1 80 64 69 77 64 71.9 83
20-8 85 89.7 97 88 92.8 98 82 87.9 92 85 91.5 100
50-2 143 158.3 166 153 160.6 171 157 159.9 167 147 157.1 173
50-4 162 167.5 178 160 167.4 191 149 161.2 172 161 168.3 173
50-8 183 189.8 200 180 194.9 201 177 182.9 189 184 188.7 199
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advantages in the field of numerical optimization.,erefore,
MASO can be applied in machine learning, engineering
optimization, municipal traffic management, and other
optimization fields.
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