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High-strength concrete (HSC) walls have been increasingly used in the past decades. However, the time-dependent behavior of
HSC wall panels in two-way action was not investigated, and the time effect of creep is not included in the design codes in most
countries. For this purpose, the nonlinear long-term behavior of two-way HSC wall is investigated in this paper. A theoretical
model is developed using time-stepping analysis considering geometric nonlinearity and creep of concrete. A rheological material
model that is based on the generalized Maxwell chain is adopted to model the concrete creep. Von Karman plate theory is used to
derive the incremental governing equations. +e equations are solved numerically at each time step based on a Fourier series
expansion of the deformations and loads and numerical multiple shooting method. It shows that the model can effectively predict
the time-dependent behavior of two-way HSC panels, where the out-of-plane deflection and internal bending moments increase
with time due to the combined effects of creep and geometric nonlinearity, which may ultimately lead to creep buckling failures. A
parametric study shows that the long-term behavior of the panel is very sensitive to the in-plane load level and eccentricity,
slenderness ratio, aspect ratio, and edge support conditions.

1. Introduction

High-strength concrete (HSC) has seen an increasing use in
engineering structures in the past decades due to its superior
material properties such as high strength and stiffness,
enhanced durability, and lightweight in contrast to normal-
strength concrete (NSC). One of the most significant ap-
plications of HSC is load-bearing walls used in multistorey
and high-rise building. Load-bearing wall can be used as a
single structural member in one-way action with restraint
along top and bottom edges only, or in a wall group, such as
lift and stair core, where they are restrained on four sides
behaving in two-way action. +e use of HSC may lead to
thinner and hence more slender wall panels in practice,
which highlights the need to investigate and revise their
buckling capacity and its degradation with time due to the
effect of concrete creep.

In general, wall panels normally carry vertical in-plane
compression loads transferred from the superstructure and
out-of-plane transverse loads, such as wind loads and hy-
drostatic pressures. In addition, wall panels are subjected to
bending moments along top and bottom edges resulted from
bending moments transferred from horizontal slab and
beam at the connections and the eccentricity of in-plane
compression loads. Consequently, wall panels can deform
both axially and laterally. +e coupling of lateral or out-of-
plane deflection with vertical in-plane loads may produce
additional bending moments due to geometric nonlinearity
(2nd order P-Δ effect) at sections along the height of slender
walls and enlarge the existing internal bending moments.
+is geometric nonlinear effect may lead slender panels to
buckle. In light of the trend towards the use of more slender
walls, this geometric nonlinear effect will become more
predominate in determining wall panel behavior.
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Moreover, due to creep of concrete, slender HSC wall
panel may undergo increased axial and out-of-plane de-
formation with time under sustained in-plane and out-of-
plane loads. +e combination of a sustained compression
load with a gradually increasing deflection with time may
lead to excessive lateral deflection and cracking of the wall
over time in serviceable state and may lead to loss of stability
ultimately due to second-order effect, so-called “creep
buckling”. Alternatively, the creep and shrinkage defor-
mations may not necessarily lead to buckling failure, but
they may increase the internal stresses and decrease the
residual strength and the factor of safety of the wall member.
In order to predict these effects for a reliable analysis and
design of HSC panels, the variation in the creep strains with
time and through the height and thickness of the wall, along
with the geometric nonlinearity, need to be considered.

A sizable amount of studies was carried out with regard
to one-way wall panels, particularly the strength of RC walls
[1–7]. +e outcomes from these research studies formed the
basis for wall design formulae in most codes of practice, such
as ACI318 [8] and AS3600 [9]. However, these investigations
did not consider the time-dependent behavior of one-way
walls. In addition, current design practice in many countries
including US and Australia does not include these long-term
effects in the wall panel design. +e only studies regarding
time-dependent performance of HSC wall panels were
conducted by the first author [10, 11]. Yet, these investi-
gations only focused on their behavior in one-way action,
and they did not recognize the contribution of two-way
action to the load-carrying capacity of wall panel. +e two-
way behavior differs substantially from one-way behavior in
the way that two-way wall panel develops biaxial curvatures
under in-plane and/or out-of-plane loads in contrast to
uniaxial curvature in one-way wall panel. As a result, the
cracking pattern, deflection, and load-carrying capacity of
two-way walls are different from those of one-way panels.
Hence, the current one-way theoretical model cannot be
used to predict the behavior of two-way panels.

A number of studies were reported in the literature in
relation to two-way behavior of concrete wall panels. Swartz
et al. [12] tested 24 rectangular concrete walls in two-way
action which were subjected to uniaxial compression along
shorter edges and simply supported along all edges. +e
concrete wall panels failed by buckling (biaxial curvature) at
stress levels remarkably lower than the concrete compressive
strength. Saheb and Desayi [13] tested 24 rectangular RC
wall panels loaded eccentrically in two-way action. +e
panels were simply supported along four edges and were
subjected to in-plane loading. It was found that the ultimate
strength of wall panels in two-way action increased linearly
with the increase in the aspect ratio as well as the vertical
reinforcement. On the contrary, it reduced nonlinearly with
the increase in thinness or slenderness ratios. Aghayere and
Macgregor [14] reported test results on 9 concrete plates,
simply supported along four edges and subjected to com-
bined uniform in-plane compression and uniform trans-
verse loading. In most axially loaded specimens, buckling of
the reinforcement adjacent to the compression face took
place at failure, and all final failures were compression

failures due to crushing of the concrete. +e cracks in the
tension face tended to propagate in an orthogonal pattern.
+e presence of the axial in-plane load results in a reduction
in the transverse load-carrying capacity due to the second-
order effect. Ghoneim and MacGregor [15] tested 19 two-
way NSC plates that were subjected to combined in-plane
compressive and transverse loads and simply supported on
the four edges. +e specimens tested under combined
transverse and in-plane compressive loads failed explosively,
indicating a buckling failure mode. +e test results indicated
that the slenderness of the plate and the loading sequence
mainly determined the effect of the in-plane load on the
lateral load capacity of RC plates. Ghoneim and MacGregor
[16] found that, for stocky square plates, the presence of the
in-plane load increased the lateral load capacity, as the
geometrically nonlinear effect was insignificant. On the
contrary, the presence of the in-plane load resulted in
substantial reduction in the lateral load capacity of slender
plates since the second-order effect of the in-plane load
dominated the behavior. Sanjayan and Maheswaran [17]
carried out experiments on 8 high-strength concrete walls
loaded eccentrically with simple support conditions along 4
edges. It was found that the load capacity of the wall was
significantly influenced by the eccentricity of in-plane
loading, while it was insensitive to the concrete strength. In
addition to the experimental investigations, a small amount
of analytical studies have been reported with regard to the
short-term behavior of two-way concrete wall panels
[18–21]. Simply supported two-way panels that carried out-
of-plane transverse loads and various in-plane loads were
investigated in these studies. +e load-displacement re-
sponses of the specimens were obtained either by imple-
menting finite element (FE) analysis or based on assumed
deflection function. It was found that the ultimate strength
of the two-way panels decreased with the increase in slen-
derness ratio.

Nonetheless, all aforementioned studies focused on
short-term behavior of two-way concrete wall panels. To the
authors’ knowledge, no public literature has been reported
on the long-term behavior of two-way HSC walls that are
subjected to sustained loads. +erefore, the main purpose of
this paper is to theoretically investigate the time-dependent
performance of HSC walls in two-way action under the
influence of concrete creep. A well-established model has
been developed by the first author [22] that is capable of
estimating the long-time nonlinear behavior of slender HSC
wall panels under axial compression. +e capability of the
analytical model is demonstrated by good correlations be-
tween predicted and experimental results. Based on that, a
new theoretical model that utilizes the mechanics of thin
plates is developed in this study for the long-term analysis of
two-way HSC wall panels. A time-stepping analysis is used
to account for the effect of creep. A rheological material
model is adopted, which is based on the generalizedMaxwell
chain. In order to highlight the effect of creep only, a linear
viscoelastic material behavior is assumed for concrete. +e
incremental governing equations are solved numerically at
each time step based on a Fourier series expansion of the
deformations and loads in one direction and using the
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numerical multiple shooting method in the other direction.
+e mathematical formation of the model is presented first,
followed by numerical and parametric studies.

2. Mathematical Formulation

+e mathematical formulation includes derivation of in-
cremental equilibrium equations, constitutive relations, and
governing equations of two-way panels. +e general gov-
erning equations derived here are applicable to any com-
bination of external loads and boundary conditions.+ey are
refined in the subsequent numerical studies to represent
typical loading and edge support conditions of two-wayHSC
wall panels. An incremental time-stepping analysis is
implemented in order to account for time-dependent var-
iation in internal stresses and increase in deformations of the
wall panel with time due to creep. For this, the time of
concern t, which is measured from the time of first loading,
is subdivided into nt discrete time steps with ∆tr � tr − tr− 1
(r� 1, 2, . . ., nt). +e sign conventions for the coordinates,
loads, and displacements are shown in Figure 1. +e middle
plane of the panel is taken as the xy plane, where the x and y
axes are directed along the edges. +e z axis is taken normal
to the middle plane and measured positive out of paper
(right-hand rule). +e forces and bending moments at the
boundaries as well as the lateral loads are also presented in
Figure 1. +e torsional moments at the boundaries are not
shown in the figure for brevity and clarity.

2.1. Kinematic Relations. In typical HSC wall panels, the
dimension in the z direction and the thickness is much

smaller than those in the other two directions. +erefore, a
plane stress condition is adopted, where the stresses in the z
direction including the normal and shear stresses are equal
to zero.+e theoretical model is based on Von Karman plate
with large displacements. +e incremental kinematic rela-
tions of the plate read

Δεxx tr( 􏼁 �
zΔ u tr( 􏼁

zx
+
1
2

zΔw tr( 􏼁

zx
􏼠 􏼡

2

+
zw tr− 1( 􏼁

zx

zΔw tr( 􏼁

zx
− z

z2Δw tr( 􏼁

zx2 ,

​ Δεyy tr( 􏼁 �
zΔ v tr( 􏼁

zy
+
1
2

zΔw tr( 􏼁

zy
􏼠 􏼡

2

+
zw tr− 1( 􏼁

zy

zΔw tr( 􏼁

zy
− z

z2Δw tr( 􏼁

zy2 ,

Δcxy �
zΔ u tr( 􏼁

zy
+

zΔ v tr( 􏼁

zx
− 2z

z2Δw tr( 􏼁

zx zy
+

zw tr− 1( 􏼁

zy

zΔw tr( 􏼁

zx

+
zw tr− 1( 􏼁

zx

zΔw tr( 􏼁

zy
+

zΔw tr( 􏼁

zx

zΔw tr( 􏼁

zy
,

(1)

where εxx and εyy are the total normal strains in the x and y
directions and cxy is the total shear strain in the xy planes.
Each total strain has two components: the instantaneous
strain and creep strain. u and v are the in-plane displace-
ments along x and y directions, w is the out-of-plane de-
flection along z axis, and z/zx and z/zy denote the partial
derivatives with respect to x and y, respectively; ∆ represents
the incremental operator, and note that any displacement
that appear without the ∆ operator is the accumulated
known quantity from the previous time step.

2.2. Equilibrium Equations. +e variational principle in
virtual work is used to derive the nonlinear incremental
equilibrium equations along with the boundary conditions,
where

δU + δW � 0, (2)

with δU and δW as the internal virtual work and external
virtual work and δ is the variational operator. +e incre-
mental equilibrium equations read
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Figure 1: Sign conventions of the investigated panel.
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where Nxx and Nyy are the internal axial forces in the x and y
directions and Nxy are the internal shear force in the xy
plane;Mxx andMyy are the internal bending moments along
x and y axes, and Mxy is the internal torsional bending
moment. +e general boundary conditions at x� 0 and x� a
are given by
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where u, v, and w are the external deformations at the edges
and i� 0 at x� 0 and i� a at x� a. +e general boundary
conditions at y� 0 and y� b are given by
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where u, v, and w are the external deformations at the edges
and i� 0 at y� 0 and i� b at y� b.

2.3. Constitutive Relations. +e concrete is considered as
linear viscoelastic which incorporates the creep effect. A
rheological model which is based on the generalized Max-
well chain is used to formulate the long-term constitutive
relations of concrete [23]. +e relaxation moduli can be
approximated as follows:
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where Rxx(t, t′), Ryy(t, t′), and Rxy(t, t′) are the relaxation
moduli in x and y directions and xy plane, φ(t, t′) is the
creep coefficient of the concrete at time t for a load applied at
time t′, Ec and Gc are the elastic and shear moduli of
concrete, and υ is Poisson’s ratio, which is assumed to be
time-independent [24].+us, due to the lack of experimental
data regarding the creep behavior of concrete in shear, the
latter is assumed to be similar to the creep behavior under
normal stresses.+e relaxation moduli can be expanded into
Dirichlet series as follows:
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where Rxx, Ryy, and Rxy are the approximated relaxation
moduli, Eμ and Gμ are the moduli of the µth spring in the
Maxwell chain for the modelling in the normal and shear
directions, m is the number of units, and τµ is the relaxation
time of the µth unit. Note that, in this study, m and τµ are
assumed to be identical in the normal and shear directions
for simplicity. +e incremental constitutive relations of
plane stress state can be formulated as follows based on
numerical time integration:
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where σxx
μ , σyy

μ , and σxy
μ are the stresses in the µth Maxwell

unit. G″(tr) and Gμ are given by
G″(tr) � (E″(tr)/[2(1 + ])]) and Gμ � (Eμ/[2(1 + ])]). +e
constitutive relations at the cross-section level of the panel
are determined using the classical definition of stress re-
sultants and using the constitutive relations in equation (11)
and the kinematic relations in equation (1) as follows:
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where C″ and D″ are axial and flexural viscoelastic rigidities of
the two-way panel; ΔNxx(tr) and ΔNyy(tr) are the incre-
mental effective axial forces in the x and y directions, and
ΔNxy(tr) is the incremental effective shear force in the xy
plane; and ΔMxx(tr) and ΔMyy(tr) are the incremental ef-
fective bending moments along x and y axis, and ΔMxy(tr) is
the incremental effective torsional bending moment. Note that
the forces and bendingmoments are defined as the distributions
of these quantities per unit width. +e viscoelastic rigidities,
which account for the internal reinforcement, are given by
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C″ �
E″

1 − ]2
h +(n − 1)

As

b
+(n − 1)

As
′

b
􏼠 􏼡􏼢 􏼣,

D″ �
E″

1 − ]2
h3

12
+(n − 1)

Asz
2
s

b
+(n − 1)

As
′z′2s
b

􏼠 􏼡􏼢 􏼣,

(17)

where h is the thickness of the panel; n � (Es/E″), in which
Es is the elastic modulus of steel reinforcement;As and As

′ are

the areas of the steel reinforcements at the inner and outer
faces of the panel; and zs and zs

′ are the locations of the
corresponding reinforcements measured from the mid-
thickness of the panel. For simplicity, As and As

′ are taken as
the minimum reinforcement ratios between x and y di-
rections.+e effective forces and bendingmoments are given
as

ΔNxx tr( 􏼁 � 􏽘

m

μ�1
1 − e

− Δtr/τμ􏼐 􏼑N
xx
μ tr− 1( 􏼁 + 􏽚

(h/2)

− (h/2)

E″ tr( 􏼁

1 − ]
Δεshdz,

ΔNyy tr( 􏼁 � 􏽘

m

μ�1
1 − e

− Δtr/τμ􏼐 􏼑N
yy
μ tr− 1( 􏼁 + 􏽚

(h/2)

− (h/2)

E″ tr( 􏼁

1 − ]
Δεshdz,

ΔNxy tr( 􏼁 � 􏽘

m

μ�1
1 − e

− Δtr/τμ􏼐 􏼑N
xy
μ tr− 1( 􏼁 + 􏽚

(h/2)

− (h/2)

E″ tr( 􏼁

2(1 + ])
Δεshdz,

(18)

ΔMxx tr( 􏼁 � 􏽘
m

μ�1
1 − e

− Δtr/τμ􏼐 􏼑M
xx
μ tr− 1( 􏼁 + 􏽚

(h/2)

− (h/2)

E″ tr( 􏼁z

1 − ]
Δεshdz,

ΔMyy tr( 􏼁 � 􏽘
m

μ�1
1 − e

− Δtr/τμ􏼐 􏼑M
yy
μ tr− 1( 􏼁 + 􏽚

(h/2)

− (h/2)

E″ tr( 􏼁z

1 − ]
Δεshdz,

ΔMxy tr( 􏼁 � 􏽘

m

μ�1
1 − e

− Δtr/τμ􏼐 􏼑M
xy
μ tr− 1( 􏼁 + 􏽚

(h/2)

−(h/2)

E″ tr( 􏼁z

2(1 + ])
Δεshdz.

(19)

2.4. Governing Equations. +e incremental governing
equations are formulated by substitution of the stress re-
sultants in equations (15)–(19) into the equilibrium equa-
tions of equations (3)–(4), noting that terms of higher
product of the incremental displacements and forces are
neglected due to the use of sufficiently small time incre-
ments. +e incremental governing equations are partial
differential equations in terms of the unknown
displacements:

ψp(Δu,Δv,Δw) � 0, (p � 1, 2, 3), (20)

where ψp consists of differential operators. For brevity, the
explicit form of these equations is not presented here. +e
equations and the boundary conditions (equations (5)–(8))
are reduced to a set of ordinary differential equations by a
separation of variables and expansion into the truncated
Fourier series [24, 25]:

Δu(x, y), Δv(x, y), Δw(x, y)􏼈 􏼉

� 􏽘
2F

m�1
Δum(x), Δvm(x), Δwm(x)􏼈 􏼉gm(y),

(21)

where F � (Fu, Fv, or Fw) is the number of terms in the
relevant Fourier series. +e initial state or previous

accumulated displacements and the external loads along the
panel and at the boundaries take the following form:

u(x, y), v(x, y), w(x, y)􏼈 􏼉

� 􏽘
2F

m�1
um(x), vm(x), wm(x)􏼈 􏼉gm(y),

(22)

Q0
xx(x, y), Qa

xx(x, y), N0
xx(x, y),

Na
xx(x, y), M0

xx(x, y), Ma
xx(x, y)

􏼨 􏼩

� 􏽘
2F

m�1

Q0
xxm(x), Qa

xxm(x), N0
xxm(x),

Na
xxm(x), M0

xxm(x), Ma
xxm(x)

􏼨 􏼩gm(y),

Q0
yy(x, y), Qb

yy(x, y), N0
yy(x, y),

Nb
yy(x, y), M0

yy(x, y), Mb
yy(x, y)

⎧⎨

⎩

⎫⎬

⎭

� 􏽘
2F

m�1

Q0
yym(x), Qb

yym(x), N0
yym(x),

Nb
yym(x), M0

yym(x), Mb
yym(x)

⎧⎨

⎩

⎫⎬

⎭gm(y),

qz(x, y) � 􏽘
2F

m�1
qzm(x)gm(y).

(23)

+e functions gm(y) are
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gm(y) �

sin
mπ
b

y􏼒 􏼓, m � 1, 2, . . . , F,

cos
(m − F)π

b
y􏼢 􏼣, m � F + 1, F + 2, ..., 2F.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(24)

By minimizing the errors due to the truncated Fourier
series by the Galerkin procedure with trigonometric
weighting functions, the partial differential equations are
converted into linear ordinary differential equations in the x
direction:

Ψm
p (x) � 􏽚

b

0
ψp(u, v, w)gm(y)dy, (p � 1, 2, 3; m � 1, 2, ..., 2F).

(25)

+e governing equations along with the boundary
conditions are solved through the use of the multiple
shooting method at each time step [25, 26]. +e analysis
presented here is also conducted up to a certain time (the
critical time) where the deformations of the system exceed a
prescribed limit [27, 28]. A proper time step is selected for a
given load level in the way that the difference between the
predicted critical times of creep buckling for the selected
time-step and one-half of it is of minor significance.

3. Numerical Study

3.1. Numerical Example. +e wall panel studied here is
5000mm high (b), 3500mm long (a), and 150mm thick (h).
+e compressive strength and elastic modulus of the con-
crete are f’c � 80MPa and Ec � 39.6 GPa, respectively. +e
panel is assumed to be loaded at the age of 28 days.+e creep
coefficient is calculated following AS3600, which is given by

φ(t) �
1.45t0.8

t0.8 + 17
. (26)

+e number of Maxwell units (m) used to model the
viscoelastic behavior of concrete is taken as five in this
example with τμ � 5μ− 1 (days). +e spring constants in the
Maxwell model yielded by the least square methods are
E1 � 1684MPa, E2 � 7537MPa, E3 � 8674MPa,
E4 � 4050MPa, E5 �1199MPa, and E6 �16287MPa.+e wall
is assumed to be reinforced both vertically (y direction) and
horizontally (x direction) at both faces. +e reinforcement
ratios in the x and y directions (ρx and ρy), defined by the
total reinforcement area divided by the cross-sectional area
of the member, is taken as 0.2% in each direction. +e elastic
modulus of the steel reinforcement is taken as 200GPa (Es)
in the study. 20mm concrete cover is applied to the rein-
forcement. In this study, the wall panel is considered to be
simply supported along 4 edges and subjected to uniform in-
plane sustained compression loads eccentrically applied at
top and bottom ends in the vertical (y) direction. +e wall is
not taking any out-of-plane transverse loads. +is leads to
N0

xy � Na
xy � Nb

xy � N0
xx � Na

xx � 0. +e vertical com-
pression loads imposed on the top and bottom edges equal
22.4 kN/mm (N0

yy � Nb
yy � 22.4(kN/mm)), which equals to

60% of the elastic buckling load (Pcr � 37.3 kN/mm), that is
determined according to the classical equation given as
follows [29]:

Pcr �
4D″π2

b2
�
4π2

b2
Ec

1 − ]2
h3

12
+(n − 1)

Asxz2
sx

b
􏼠 􏼡􏼢

+(n − 1)
Asx
′ z′2sx

b
􏼠 􏼡􏼣.

(27)

+e eccentricities (e) at both edges are h/6, which is equal
to 25mm.+e eccentricity is considered in the mathematical
model by applying vertical axial compression loads along the
top and bottom edges (N0

yy and Nb
yy) and out-of-plane

bending moments M0
yy and Mb

yy along both ends, whose
magnitude is equal to N0

yy · e and Nb
yy · e In this numerical

example, the end bending moments are both positive.
+e time-dependent variation in the out-of-plane

deflection and the bending moments at the center of the
panel are shown in Figures 2 and 3. +e time t is measured
since the time of first loading. +e deflection is normalized
with respect to the thickness of the panel h. It can be seen
that the deflection of the panel and hence the bending
momentsMxx andMyy increase with time as a result of the
combined effects of creep and geometric nonlinearity. +e
out-of-plane deflection as well as the bending moment
tends to asymptotically increase towards infinity beyond a
certain time. +e buckling failure is considered to occur
when the normalized out-of-plane deflection (w/h) rea-
ches a given limit. +e limit in this numerical study is
taken as 4, and the corresponding time, referred to as the
critical time, equals 4900 days in this case. As indicated in
Figure 3(b), the ratio of Myy/Mxx also increases with time,
which implies that stress redistribution occurs with time,
and the influence of the geometric nonlinearity becomes
more pronounced in the x direction than in the y
direction.

+e out-of-plane deflection distribution and the bending
momentsMxx andMyy distribution along x and y directions
at various times are shown in Figures 4–6. +e result shows
that the time-dependent increase in the out-of-plane de-
flection caused significant increase in bending moments in
both x and y directions. It also demonstrates the ability of the
proposed theoretical model in predicting and describing the
time-dependent response of thin panels. It is clear by
inspecting Figure 6 that, due to the creep and geometric
nonlinearity, the bending moment Myy is increasing with
time, and at some time, the maximum bending moment may
appear at the center rather than at the edges which is the
location of maximumMyy for the panel under instantaneous
loading.+e shift of the maximum deflection w and bending
moments Myy from the edges to the middle as time goes
should be carefully taken into consideration in designing the
concrete panels as the maximum values in the y direction
appear at different locations for short-term response and
long-term response. Failure to recognize these time effects
may result in unexpected serviceability problems such as
excessive deflection and cracking or even structural failure
over time.
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Figure 2: Variation with time of (a) out-of-plane deflection and (b) bending moment Myy at the center of the panel.
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Figure 3: Variation with time of (a) bending moment Mxx and (b) the ratio of Myy/Mxx at the center of the panel.
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Figure 4: Deflection distribution through the x direction (a) and y direction (b) at three different times.
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3.2. Parametric Study. A parametric study is carried out in
this section to examine the effects of the key factors on the
time-dependent response of HSC panels. +e factors include
the magnitude and eccentricity of the sustained in-plane load
(N0

yy), the slenderness ratio defined as b/h, boundary con-
ditions, and the aspect ratio defined as a/b. A 2m× 2m square
panel is used as a reference to compare with other panels. All
other panels investigated here have the same dimensions as
the reference panel unless specifically stated. Moreover, they
contain equal reinforcement ratios in both orthogonal di-
rections (ρx � ρy) and are equally reinforced at both faces.

3.2.1. Effect of Load Level. Figure 7 presents the influence of
the level of the sustained load on the time-dependent be-
haviour of the reference two-way HSC panel that is simply
supported on four edges. For all load levels, the same di-
mensions, eccentricity, reinforcement ratios (ρx � ρy � 0.2%),
and material properties are applied. It can be seen that the
increase in the imposed load level leads to earlier occurrence

of buckling (shorter critical time). It can also be observed
that the panel studied here is stable in the long run under
load level that is lower than 50% of the elastic buckling load
Pcr, as the increase in the out-of-plane deflection stops in-
creasing and becomes almost constant after a certain time.
+e minimum load level to cause creep buckling for the
examined panel is 51% of its elastic buckling load.+is result
is in accordance with that obtained using the simplified
effective modulus method (EMM), where Ec in equation (27)
is replaced with (Ec/[1 + φ(t, t′)]). Nevertheless, if cracking
is taken into account or biaxial loading scenarios are con-
sidered, the simplified effective modulus method might lead
to inaccurate results.

3.2.2. Effect of Load Eccentricity. Figure 8 reveals the change
in the out-of-plane deflection at the center of the square panel
with time under the in-plane compression load with different
eccentricities. +e load is equal to 52% of the elastic buckling
load. As seen in the figure, the time-dependent behaviour is
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Figure 6: Bending moment Myy distribution through x direction (a) and y direction (b) at three different times.
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Figure 5: Bending moment Mxx distribution through x direction (a) and y direction (b) at three different times.
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very sensitive to the eccentricity. +us, it is essential in the
design to consider different load scenarios as small inaccuracy
in estimating that the actual load eccentricity may result in
catastrophic buckling failure in the long term.

3.2.3. Effect of Slenderness Ratio. +e normalized deflection
at the center of the panels with various thicknesses is plotted
against the time in Figure 9. +e load level, the eccentricity,
and the reinforcement ratios in both orthogonal directions
are 0.6Pcr, h/6, and 0.2%, respectively, where Pcr is the elastic
buckling load corresponding to the panel with 100mm
thickness in order to keep the load unchanged for the three

different cases. +ree different thicknesses 90mm, 100mm,
and 120mm are investigated, which give the slenderness
ratios of 22.2, 20, and 16.7 (b/h). It can be seen that, under
the same magnitude of sustained load, the panels that are
90mm and 100mm thick are unstable, whereas the panel
with 120mm thickness exhibits stable behavior. For the
unstable panels, the critical time increases with increasing
thickness. +erefore, in practical design and use of the two-
way panels, the creep buckling failure can be prevented by
increasing the thickness of the panel.

3.2.4. Effect of Boundary Condition. +e support conditions
are varied at the top and bottom edges (y� 0 and y� b), while
the side edges at x� 0 and x� a remain simply supported.

+ree different cases are investigated in this section, in-
cluding simply supported with eccentric loading at top and
bottom edges (Case I), simply supported at top and bottom
edges with concentric loading at one edge and eccentric loading
at the other (Case II), and fixed support at bottom end and
simply supported with eccentric loading at the other (Case III).
+e details are given in Table 1. +e panel has the same
geometric and material properties as the reference panel.

+e variation in the center deflection with time for the
three cases is depicted in Figure 10. It can be seen that creep
buckling happens to both Case I and Case II. It can also be
seen that Case I that is loaded eccentrically at both ends is
more vulnerable to creep buckling. On the contrary, Case III
is the stiffest one among the three cases due to the fixed
support at one end, which leads to an ultimate stable state.

3.2.5. Effect of Aspect Ratio. +e result for the effect of aspect
ratio is shown in Figure 11, where five aspect ratios, namely,
0.5, 0.75, 1, 1.5, and 2 are investigated. +e aspect ratios are
achieved by varying the height (b) of the panel, whereas the
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Figure 7: Influence of load level on the long-term behavior of the
HSC panel for the square panel (e� h/6, [ρx, ρy]� 0.2%, and
a× b× h� 2000× 2000×100mm).

w/
h

e = h/20
e = h/12

e = h/6
e = h/3

100 101 102 103 10510–1 104

t (days)

0

0.5

1

1.5

2

2.5

3

3.5

4
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width (a) and thickness (h) remain the same as the reference
panel. All panels possess the same reinforcement ratio of
0.2% in both orthogonal directions and under the in-plane
compression load in the x direction with N0

yy � 0.6Pcr and
e� h/6. +e maximum deflections for the panels with aspect
ratio from 0.5 to 1.5 appear at the center of the specimen,
whereas for the panel with b/a� 2, the maximum deflection
occurs around a quarter of the height. It is observed in the
figure that the long-term behavior of the two-way panel is
substantially influenced by the aspect ratio, and the panel
with aspect ratio of 1 is the most critical case. +e critical
time decreases either with the increase in the aspect ratio as
long as it is larger than 1 or with the decrease in the aspect
ratio when the aspect ratio is smaller than 1. +e increase in
the critical time associated with the increase in aspect ratio
can be explained by the fact that the panel with a greater
height (b) is stiffer and hence has smaller deflections under
the same load level, which is obvious by observing the in-
stantaneous deflection.

4. Conclusions

Reinforced high-strength concrete walls have been developed
and used extensively over years. Yet, there is a shortage of
studies on the long-term behavior of walls in two-way action
under sustained loads such that the impact of creep effect on
wall behaviors is still not clear. Even major concrete stan-
dards, such as ACI318 [8] in US and AS3600 [9] in Australia,
have not incorporated the time effects of creep in wall designs.
+erefore, a theoretical model is developed in this paper to
investigate the time-dependent behavior of HSC two-way wall
panels. +e model is based on a time-stepping analysis that
incorporates the variation in internal stress with time. It
accounts for concrete creep through a rheological viscoelastic
model that is based on generalized Maxwell chain and
considers its coupling effect with geometric nonlinearity.

+e capabilities of the theoretical model are examined
and demonstrated through numerical examples and para-
metric studies. It has been shown in the numerical study that
the increase in out-of-plane deflection and the internal
bending moments may lead to creep buckling failures under
axial sustained loads that are as low as 51% of the elastic
classical buckling load.+e estimated buckling strength with
time is much smaller than the elastic buckling strength,
which emphasizes the importance of considering these long-
term effects in the design of HSC wall panels.

+e parametric study carried out in this investigation
reveals that some key parameters such as the level and
eccentricity of in-plane vertical loads, slenderness ratio, edge
support conditions, and aspect ratio are vital in determining
the creep buckling response of HSC panels. +erefore, more
research is required to derive a wall panel design equation
that can incorporate these crucial factors along with the time
effects of creep.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.

Table 1: Details of boundary conditions and loads.

Boundary support
condition Vertical in-plane load

x� 0 x� a y� 0 y� b N0
yy Nb

yy

Case I SS SS SS SS Eccentric
(e� h/6)

Eccentric
(e� h/6)

Case
II SS SS SS SS Eccentric

(e� h/6) Concentric

Case
III SS SS Fixed SS N/A Eccentric

(e� h/6)
Note. SS, simply supported.
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Figure 10: Influences of boundary conditions on the long-term
behavior of the square HSC panel (N0

yy � 0.6Pcr, [ρx, ρy]� 0.2%,
and a× b× h� 2000× 2000×100mm).

100 101 102 103 10510–1 104

t (days)

w/
h

0

0.5

1

1.5

2

2.5

3

3.5

4

a/b = 0.5
a/b = 0.75
a/b = 1

a/b = 2
a/b = 1.5

Figure 11: Influence of aspect ratio on the long-term behavior of
the HSC panel (N0

yy � 0.6Pcr, e� h/6, [ρx, ρy ]� 0.2%, and
a× h� 2000×100mm).

Mathematical Problems in Engineering 11



Conflicts of Interest

+e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

Financial support from Australian Research Council and
National Natural Science Foundation of China is gratefully
acknowledged. +e authors also acknowledge the guidance,
expertise, and assistance provided by Dr. Ehab Hamed in the
University of New South Wales, Australia. +is research was
funded by the Australian Research Council through a
Discovery Project (grant no. DP 120102762), National
Natural Science Foundation of China (grant no. 51608135),
and Taishan Scholars Program of Shandong Province, China
(tsqn201909127).

References

[1] G. D. Oberlender and N. J. Everard, “Investigation of rein-
forced concrete walls,” ACI Journal, vol. 74, no. 6, pp. 256–
263, 1977.

[2] S. M. Saheb and P. Desayi, “Ultimate strength of RC wall
panels in one-way in-plane action,” Journal of Structural
Engineering, vol. 115, no. 10, pp. 2617–2630, 1989.

[3] A. Gupta and B. V. Rangan, “High-strength concrete (HSC)
structural walls,” ACI Structural Journal, vol. 95, no. 2,
pp. 194–205, 1998.

[4] S. Fragomeni and P. A. Mendis, “Instability analysis of
normal- and high-strength reinforced-concrete walls,” Jour-
nal of Structural Engineering, vol. 123, no. 5, pp. 680–684,
1997.

[5] S. Fragomeni and P. A. Mendis, “Applicability of current
ACI318 wall design formula for high strength concrete walls,”
Advances in Structural Engineering, vol. 2, no. 2, pp. 103–108,
1998.

[6] J. H. Doh, “Experimental and Eeoretical Studies of Normal
and High Strength Concrete Wall Panels,” PhDEesis, Griffith
University, Mount Gravatt, Australia, 2002.

[7] S. E. El-Metwally, A. F. Ashour, and W. F. Chen, “Instability
analysis of eccentrically loaded concrete walls,” Journal of
Structural Engineering, vol. 116, no. 10, pp. 2862–2881, 1990.

[8] ACI318, Building Code Requirements for Structural Concrete
and Commentary, American Concrete Institute, Farmington
Hills, MI, USA, 2014.

[9] AS3600, AS3600-2009 Concrete Structures, Standards Asso-
ciation of Australia, Sydney, Australia, 2009.

[10] Y. Huang and E. Hamed, “Buckling of one-way high-strength
concrete panels: creep and shrinkage effects,” Journal of
Engineering Mechanics, vol. 139, no. 12, pp. 1856–1867, 2013.

[11] Y. Huang, E. Hamed, Z. T. Chang et al., “Time-dependent
buckling testing of eccentrically loaded slender high-strength
concrete panels,” ACI Structural Journal, vol. 115, no. 1,
pp. 41–51, 2018.

[12] S. E. Swartz, V. H. Rosebraugh, and M. A. Berman, “Buckling
test on rectangular concrete panels,” ACI Journal, vol. 71,
no. 1, pp. 33–39, 1974.

[13] S. M. Saheb and P. Desayi, “Ultimate strength of R.C. Wall
panels in two-way in-plane action,” Journal of Structural
Engineering, vol. 116, no. 5, pp. 1384–1402, 1990.

[14] A. O. Aghayere and J. G. Macgregor, “Tests of reinforced
concrete plates under combined in-plane and transverse

loads,” ACI Structural Journal, vol. 87, no. 6, pp. 615–622,
1990.

[15] M. G. Ghoneim and J. G. MacGregor, “Tests of reinforced
concrete plates under combined inplane and lateral loads,”
ACI Structural Journal, vol. 91, no. 1, pp. 19–30, 1994.

[16] M. G. Ghoneim and J. G. MacGregor, “Behavior of reinforced
concrete plates under combined inplane and lateral loads,”
ACI Structural Journal, vol. 91, no. 2, pp. 188–197, 1994.

[17] J. G. Sanjayan and T. Maheswaran, “Load capacity of slender
high-strength concrete walls with side supports,” ACI
Structural Journal, vol. 96, no. 4, pp. 571–577, 1999.

[18] A. O. Aghayere and J. G. Macgregor, “Analysis of concrete
plates under combined in-plane and transverse loads,” ACI
Structural Journal, vol. 87, no. 5, pp. 539–547, 1990.

[19] B. Massicotte, J. G. MacGregor, and A. E. Elwi, “Behavior of
concrete panels subjected to axial and lateral loads,” Journal of
Structural Engineering, vol. 116, no. 9, pp. 2324–2343, 1990.

[20] M. G. Ghoneim and J. G. MacGregor, “Prediction of the
ultimate strength of reinforced concrete plates under com-
bined inplane and lateral loads,” ACI Structural Journal,
vol. 91, no. 6, pp. 688–696, 1994.

[21] M. M. Attard, N. G. Minh, and S. J. Foster, “Finite element
analysis of out-of-plane buckling of reinforced concrete
walls,” Computers & Structures, vol. 61, no. 6, pp. 1037–1042,
1996.

[22] Y. Huang, E. Hamed, and S. J. Foster, “Creep buckling be-
havior of high-strength concrete panels in two-way action,” in
Proceedings of the Second International Conference on Per-
formance-Based and Life-Cycle Structural Engineering,
pp. 706–715, Brisbane, Australia, 2015.
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