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)is paper shows an influence of a transducer of a middle ear implant on ear dynamics on the basis of themulti-degree-of-freedom
biomechanical system. Results of numerical simulations of an ear model with implant are compared with those of the healthy
middle ear. Two variants of damping are analysed. )e first one typical for a normal healthy middle ear structure and the second
one describes pathological properties of the human ear. Moreover, the behaviour of the transducer under various external
excitations is investigated. For some set of parameters, the middle ear with the implant behaves regularly but sometimes even
chaotically in case of strong excitation.

1. Introduction

)e human ear is composed of three parts: the outer, the
middle, and the internal (inner) ear. Sound, approaching to
the ear, is transmitted from the outer to the inner part
through the middle ear. )e human middle ear (HME) is a
small biomechanical system, which consists of the tympanic
membrane, three ossicles (i.e., the malleus, the incus, and the
stapes), as well as ligaments and tendons that fix ossicles to
each other and to the temporal bone as well. Sound
approaching to the outer ear in the form of acoustic pressure
is transformed into mechanical vibrations in the middle ear
and next to an electrical signal in the inner ear. Since the
middle ear is the smallest and one of the most complicated
biomechanical structures in the human body, its treatment is
especially demanding and difficult. Of course, it depends on
a type of hearing loss. Generally, two types of hearing loss are
defined: conductive and sensorineural. )e former is usually
treated by means of prostheses of different types that are
passive elements connecting damaged or missing ossicles.
)e latter can be healed by a cochlear implant in case of
profound hearing loss, but most mild to moderate senso-
rineural hearing losses are still compensated by traditional
hearing aids. However, conventional hearing aids have

several inherent disadvantages, such as sound distortion,
limited amplification, noise and ringing, discomfort, and
cosmetic appearance [1]. )erefore, in recent years, new
solutions of active middle ear implants have been used in
medical practice as an alternative to the conventional
treatment method. )ese devices are known as implantable
middle ear hearing devices (IMEHDs) and can be used in
case of sensorineural hearing loss and sometimes in different
structural configurations also in conductive hearing loss. A
typical IMEHD consists of three parts (Figure 1): the mi-
crophone, the signal processing, and the vibrating output
transducer called as the floating mass transducer (FMT).
Numerous procedures are currently used in clinical practice
to implant the hearing device. An otolaryngologist must find
the best position of a vibrating transducer and the method to
fix it to the ossicular chain by means of a coupler (clip). )e
FMT is the main part of the IMEHD which provides a direct
mechanical stimulation to the human ear [1, 2].)e ossicular
chain is the component that the transducer commonly
stimulates, and then the vibration is transmitted into the
cochlea through the oval window. However, coupling the
transducer to the ossicular chain is difficult in case of pa-
tients with middle ear disease, such as ossicular lesion. To
solve this problem, an alternative way of coupling the
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transducer to the cochlea by driving the round window
(RW), called RW stimulation, is developed [1]. )e RW
simulation can improve various conductive and mixed
hearing losses, even though this method needs static preload
to the RW.

Clinical studies on this IMEHD’s application have been
reported by several authors [3, 4, 5], but the human middle
ear with the IMEHD is explored mainly experimentally or
by means of FEM. Undoubtedly, there is a lack of a
nonlinear mechanical lumped mass model that can explain
the human middle ear and the implant behaviour. To the
best of our knowledge, only one paper with the lumped
mass model has been published [6]. )e authors show a
simple linear model without deep investigation; therefore,
here a sensitivity analysis of the implant parameters and
external excitation on the middle ear is the main goal of the
study.

)is paper is organized as follows: Section 2 presents a
three-degree-of-freedom (3dof) model of the normal middle
ear (NME) and a 5dof model of the human middle ear with
an implant (implanted middle ear, IME), which consists of
the NME and the IMEHD. In Section 3, a natural frequency
analysis of the undamped linear and the nonlinear model of
the NME is presented. Next, a simplified linear model of the
IME and finally a nonlinear one are investigated to compare
the results with outcomes obtained in the case of the NME.
Finally, discussion of results and conclusions are presented
in Section 5.

2. Model of the Human Middle Ear

Most often, the human middle ear is modelled in the
literature by means of a finite element method (FEM)
which is useful in practical applications but weaker in
achieving knowledge and developing a new theory of
the middle ear. )erefore, various lumped mass models
are developed to overcome these limitations starting
from three [7], four [8], and sometimes even six [9]
degrees of freedom (dof ). However, these models are
only linear that cannot reflect the middle ear complex
behaviour.

Here, the 3dof nonlinear model of the normal (healthy,
NME) middle ear, called shortly as a normal middle ear
(NME), is proposed. Next, the model is extended to the 5dof
for the IME. Moreover, in the paper, two sets of parameters
are used: the standard parameters that are typical for a
healthy ear and the pathological ones where damping co-
efficients are decreased, but the ossicular chain is still intact
(not damaged). )erefore, sensorineural hearing loss is
investigated in this paper.

Since the model is a form of real object simplification,
several important assumptions are made in the middle
ear model. First of all, the model is prepared for low
frequencies. )erefore, the hydrodynamics of the inner
ear and the vibratory characteristics of the basilar
membrane are neglected. Moreover, it is assumed that
the middle ear reflex is the same in the normal and the

implanted middle ear. It is true in the case of mild and
moderate hearing loss. )e reflex does not depend on
sound frequency.

2.1. Normal Ear. )e model of the normal human middle
ear (Figure 1) is represented by three lumped masses: the
malleus (mM), the incus (mI), and the stapes (mS) that are
connected to each other and to the temporal bone by the
joints (IMJ and ISJ) and ligaments (AML, PIL, and AL).
Damping and stiffness properties of the elements are
denoted as c and k, respectively, including the cochlea (cc
and kc) and the tympanic membrane (cTM, kTM). Notice
that the AL has nonlinear stiffness characteristics that are
talked over in the next section. In the case of the healthy ear
(NME), the malleus and the tympanic membrane are
stimulated by an outer signal (sound) represented by
Q cosωt. However, in the sick ear, sound stimulation
should be stronger and placed as close to the cochlea as
possible.

2.2. Implanted Middle Ear. In case of any hearing loss, e.g.,
because of illnesses, the middle ear can be stimulated by the
IMEHD. )erefore, the biomechanical system of the
normal middle ear (3dof system) is developed here by
adding the floating mass transducer of an IMEHD, pre-
sented in Figure 1. )e FMT is fixed to the incus long
process by the clip in which linear damping and stiffness
coefficients are labelled by cCLIP and kCLIP while nonlinear
stiffness by kCLIP3. )e transducer is composed of the
floating mass (the magnet, Mm) and the metal case (Mc).
)e floating mass, suspended with dampers (cm) and
springs (km), is moved by an electromagnetic field; as a
result, the mass oscillates with the amplitude P and fre-
quency ω. Sometimes, the mass of the tympanic membrane
and the cochlea are also analysed, and then the system of
the middle ear with an active implant would be 7 degrees of
freedom (7dof ), but here we focus on the 5dof system. )e
7dof system would be better for RW stimulation. Since the
incus is excited in our model, the 5dof system is
investigated.

)e model presented in Figure 1 has three non-
linearities. Cubic stiffness (􏽥c3) for the sake of nonlinear
properties of the annular ligament (AL) is reported in [10].
)e experimental measurements of AL stiffness taken from
[10] are compared with the proposed cubic approximation
here in Figure 2(a). )e clip which fixes the implant to the
middle ear structure is also assumed to be nonlinear (􏽥c24).
Moreover, the silicon rubber suspension of the magnet
(Mm) is described by the 3rd order polynomial (􏽥c45 and 􏽥β45)
because of nonlinear properties of the silicon rubber re-
ported, e.g., in [11, 12]. In Figure 2(b), the polynomial
approximation is confronted with the real experiment
results, taken from [12]. )us, the governing differential
equations of IME motion in the dimensional form are as
follows:

2 Mathematical Problems in Engineering



kAML, cAML kPIL, cPIL kAL, cAL

kc

Qcosωt

cc

kTM

mM

cTM

kIMJ kISJ

cIMJ cISJ

mI mS

Clip

Transducer

xI
Pcosωt

xM

cclip

kclip

xS

km km

Mc

cm

Mm

cm

xmxc

Figure 1: Model of the human middle ear with an active implant.
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Figure 2: Nonlinear characteristics of the annular ligament (a) and silicon rubber (b).
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3

� P cos(ωt),

(1)

where

􏽥k11 � kTM + kAML + kIMJ,
􏽥k12 � − kIMJ,

􏽥c11 � cTM + cAML + cIMJ, 􏽥c12 � − cIMJ,

􏽥k21 � 􏽥k12,
􏽥k22 � kPIL + kISJ + kIMJ + kclip,

􏽥k23 � − kISJ,
􏽥k24 � − kclip, 􏽥c24 � kclip3,

􏽥c21 � − cIMJ, 􏽥c22 � cPIL + cISJ + cIMJ + cclip,

􏽥c23 � − cISJ, 􏽥c24 � − cclip, 􏽥k32 � 􏽥k23,
􏽥k33 � kAL + kISJ + kC,

􏽥c32 � 􏽥c23, 􏽥c33 � cAL + cISJ + cC, 􏽥c3 � kAL3,
􏽥k42 � 􏽥k24,

􏽥k44 � kclip + km, 􏽥k45 � − km, 􏽥c42 � 􏽥c24, 􏽥c44 � cclip + cm,

􏽥c45 � − cm, 􏽥c45 � km3,
􏽥β45 � km2,

􏽥k54 � 􏽥k45,

􏽥k55 � km � − 􏽥k54, 􏽥c54 � 􏽥c45, 􏽥c55 � cm � − 􏽥c54.

(2)

Next, the dimensionless time τ, frequency Ω, and co-
ordinates x1 − x5 are introduced according to the following
expressions:
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�����
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)e dimensionless equations of motion take the form
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2
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(4)

where dimensionless parameters are defined as follows:
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)e implant can be used in various types of hearing loss.
Here, it is assumed that sound does not reach to the malleus
(q � 0) and therefore the incus is stimulated only by the
transducer (p≠ 0). Properties of the transducer are im-
portant to obtain satisfactory middle ear characteristics;
therefore, stiffness kCLIP, km, and mass of the can and the

4 Mathematical Problems in Engineering



magnet (Mm, Mc) are significant and will be analysed first in
Section 4.

)e middle ear model with the transducer has stronger
capacity to dissipate energy than the normal ear. Dissi-
pated energy can be defined by Rayleigh’s dissipation
function D that is expressed for the implanted ear by the
equation

DFMT � DNME +
1
2

cCLIP _xI − _xc( 􏼁
2

+
1
2

cm _xc − _xm( 􏼁
2
, (6)

where DNME means the dissipated energy for the normal
middle ear, defined as follows:
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1
2
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2
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1
2
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2
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2
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2
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+
1
2
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2

+
1
2

cAL + cC( 􏼁 _x
2
S.

(7)

Stronger energy dissipation in the IME has to be
compensated by more powerful stimulation.

3. Dynamics of Normal Middle Ear

)e three-degree-of-freedom model of the normal middle
ear, proposed here, is verified by an experiment on a human
temporal bone. Research has been performed using a laser
Doppler vibrometer (LDV). )e experimental rig and
methodology of experimental procedure are described in
[13, 14, 15]. Numerical results of the 3dof system, both linear
and nonlinear, are convergent with the experiment. )is is
presented as the transfer function between sound pressure
and stapes velocity in Figure 3. Both numerical results
obtained on the basis of linear and nonlinear 3dof model are
consistent with experimental outcomes. )is proves that the
3dof model of the intact (normal) middle ear is correctly
developed. Nonlinearities presented in the model could be
neglected here, but in the case of more complicated system
or different conditions, they could be important. Vibration

amplitudes can vary depending on individual patient’s
features, but resonance peaks should be almost at the same
frequencies. )is is shown in the results of experiments
made by several authors, which are compared in the paper
[14]. )e transducer is a new element in the middle ear
structure that can change a middle ear characteristic.
)erefore, the transducer should be chosen in the proper
way to obtain characteristics of the ear with the implant
similar to the NME. At the beginning, natural frequencies
and vibration modes of the 3dof linear model are shown in
Figure 4, while the response of the nonlinear system is
presented in Figures 5 and 6 as resonance curves (bold lines)
for parameters presented in Table 1. )e parameters of the
middle ear are taken from [14, 16, 17]. However, nonlinearity
of the annular ligament and the silicon rubber are taken from
[10, 11], respectively. )e standard damping parameters (c)
characterize the healthy ear (Figure 5) while decreased ones
(c1) represent the pathological ear (Figure 6). Figure 5 also
shows the resonance curves of the 5dof system (thin lines) that
will be discussed later in the following section. Dimensionless
natural frequencies of the linear system shown in Figure 4
correspond to real (dimensional) frequencies of 0.97 kHz,
5.59 kHz, and 43.8 kHz. )e middle ear behaves as a linear
oscillator near the first resonance because nonlinearity is weak
for small oscillation amplitude observed in the human ear.
Even decrease in damping does not visualize any nonlinear
effects in the system response. Interestingly, the second
resonance is characterized by a nonsymmetric curve due to
nonlinearity of the annular ligament.

4. Dynamics of Implanted Middle Ear

Placing an implant to the ear structure, dynamics of the
middle ear can change because of additional mass and
nonlinear properties of a transducer. )erefore, at the be-
ginning, linear analysis of the middle ear with the implant
(5dof) is performed to estimate basic transducer parameters.
Next, the nonlinear model of the IME is engaged to explore
full dynamics of the system.
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Figure 3: Transfer function of the stapes vibration for numerical (3dof model) and experimental results.
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4.1. Linear Model. Analysis of the linear 5dof model is
performed for parameters from Table 1. However, different
variants of the transducer and the coupler (clip) properties
are investigated here in order to find the proper ones. )e
stiffness ratio of silicon spring and the clip (km/kCLIP) is
confronted with the mass ratio between the magnet and the

can (m5/m4). An influence of the stiffness and the mass ratio
on natural frequencies of the implanted middle ear is pre-
sented in Figure 7. Numerical analysis of the NME and also
experimental research reported in [7, 8, 14, 18, 19] show that
the first and second natural frequencies are about 1 kHz and
5 kHz, respectively. To get similar values of natural
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Figure 5: Resonance curves of the normal ear, modelled as the 3dof and 5dof system: the malleus (a), the incus (b), and the stapes (c).
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frequencies in case of the IME, Figure 7 should be analysed
carefully considering the first and the second natural fre-
quency. In order to obtain the proper value of the first
natural frequency (ω1) of the ear, the stiffness ratio km/kCLIP
should be greater than 0.2. In this case, the mass ratio
(m5/m4) between 0.1 and 2 gives almost the same frequency
ω1 � 0.95 − 1.0. )e second natural frequency oscillates
between 2 and 2.5 when km/kCLIP > 0.5. As far as the third
frequency (ω3) is concerned, it changes between 2.5 and 6 in the
analysed range of parameters.)e fourth (ω4) and especially the
fifth (ω5) natural frequency are much higher than the hearing
range; therefore, they do not have practical meaning. )e
natural frequencies andmodes of the linear IME are depicted in
Figure 8. Mass of the can (mc) and the magnet (mm) have to be

small enough and therefore they are assumed to be 5mg.)en,
the first (the most important) natural dimensionless frequency
is 0.97. )is value is very close to the frequency of the NME.

4.2. Nonlinear Model. Response of the nonlinear model of
the IME (5dof) is compared to that of the 3dof model of the
NME both for standard parameters (healthy ear) (Figure 5)
and pathological ones (Figure 6) as a resonance curve. In
Figure 5, the bold lines represent the output of the 3dof
model, while the thin lines represent the 5dof one. Note that,
in the 3dof system, the malleus is excited by force Q, while
the 5dof system is stimulated only by the magnet of the
transducer, then Q � 0 and P � 0.12mN. Implementation of
the transducer to the middle ear structure shifts the second
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Figure 6: Resonance curves of the pathological ear, modelled as the 3dof and 5dof system: the malleus (a), the incus (b), and the stapes (c).

Table 1: Parameters of the middle ear model.

Mass, m (mg) k (mN/μm) c (mNs/mm) k (Ns3/mm3) c1 (Ns/mm)

mM � 25 kTM � 0.3 cTM � 60 c1TM � 0.359
mI � 28 kAML � 0.8 cAML � 125 c1AML � 0.538
mS � 1.78 kIMJ � 1000 cIMJ � 359 c1IMJ � 28.86
Mc � 5 kPIL � 0.4 cPIL � 55 c1PIL � 0.981
Mm � 5 kISJ � 1.35 cISJ � 7.9 c1ISJ � 0.039

kAL � 0.623 cAL � 0.04 kAL3 � 0.013 c1AL � 0.033
kC � 0.2 cC � 1.7 km2 � 0.188

km � 0.85 cm � 5 km3 � 0.014
kclip � 2.0 cclip � 10 kclip3 � 2.25
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and the third resonance. Moreover, vibration amplitudes are
bigger compared to the 3dof system. )is means the
transducer works well because it generates stronger effect on
ossicles and amplifies sound approaching to the cochlea.

However, a strange shape of a resonance curve (with
picks and plateaus) speaks for irregularity of the middle ear
response, especially at low frequencies. )erefore, the
detailed behaviour of the ossicles is presented as the
classical Poincaré two-parameter maps (frequency Ω and
amplitude p of external excitation) in Figures 9 and 10 and,

moreover, in Figures 11 and 12, as bifurcation diagrams,
where displacements at zero velocity are collected. )e
analysis of Figures 11 and 12 gives complementary
knowledge to the classical Poincaré section because it is
more sensitive for signal disturbance when the vibration’s
period is not changed. Figures 9 and 11 represent the IME
for standard parameters, whereas Figures 10 and 12 for the
pathological ones. )e Poincaré maps (Figures 9 and 10)
show the white regions of regular motion and the gray ones
of irregular motion. )e healthy ear (for standard
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Figure 7: An influence of the stiffness (kCLIP/km) and the masses (m5/m4) ratio on natural frequency (ω1 − ω5) of the middle ear system.
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parameters) is sensitive very much for external excitation
especially for amplitude p> 0.002. )e change in excitation
frequency (Ω) between 0.7 and 7 can cause chaotic be-
haviour of the ossicles. When the excitation amplitude
p< 0.002, the system is unconditionally regular (the white
area means regular, period 1 response).)is is in agreement
with the Lyapunov maximal exponent (Lyapmax), calculated
according to the Wolf algorithm for 5P and 10P, presented
in Figure 13. )e exponent is still negative, that is, a
regularity proof. )e malleus (Figure 9(a)), the incus
(Figure 9(b)), and the stapes (Figure 9(c)) motion are
characterized by the identical gray regions. )e blue and
the red dashed lines represent the level of excitation cor-
responding to 10 and 5 times greater than the reference
value (p) given in Table 1 (P � 0.12mN, p � 1.5e − 4). )e
situation changes when the pathological ear with decreased

damping is analysed (Figure 10). )en, the dangerous
(gray) region is much wider. )e unconditionally regular
area exists for p< 0.0005, a bit below the red-dashed line.
Moreover, even high frequency (Ω) does not guarantee the
regular system response. Some small differences in the
maps for the ossicles are noticeable. )e bifurcation
analysis of ossicle motion (Figure 11) is performed for three
excitation amplitudes p, 5p, and 10p marked by black, red,
and blue colours properly. When the excitation is small
(p), motion of the malleus (Figure 11(a)), the incus
(Figure 11(b)), and the stapes (Figure 11(c)) is regular,
while for stronger excitation (10p, blue colour) additional
waves of different phases appear. )ey are presented in
phase diagrams and time series of ossicle velocity in Fig-
ure 14. Circles on the trajectories represent the Poincaré
points. )is means the system output frequency is exactly
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Figure 22: Phase diagram and time series of the transducer for the normal ear for Ω � 0.5: the can (a) and the magnet (b).
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the same as excitation frequency (period 1 response). An
increase in external excitation frequency toΩ � 1.8 leads to
regular vibrations without additional waves of the incus
and the malleus, but the stapes still has an extra component
even for excitation 5p and also 10p (see Figure 15). )e
situation is going on to Ω � 2.1. For Ω> 2.1, the stapes, the
same as the incus and the malleus, vibrates harmonically.

Decrease in damping completely changes middle ear
dynamics, although regular motion is still possible between
1<Ω< 2 (Figure 12), providing that the excitation ampli-
tude is not so high (e.g., p and 5p). Stapes motion
(Figure 12(c)) is more complicated than the malleus
(Figure 12(a)) and the incus (Figure 12(b)) for strong ex-
citation (10p). However, when Ω � 1.6, all the ossicles vi-
brate quasi-periodically (Figure 16). )en, the Poincaré
points create a shape like a circle. An increase in excitation
frequency leads to another chaotic region mainly of the
stapes, e.g., for Ω � 2.2 (Figure 17(c)). Fortunately, chaos is

observed only for strong enough excitation (10p, blue
colour), and it disappears for Ω> 3.0. )is observation is
proved by the Lyapunov maximal exponent (Figure 18).
Positive values of the exponent exhibit a chaotic region in the
IME system. A typical stimulation of the human middle ear
during a normal life is between 60 dB and 100 dB. Di-
mensional external excitation of P � 0.12mN corresponds
to 50 dB, whereas dimensionless 10p means about 65 dB.
)erefore, in most real situation, stimuli of the human ear
should not exceed the value of p. )en, stapes motion is
regular, sometimes with another harmonic component
(polyharmonics) but still regular.

In the next section, a question of the FMT behaviour
fixed to the incus for the help of the clip is analysed as well.

4.3. Dynamics of the transducer. )e transducer is an extra
element in the middle-ear structure which stimulates ear
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Figure 26: Phase diagram and time series of the transducer for the pathological ear for Ω � 2.2: the can (a) and the magnet (b).
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dynamics but on the contrary, the transducer is stimulated
by the incus. Qualitative analysis of motion of the can (x4)
and the magnet (x5) of the transducer is shown in Figures 19
and 20 for standard and pathological ear parameters, ap-
propriately. Still, the gray regions represent irregular motion
while the white ones irregular behaviour. In the case of the
standard set of ear parameters (Figure 19), three variants of
excitation (p, 5p, and 10p) cause only regular motion but
with polyharmonic components between 0.5<Ω< 2 visible
on the bifurcation diagram (Figure 21) when excitation is 5p

and 10p. Motion of the can is characterized by a bigger
number of harmonic components than that of the magnet.
However, despite the fact that the magnet is forced har-
monically, its response for Ω � 0.5 is not harmonic but
polyharmonic (Figure 22(b)). At that time, the can moves in
the same manner (Figure 22(a)). For bigger excitation fre-
quency (Ω � 1.8), the can moves still polyharmonically (for
p and 10p, Figure 23(a)) but the magnet oscillates har-
monically (Figure 22(b)). Behaviour of the can directly
influences the incus motion; therefore, it explains the pol-
yharmonic nature of the incus and the malleus in the IME.
)e situation changes when damping coefficients are small
(the pathological ear, Figure 20). )en, excitation greater (or
equal) than 5p causes chaotic behaviour of the can
(Figure 20(a)) and the magnet as well (Figure 20(b)). )e
gray region of chaotic motion exists for all the range of
frequencies (Ω) contrary to the standard ear parameters
(Figure 19) where chaotic motion disappears completely for
Ω> 7. Bifurcation diagrams (Figure 24) show that irregular
motion of the can (Figure 24(b)) and the magnet
(Figure 24(b)) exists for different values of Ω. For example,
when Ω � 1.6, motion of the can and the magnet is regular
and harmonic for excitation equals p (Figure 25). When
excitation increases to 5p, polyharmonic motion of the can
(Figure 25(a)) corresponds to harmonic motion of the
magnet (Figure 25(b)), whereas for strong excitation (10p),
the can and the magnet vibrate polyharmonically and quasi-
periodically. A more difficult situation is observed for Ω �

2.2 (Figure 26), where chaotic (blue) attractor appears for
strong excitation.

5. Discussion and Conclusions

)e normal human middle ear, analysed on the basis of the
3dof model, is fully predictable in the real range of exci-
tation. Periodic excitation of the malleus is transferred to the
stapes also as a periodic signal. Even for decreased system
damping (pathological ear), the regular stimulation gives the
regular output. However, introducing the transducer to the
middle ear structure changes ear dynamics. It is important
for the implemented ear to have the same or very close
characteristics to the normal, healthy ear. )erefore, the
transducer should be small enough and low weight.

)e implanted humanmiddle ear is also fully predictable
in the real range of excitation and standard parameters. At
low excitation frequencies, ossicular chain motion in the
implanted ear is still regular, but not always harmonic. For
stronger excitation, another harmonic component appears
in the system response. )is effect is probably caused by

nonlinearities and internal resonances in the multi-degree-
of-freedom system. However, real danger can appear when
damping of the system is decreased. )en, even chaotic
vibrations can be generated for strong excitation.

)e floating mass transducer presented here works
correctly in low-frequency range. Where the frequency is
higher than about 5 kHz, the amplitude of stapes motion
drastically falls down because the motion of FMT, especially
the can, decreases. Interestingly, the harmonic motion of the
magnet is converted to polyharmonic can’s motion which is
next transferred to the ossicles. Unfortunately, the implant
does not work correctly in case of the pathological ear, e.g.,
when damping properties are lower.

Polyharmonic motion of the stapes in the IME is the
problem that should be solved in order to improve hearing
quality. Polyharmonic effect is probably caused by in-
ternal resonances in the 5dof system. )e question of
additional harmonics and phase shift needs probably
correctness of implant parameters. Stiffness of the silicon
springs and the coupler is another important parameter of
the IMEHD that should be analysed with special care in
the future.
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