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,e nonlinear vibrations and responses of a laminated composite cantilever plate under the subsonic air flow are investigated in
this paper. ,e subsonic air flow around the three-dimensional cantilever rectangle laminated composite plate is considered to be
decreasing from the wing root to the wing tip. According to the ideal incompressible fluid flow condition and the Kut-
ta–Joukowski lift theorem, the subsonic aerodynamic lift on the three-dimensional finite length flat wing is calculated by using the
Vortex Lattice (VL) method. ,e finite length flat wing is modeled as a laminated composite cantilever plate based on Reddy’s
third-order shear deformation plate theory and the von Karman geometry nonlinearity is introduced. ,e nonlinear partial
differential governing equations of motion for the laminated composite cantilever plate subjected to the subsonic aerodynamic
force are established via Hamilton’s principle. ,e Galerkin method is used to separate the partial differential equations into two
nonlinear ordinary differential equations, and the four-dimensional nonlinear averaged equations are obtained by the multiple
scale method. ,rough comparing the natural frequencies of the linear system with different material and geometric parameters,
the relationship of 1 : 2 internal resonance is considered. Corresponding to several selected parameters, the frequency-response
curves are obtained. ,e hardening-spring-type behaviors and jump phenomena are exhibited. ,e influence of the force ex-
citation on the bifurcations and chaotic behaviors of the laminated composite cantilever plate is investigated numerically. It is
found that the system is sensitive to the exciting force according to the complicate nonlinear behaviors exhibited in this paper.

1. Introduction

,e vibration of the plate and shell structures owing to air
flow is a matter of interest because of its significance in
design of launch vehicles and aircrafts [1]. Laminated
composite structures are widely used in aerospace field due
to its high strength-to-weight ratio, light weight, and long
fatigue life. ,e dynamic behavior of the laminated com-
posite plates in air flow has gained significant focus of at-
tention for many researchers. However, there are few
research works dealing with the complex nonlinear dy-
namics of the structure which is simplified as a laminated
composite cantilever plate subjected to subsonic air flow.
,erefore, the nonlinear dynamics of laminated composite
plates in subsonic flow will be worth analyzing in this work.

In the 1990s, the research on the vibration of plates has
been studied comprehensively. Some literature reviews on

nonlinear vibrations of plates were given by Chia [2, 3] and
Mehar and Panda [4]. ,e nonlinear vibrations of laminated
composite spherical shell panels were also entirely investi-
gated by Mahapatra et al. [5–9]. ,e vibration, bending, and
buckling behaviors about the functionally graded sandwich
structure have been investigated by Mehar et al. [10–13] and
Kar and Panda [14–16]. A third-order theory which
accounted for a cubic variation of the in-plane displacements
through the plate thickness was derived by Librescu and
Reddy [17]. Great progress has also been achieved in the
study of the nonlinear thermoelastic frequency analysis
[18–22]. Zhang [23] studied the global bifurcations and
chaotic dynamics of simply supported rectangular thin
plates under parametrical excitation by introducing von
Karman’s geometric nonlinearity plate theory.

Nonlinear analysis considering the geometrical and
material nonlinearity by FEM was conducted by Panda and
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Singh [24–26]. Onkar and Yadav [27] studied the nonlinear
random vibrations of a simply supported cross-ply lami-
nated composite plate using analytical methods, and the
accuracy of response evaluation was improved in this work.
Park et al. [28] investigated the nonlinear forced vibrations
of skew sandwich plates subjected to multiple of dynamic
loads, the influence of the skew angles, boundary conditions,
and loads on the nonlinear dynamic behaviors of composite
plates which were discussed. Chien and Chen [29] studied
the effects of initial stresses and different parameters on the
nonlinear vibrations of laminated composite plates on elastic
foundations. Singh et al. [30] used the higher-order shear
deformation plate theory to study the dynamic responses of
a geometrically nonlinear laminated composite plate lying
on different elastic foundations. Zhang et al. [31, 32] in-
vestigated nonlinear vibration, bifurcation, and chaotic
dynamics of laminated composite plates. Alijani et al.
[33, 34] studied nonlinear vibrations of FGM plates and
shallow shells, and the bifurcations and nonlinear dynamic
behaviors were analyzed in their papers. Amabili [35] used
the higher-order shear deformation theory to study the
nonlinear vibrations of angle-ply laminated circular cylin-
drical shells. Most recently, Zhang et al. [36–39] studied the
nonlinear vibrations of the laminated circular cylindrical
shells based on the deployed ring truss for antenna struc-
tures. ,e complex nonlinear dynamics of the circular cy-
lindrical shell were studied and the bifurcations and chaotic
behaviors were investigated by using the analytical methods
and numerical simulations.

,e research on nonlinear vibrations of plates and
shells excited by the aerodynamic force were also widely
investigated by researchers. In the early years, Dowell
[40, 41] studied the nonlinear oscillations of the fluttering
plate systematically. Literature reviews on the nonlinear
vibrations of circular cylindrical shells and panels with and
without fluid-structure interaction were given by Amabili
and Paı¨doussis [42]. ,e studies on the nonlinear vibra-
tion of laminated plates in air flow were mostly about the
plates in the supersoninc flow. Singha and Ganapathi [43]
investigated the effect of the system parameters on su-
personic panel flutter behaviors of laminated composite
plates. Haddadpour et al. [44] investigated the nonlinear
aeroelastic behaviors of FGM. Singha andMandal [45] used
a 16-node isoparametric degenerated shell element to study
the supersonic panel flutter behaviors of laminated com-
posite plates and cylindrical panels. Kuo [46] investigated
the effect of variable fiber spacing on the supersonic flutter
of rectangular composite plates. Zhao and Zhang [47]
presented the analysis of the nonlinear dynamics for a
laminated composite cantilever rectangular plate subjected
to the supersonic gas flows and the in-plane excitations. An
analysis on the nonlinear dynamics of an FGM plate in
hypersonic flow subjected to an external excitation and
uniform temperature change was presented by Hao et al.
[48]. ,e nonlinear dynamic behavior of an axially ex-
tendable cantilever laminated composite plate using pie-
zoelectric materials under the combined action of
aerodynamic load and piezoelectric excitation was studied
by Lu et al. [49]. Yao and Li [50] investigated the nonlinear

vibration of a two-dimensional laminated composite plate
in subsonic air flow with simply supported boundary
conditions. A simple subsonic aerodynamics model was
introduced in this work, which was used to analyze two-
dimensional infinite length plate.

In this paper, the nonlinear dynamics of the laminated
composite cantilever plate under subsonic air flow were in-
vestigated. According to the flow condition of ideal incom-
pressible fluid and the Kutta–Joukowski lift theorem, the
subsonic aerodynamic lift on the three-dimensional finite
length flat wing was calculated using the Vortex Lattice (VL)
method. ,e nonlinear partial differential governing equations
of motion for the laminated composite cantilever plate sub-
jected to the subsonic aerodynamic force were established via
Hamilton’s principle. ,e Galerkin method was used to sep-
arate the partial differential equation into two nonlinear or-
dinary differential equations. ,e numerical method was
utilized to investigate the bifurcations and periodic and chaotic
motions of the composite laminated rectangular plate. ,e
numerical results illustrate that there existed the periodic and
chaotic motions of the composite laminated cantilever plate.
,e hardening-spring characteristics of the composite lami-
nated cantilever plate were demonstrated by the frequency-
response curves of the system.

2. Derivation of the Subsonic Aerodynamic
Force on the Plate

2.1. Vortex Lattice (VL)Method. In this section, the subsonic
air flow on the plate will be calculated by using the VL
method. ,e VL method is a numerical implementation on
the general 3D lifting surface problem. ,is method dis-
cretizes the vortex-sheet strength distributing on each lifting
surface by lumping it into a collection of horseshoe vortices.
Figure 1 shows that a 3D lifting surface is discretized by a
vortex lattice of horseshoe vortices, in which all contribute to
the velocity V at any field point r.

For the finite wingspan, the high-pressure air below the
wing will turn over the low pressure air at the tip of the wing,
which will cause the pressure on the upper surface of the
wing tip to be equal to that of the lower surface. Unlike the
two-dimensional flow around the airfoil, the main charac-
teristic of the three-dimensional flow around the wing is the
variation of the lift along the wingspan. In order to calculate
the lift on the wing surface by using the vortex lattice
method, the Biot–Savart law is used to calculate the induced
velocity on the control point. ,e vortex strength of the
vortex system is obtained, and the pressure difference on the
upper and lower surface of the wing surface is deduced at the
same time.

,e velocity induced by a vortex line with a strength of Γn
and a length of dl is calculated by the Biot–Savart law as

dV �
Γn(dl × r)

4πr3
. (1)

As shown in Figure 2, the induced velocity is

dV �
Γn sin θdl

4πr2
. (2)

2 Mathematical Problems in Engineering



Let AB represent a vortex segment in which the vortex
vector points from A to B. C is a space point, and its normal
distance from the AB line is rp.

We can make an integral from the point A to the point B

to find out the size of the induced velocity:

V �
Γn

4πrp


θ2

θ1
sin θdθ �

Γn
4πrp

cos θ1 − cos θ2( . (3)

As r0, r1,and r2, respectively, represent the AB, AC, and
BC in Figure 2, the following relationships are established:

rp �
r1 × r2




r0
,

cos θ1 �
r0 · r1
r0r1

,

cos θ2 �
r0 · r2
r0r2

.

(4)

,en, the formula calculating the induced velocity
generated by the horseshoe vortex in the vortex lattice
method is derived:

V �
Γn
4π

r1 × r2
r1 × r2




r0 ·
r1
r1

−
r2
r2

  . (5)

From equation (5), the velocity induced by a vortex
segment AB at any point in the coordinate (x, y, z) can be
obtained:

VAB �
Γn
4π

Fac1AB  · Fac2AB , (6a)

VA∞ �
Γn
4π

z − z1n( j + y − y1n( k
z − z1n( 

2
+ y − y1n( 

2
 

⎧⎨

⎩

⎫⎬

⎭

× 1.0 +
x − x1n

x − x1n( 
2

+ y − y1n( 
2

+ z − z1n( 
2

⎡⎣ ⎤⎦,

(6b)

VB∞ � −
Γn
4π

z − z2n( j + y1n − y( k
z − z1n( 

2
+ y2n − y( 

2
 

⎧⎨

⎩

⎫⎬

⎭

× 1.0 +
x − x2n

x − x2n( 
2

+ y − y2n( 
2

+ z − z2n( 
2

⎡⎣ ⎤⎦,

(6c)

where VA∞ is the velocity induced by vortex lines from the
point A to ∞ along the x-axis and VB∞ is the velocity
induced by vortex lines from the point B to ∞ along the
x-axis.

,e total velocity induced by a horseshoe vortex at a
point (x, y, z) representing a surface element (i.e., the nth
panel element) is the sum of the various components cal-
culated by equations (6a)–(6c). ,erefore, the velocity in-
duced by 2N vortexes is obtained to get the total induced
velocity on the first m control points. It is expressed as

Vm � 
2N

n�1
Cm,nΓn. (7)

,e contribution of all vortices to the downwash of the
control point for the mth panel element:

wm � 
2N

n�1
wm,n. (8)

,en, the lift on the rectangular cantilever plate with a
sweep rectangular wing surface is computed according to the
VL method. ,e vortex system is arranged on the rectan-
gular wing surface in Figure 3.

2.2. Application of VL Method on the Plate. In Figure 3, the
variable b is twice the span of the wing, c is the taper ratio of
the wing surface, and c is equal to 1. ,e sweep angle is 0∘.
Five panel elements are specified on the wing surface, and
the vortex line is arranged at the leading edge 1/4 chord, and
the control point is located at 3/4 chord. ,e wing surface is
divided into 5 panel elements and each panel extends from
the leading edge to the trailing edge.

,e coordinates of the 5 × 1 vortices on the wing surface
are listed in Table 1.

,e downwash velocity of each surface element induced
at the control point is superimposed through the non-
penetrating condition:

wm � − V∞α. (9)

Control points

Field point V(r)

V∞ U

Ω

X

r
Y

Z

Figure 1: A 3D lifting surface discretized by a vortex lattice of
horseshoe vortices.

A

dl

C

θ2

θ

θ1

B

Vortex vector

r0

r2

r1

rp

Figure 2: ,e velocity induced by finite length vortex segments.
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,e solution of vortex strength is obtained by using 5
algebraic equations with unknown vortex strength:

Γ1 � 0.10082 4πbV∞α( , (10a)

Γ2 � 0.13180 4πbV∞α( , (10b)

Γ3 � 0.13901 4πbV∞α( , (10c)

Γ4 � 0.12496 4πbV∞α( , (10d)

Γ5 � 0.09887 4πbV∞α( . (10e)

According to the boundary conditions, the air flow is
tangent to the object surface at each control point to de-
termine the strength of each vortex. ,e lift of the wing can
be calculated by satisfying the boundary conditions. For any
wing that does not have an upper counter angle, the lift is
produced by the free flow that crosses the vortex line as there
is no side-washing speed or postwash speed.

According to a finite number of elements, the lift on the
plate is expressed as

L0 � ρ∞V∞

5

n�1
ΓnΔyn. (11)

As the geometric relationship of each facet is Δyn � 0.1b,
the lift on the flat plate can be rewritten as

L0 � ρ∞V
2
∞πb

2α(0.238184), (12)

where ρ∞ is the flow density, V∞ is the flow velocity, b is half
length of the wingspan, and α is the attack angle.

,e attack angle is considered to be affected by a periodic
disturbance α � α0 + α1 cosΩ2t. Taking the periodic per-
turbation into the aerodynamic force and according to
equation (12), the expression of the aerodynamic force
containing the perturbation term is obtained:

L � L0 + L1 cosΩ2t, (13)

where L0 � ρ∞V2
∞πb2α0(0.238184) and

L0 � ρ∞V2
∞πb2α1(0.238184).

3. Formulation

In this section, the dynamic equations of the laminated
composite cantilever plate are derived. As shown in Figure 4,
the parameters x, y, and z are, respectively, the spanwise
direction, the direction of the chord, and the vertical di-
rection of the plate. ,e plate is clamped at the position
x � 0. ,e ply stacking sequence is [0∘/90∘]S and the layer
number is N. ,e in-plane excitation is F � F0 + F1 cosΩ1t,
which is distributed along the chord direction of the plate.
,e vertical direction of the plate along the spanwise di-
rection is subject to subsonic aerodynamic force L.

,e nonlinear governing equations are established in the
Cartesian coordinate system. Reddy’s third-order shear
deformation plate theory is used:

u(x, y, t) � u0(x(t), y, t) + zϕx(x(t), y, t) − z
3 4
3h2 ϕx +

zw0

zx
 ,

(14a)

v(x, y, t) � v0(x(t), y, t) + zϕy(x(t), y, t) − z
3 4
3h2 ϕy +

zw0

zy
 ,

(14b)

w(x, y, t) � w0(x(t), y, t). (14c)

,e von Karman nonlinear strain-displacement relation
is introduced. ,e displacements and strain-displacement
relation are given as follows:

εxx �
zu0

zx
+
1
2

zw0

zx
 

2

,

εyy �
zv0

zy
+
1
2

zw0

zy
 

2

,

(15a)

cxy �
1
2

zu0

zy
+

zv0

zx
+

zw0

zx

zw0

zy
 ,

cyz �
1
2

zv0

zz
+

zw0

zy
 ,

czx �
1
2

zu0

zz
+

zw0

zx
 .

(15b)

Table 1: ,e coordinates of the attachment vortex and the control
point in the wing surface.

Panel element
number xm ym x1n y1n x2n y2n

1 0.25b 0.05b 0.833b 0b 0.833b 0.1b
2 0.25b 0.15b 0.833b 0.1b 0.833b 0.2b
3 0.25b 0.25b 0.833b 0.2b 0.833b 0.15b
4 0.25b 0.35b 0.833b 0.15b 0.833b 0.4b
5 0.25b 0.45b 0.833b 0.4b 0.833b 0.5b

Panel element

Control point

0.5b

c/4

3c/4

x

O
y

Figure 3: Layout of the vortex lattice on the flat wing surface.
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Substituting the expressions of the strain into the dis-
placements, we can obtain

εxx

εyy

cxy

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

�

ε(0)
x

ε(0)
y

c(0)
xy

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

+ z

ε(1)
x

ε(1)
y

c(1)
xy

⎧⎪⎪⎪⎨

⎪⎪⎪⎩
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⎪⎪⎪⎭

+ z
3

ε(3)
x

ε(3)
y

c(3)
xy
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⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

, (16a)

cyz

czx

  �
c(0)

yz

c(0)
zx

⎧⎨

⎩

⎫⎬

⎭ + z
2 c(2)

yz
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⎩
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⎭, (16b)
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(17)

c(0)
yz

c(0)
zx

⎧⎨

⎩
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⎭ �
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ϕx +
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⎭ � − c2
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zw0
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,

(18)

where

c1 �
4
3h2,

c2 � 3c1.

(19)

,e symmetric cross-ply laminated composite plate is
adopted, and we can obtain

σxx

σyy

σyz

σzx

σxy
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Q12

Q22

Q66

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(21a)

Q44

Q45

Q55

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
�

C2 S2

− CS CS

S2 C2

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

Q44

Q55
 , (21b)

C � cos θ,

S � sin θ,
(22)

where θ is the angle of laminated layer. ,e stiffness of each
layer is

Q11 �
E1

1 − ]12]21
,

Q12 �
]12E2

1 − ]12]21
,

Q22 �
E2

1 − ]12]21
,

Q44 � Q55 � Q66 � G12,

(23)

where Ei is the Young modulus, G12 is the shear modulus,
and ]12 is Poisson’s ratio.

According to Hamilton’s principle,


T

0
(δK − δU + δW)dt � 0. (24)

,e nonlinear governing equations of motion are given
as follows:

V∞

F

ba
x

y

z

a

L

Figure 4: Mechanical model of cantilever laminated composite plate.
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Nxx,x + Nxy,y � I0 €u0 + I1 − c1I3( €φx − c1I3
z €w0

zx
, (25a)

Nyy,y + Nxy,x � I0€v0 + I1 − c1I3( €φy − c1I3
z €w0

zy
, (25b)

Nyy,y

zw0

zy
+ Nyy

z2w0

zy2 + Nxy,x

zw0

zy
+ Nxy,y

zw0

zx
+ Nxx,x

zw0

zx

+ Nxx

z2w0

zx2 + c1 Pxx,xx + 2Pxy,xy + Pyy,yy  + 2Nxy

z2w0

zxzy

+ Qx,x − c2Rx,x 

+ Qy,y − c2Ry,y  + L − c _w0 � c1I3
z€u0

zx
+

z€v

zy
 

+ c1 I4 − c1I6( 
z€φx

zx
+

z€φy

zy
) + I0 €w0 − c

2
1I6

z2 €w0

zx2 +
z2 €w0

zy2 ,

(25c)

Mxx,x + Mxy,y − c1Pxx,x − c1Pxy,y − Qx − c2Rx( 

� I1 − c1I3( €u0 + I2 − 2c1I4 + c
2
1I6 €φx − c1 I4 − c1I6( 

z €w0

zx
,

(25d)

Myy,y + Mxy,x − c1Pyy,y − c1Pxy,x − Qy − c2Ry 

� I1 − c1I3( €v0 + I2 − 2c1I4 + c
2
1I6 €φy − c1 I4 − c1I6( 

z €w0

zy
,

(25e)

where c is the damping coefficient.
,e internal force is expressed as follows:

Nαβ

Mαβ

Pαβ

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

� 
(h/2)

−(h/2)
σαβ

1

z

z3

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

dz,

Qα

Rα

⎧⎨

⎩

⎫⎬

⎭ � 
(h/2)

−(h/2)
σαz

1

z2

⎧⎨

⎩

⎫⎬

⎭dz.

(26)

Substituting the internal force of equation (26) into
equations (25a)–(25e), we can obtain the expression of the
governing equation of motion by the displacements, which
are given in Appendix.

,e boundary conditions of the cantilever plate are
obtained at the same time as

x � 0: w � v � u � φy � φx � 0, (27)

x � a: Nxx � Nxy � Mxx � Mxy − c1Pxy � Qx � 0,

(28a)

y � 0: Nxy � Nyy � Myy � Mxy− c1Pxy � Qy � 0, (28b)

y � b: Nxy � Nyy � Myy � Mxy − c1Pxy � Qy � 0,

(28c)

Qx � Qx +
zMxy

zy
− c2Rx + c1

zPxx

zx
+

zPxy

zy
 , (28d)

Qy � Qy +
zMxy

zx
− c2Ry + c1

zPyy

zy
+

zPxy

zx
 . (28e)

,e dimensionless equations can be obtained by in-
troducing the following parameters:

w �
w0

h
,

t � tπ2
E

abρ
 

(1/2)

,

Aij �
Aij(ab)(1/2)

Eh2 ,

Bij �
(ab)(1/2)

Eh3 Bij,

Dij �
(ab)(1/2)

Eh4 Dij,

Eij �
(ab)(1/2)

Eh5 Eij,

Fij �
(ab)(1/2)

Eh6 Fij,

Hij �
(ab)(1/2)

Eh8 Hij,

Ii �
1

(ab)(i+1/2)ρ
Ii,

c �
(ab)2

π2h4(ρE)(1/2)
c,

x �
x

a
,

y �
b

y
,

Ωi �
1
π2

E

abρ
 

(1/2)

Ωi,

F �
b2

Eh3 F.

(29)

4. Frequency Analysis

High-dimensional nonlinear dynamic systems contain
several types of the internal resonant cases which can lead to
different forms of the nonlinear vibrations. When the system
exists a special internal resonant relationship between two
linear modes, the large amplitude nonlinear responses may
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suddenly happen which is dangerous in engineering and
should be avoided.

In order to study the internal resonance relationship
between two bending modes, the finite element model of the
cantilever laminated composite plate is established. ,e ply
stacking sequence is [0∘/90∘]S and the material parameters
[51] are shown in Table 2.

,e natural frequencies of bending vibration of lami-
nated composite cantilever plates with different span-chord
ratio and different layer thickness are calculated, and the
results are shown in Figures 5–8. When the span-chord ratio
is 2 :1 and single thickness is 6mm, the transverse vibration
modes of the cantilever laminated composite plate with
corresponding frequencies are shown in Figure 9.

In frequency analysis, the first mode natural frequency is
most important. Table 3 is to illustrate the 1st mode natural
frequency for 6 (thickness values)× 4 (span-chord ratio
values) from Figures 5–8.

Based on the results of numerical simulations, the first
six orders natural frequencies of the laminated composite
cantilever plate are obtained, as shown in Figures 5–8. It is
obviously observed that there is a proportional relation
between the two bending modes, such as relation 1 :1 in area
c of Figure 7, relation 1 : 2 in Figure 8, and relation 1 : 3 in
Figures 5–7. We select 1 : 2 internal resonance relationship
between two bending modes and the nonlinear vibrations of
the laminated composite cantilever plate are investigated in
the following analysis.

5. Perturbation Analysis

,ediscrete equation is derived by the Galerkin method, and
the discrete function adopts the following expression:

w0 � w(t)1X1(x)Y1(y) + w(t)2X2(x)Y2(y), (30)

where

Xi(x) � sin
λi

a
x − sinh

λi

a
x + αi cosh

λi

a
x − cos

λi

a
x ,

(31a)

Yj(y) � sin
βm

b
y + sinh

βm

b
y − αm cosh

βm

b
y + cos

βm

b
y ,

(31b)

where

cos λia coshλia − 1 � 0,

cos βmb coshβmb − 1 � 0,

(32a)

αi �
cosh λi − cos λi

sinh λi + sin λi

,

αm � −
cosh βm − cos βm

sinh βm − sin βm

.

(32b)

Similarly, the aerodynamic force is discretized by using
the modal function:

L � l1X1(x)Y1(y) + l2X2(x)Y2(y), (33)

where l1 and l2 represent the amplitudes of the aerodynamic
forces corresponding to the two transvers vibration modes
and they contain the perturbed items.

Substituting equations (30)–(33) into equation (A.3), the
governing differential equations of transverse motion of the
system are derived as follows:

€w1 + c11 _w1 + ω2
1w1 + c12f1 cosΩ1tw1 + c13w2 − c14w

3
1

− c15w
2
1w2 − c16w1w

2
2 − c17w

3
2 � c18l1,

(34a)

€w2 + c21 _w2 + ω2
2w2 + c22f1 cosΩ1tw2 + c23w1 − c24w

3
2

− c25w
2
2w1 − c26w2w

2
1 − c27w

3
1 � c28l2.

(34b)

Table 2: Single-layer material setting.

Material E11 E22 S12 υ
T300/QY8911 135GPa 88GPa 45GPa 0.3
,e single layer thickness is hi(i � 1, 2, . . . , 6) and they are specified as
h1 � 1mm, h2 � 2mm, . . . , h6 � 6mm.

h1

a1

a1 = 611.54Hz
a2 = 194.29Hz
b1 = 244.62Hz
b2 = 77.716Hz

b1
b2

a2

h2

h3

h4

h5

h6

Mode 2 Mode 3 Mode 4 Mode 5 Mode 6Mode 1
Modal order

0

200

400

600

800

1000

1200

1400

Fr
eq

ue
nc

y

Span-chord ratio 1:1

Figure 5: Natural frequencies with different thicknesses under the
span-chord ratio 1 :1.
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Next, the averaged equations of the system are obtained
by using the multiple scale method, and the internal reso-
nant relationship 1 : 2 is considered:

ω2
1 �

1
4
Ω2 + εσ1,

ω2
2 � Ω2 + εσ2,

Ω1 � Ω2 � 1,

(35)

where ω1 and ω2 are two frequencies of the laminated
composite plate and σ1 and σ2 are the tuning parameters.

,e scale transformations are given as follows:

c11⟶ εc11,

c12⟶ εc12,

c13⟶ εc13,

c14⟶ εc14,

c15⟶ εc15,

c16⟶ εc16,

c17⟶ εc17,

c18⟶ εc18,

c21⟶ εc21,

c22⟶ εc22,

c23⟶ εc23,

c24⟶ εc24,

c25⟶ εc25,

c26⟶ εc26,

c27⟶ εc27,

c28⟶ εc28.

(36)

,e scale transformation can be obtained by introducing
equation (36) into equations (34a) and (34b):

€w1 + εc11 _w1 + ω2
1w1 + εc12f1 cosΩ1tw1 + εc13w2

− εc14w
3
1 − εc15w

2
1w2 − εc16w1w

2
2 − εc17w

3
2 � εc18l1,

(37a)

€w2 + εc21 _w2 + ω2
2w2+εc22f1 cosΩ1tw2 + εc23w1

− εc24w
3
2 − εc25w

2
2w1 − εc26w2w

2
1 − εc27w

3
1 � εc28l2.

(37b)

Mode 2 Mode 3 Mode 4 Mode 5 Mode 6Mode 1
Modal order
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b2 = 68.229Hz
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b2 a2

Figure 6: Natural frequencies with different thicknesses under the
span-chord ratio 2 :1.
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Figure 7: Natural frequencies with different thicknesses under the
span-chord ratio 3 :1.
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Figure 8: Natural frequencies with different thicknesses under the
span-chord ratio 4 :1.
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,e method of multiple scales [52] is used to obtain the
averaged equations in following form:

w(x, t, ε) � w0 x, T0, T1(  + εw1 x, T0, T1( , (38)

where T0 � t and T1 � εt.
,e derivatives with respect to t become
d

dt
�

z

zT0

dT0

dt
+

z

zT1

dT1

dt
+ · · · � D0 + εD1 + · · · , (39a)

d2

dt2
� D0 + εD1 + · · ·( 

2
� D

2
0 + 2εD0D1 + · · · , (39b)

where Dn � (z/zTn), n � 0, 1, 2, . . ..
Substituting equations (38)–(39b) into equations (37a)

and (37b) and eliminating the secular terms, we have the
averaged equations as follows:

D1A1 � −
1
2
c11A1 + iσ1A1+

1
2

ic12f1A1 − 3iA
2
1A1c13

− 2ic16A1A2A2,

(40a)

D1A2 � −
1
2
c21A2 +

1
2

iσ2A2 −
3
2

ic23A
2
2A2 − ic26A1A2A1

−
1
4

ic28L2.

(40b)

In order to obtain the averaged equations in the polar
coordinate system, we express A1 and A2 in the following
form:

22.96Hz 102.34Hz

142.93Hz 330.00Hz

Mode 1 Mode 2

Mode 3 Mode 4

Mode 5 Mode 6

399.90Hz 624.22Hz

Figure 9: ,e transverse modes of the cantilever laminated composite plate when the span-chord ratio is 2 :1 and single thickness is 6mm.

Table 3: ,e 1st mode natural frequency for four span-chord ratio
values corresponding to the thickness.

Span-chord ratio
Frequency (Hz)

h1 h2 h3 h4 h5 h6
1 :1 15.15 30.31 45.46 60.61 75.77 90.92
2 :1 3.83 7.65 11.48 15.31 19.13 22.96
3 :1 1.69 3.39 5.08 6.78 8.47 10.17
4 :1 0.95 1.90 2.85 3.80 4.75 5.70
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A1 T1(  �
1
2
a1 T1( e

jϕ T1( ),

A2 T2(  �
1
2
a2 T2( e

jϕ T2( ).

(41)

Substituting equation (41) into equations (40a) and (40b)
and separating the real and imaginary parts, the four-di-
mensional averaged equations in the polar coordinate sys-
tem are obtained:

_a1 � −
1
4

c11a1 sinϕ1 − 2σ1a1 cos ϕ1 − c12a1f1 cos ϕ1 +
3
2
c14a

3
1 cosϕ1 + c16a1a

2
2 sinϕ1 , (42a)

a1
_ϕ1 � −

1
4

c11a1 cos ϕ1 + 2σ1a1 sinϕ1 + c12a1f1 sinϕ1 −
3
2
c14a

3
1 sinϕ1 + c16a1a

2
2 cosϕ1 , (42b)

_a2 � −
1
4

c21a2 sinϕ2 − σ2a2 cos ϕ2 +
3
4
c24a

3
2 cos ϕ2 +

1
2
c26a2a

2
1 sinϕ2 + c28l2 , (42c)

a2
_ϕ2 � −

1
4

c21a2 cos ϕ2 + σ2a2 sinϕ2 +
3
4
c24a

3
2 sinϕ2 +

1
2
c26a2a

2
1 cos ϕ2 . (42d)

In order to obtain the averaged equations in the Car-
tesian coordinate system, we rewrite A1 and A2 in the
following forms:

A1 T1(  � x1 T1(  + ix2 T1( ,

A2 T1(  � x3 T1(  + ix4 T1( .
(43)

According to the same way as the above, the averaged
equations in the Cartesian coordinate system are obtained as
follows:

_x1 � −
1
2
c11x1 − σ1 −

1
2
c12f1 x2 + 3c14x2 x

2
1 + x

2
2 

+ 2c16x2 x
2
3 + x

2
4 ,

(44a)

_x2 � −
1
2
c11x2 + σ1 +

1
2
c12f1 x1 − 3c14x1 x

2
1 + x

2
2 

− 2c16x1 x
2
3 + x

2
4 ,

(44b)

_x3 � −
1
2
c21x3 −

1
2
σ2x4 +

3
2
c24x4 x

2
3 + x

2
4  + c26x4 x

2
1 + x

2
2 ,

(44c)

_x4 � −
1
2
c21x4 +

1
2
σ2x3 −

3
2
c24x3 x

2
3 + x

2
4  − c26x3 x

2
1 + x

2
2 

−
1
4
c28l2.

(44d)

6. Numerical Simulation

In order to study the nonlinear vibration characteristics of
the laminated composite cantilever plate with different
modal modes, based on equations (44a) and (44d), the
frequency-response curves are used to reveal the

characteristics of this system. Let _a1 � _a2 � _ϕ1 � _ϕ2 � 0,
ϕ1 � (π/4), and ϕ2 � (3π/4).

,e frequency-response functions of the system are
given as follows:

0 � c11a1 − 2σ1a1 − c12a1f1 +
3
2
c14a

3
1 + c16a1a

2
2, (45a)

0 � c21a2 + σ2a2 −
3
4
c24a

3
2 +

1
2
c26a2a

2
1 +

�
2

√
c28l2. (45b)

From equations (45a)–(45b), we can find that the am-
plitude a1 and amplitude a2 are coupled. ,e case of weak
coupled form is considered here. ,rough introducing the
proportional relation (a1/a2) � ε, the frequency-responses
between the amplitudes and the tuning parameters are
analyzed.

According to the geometries and the material properties
of the nonlinear system, the basic parameters are chosen as
c11 � 0.2, c12 � − 6, c14 � 5, c16 � − 5, c21 � 0.6, c24 � 9,
c26 � 9, and c28 � − 2. ,e relationship between the am-
plitude and the tuning parameter in different excitation
conditions can be obtained.

Figure 10 gives the relationship between the amplitude
a1 and tuning parameter σ1 in different internal force
amplitudes f1, and Figure 11 gives the relationship between
the amplitude a2 and the tuning parameter σ2 in different
aerodynamic amplitudes l2.

,e stiffness hardening phenomenon of the system can be
seen in the relationship between the tuning parameters and
the amplitude. With the increase of external excitation am-
plitude, the stiffness hardening phenomenon is gradually
strengthened.,e typical jump phenomenon of the nonlinear
oscillations also happened in the system. ,e jump phe-
nomenon appeared in the frequency-response curves at point
A∗ and point B∗ with the increase of the tuning parameters in
Figure 11. ,e frequency-response curves have the wider
resonance interval and the larger oscillation amplitudes under
the stronger external excitation amplitude l2.
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Next, the geometries and the material properties of the
nonlinear system are fixed, and the effects of different
decoupling parameters ε are calculated and the relationship
between the amplitude and the tuning parameter can be
found in Figures 12 and 13.

In the following investigation, the bifurcation and
chaotic motions of the laminated composite cantilever plate
based on the averaged equation in the case of one to two
internal resonances by using the fourth-order Runge–Kutta
algorithm are analyzed. We choose the force excitation l2 as

the controlling parameter to study the complicated non-
linear dynamics of the system.

,e tuning parameters and the initial conditions are
chosen as σ1 � 0.1, σ2 � 1.1, c11 � 0.2, c12 � 5.2, c14 � 4.2,
c16 � − 2.5, c21 � 0.529, c24 � 7, c26 � 5, c28 � 0.44, f1 � 0.9,
x10 � 0.44, x20 � 0.798, x30 � 1.35, and x40 � − 0.5.

Figure 14 presents the two-dimensional bifurcation di-
agram to show the nonlinear oscillations of the laminated
composite plate by varying the force excitation l2. ,e pe-
riodic and chaotic motions of the laminated composite
cantilever plate system for x3 alternately occur with the
increase of the parameter l2 in the interval of [20, 50].

1

2

3

4

5

6

a2

–200 –100 0 100 200 300–300
σ2

l2 = 10

l2 = 1

l2 = 50

A∗

B∗

Figure 11: ,e relationship between amplitude a2 and tuning
parameter σ2 in different aerodynamic amplitudes l2.
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Figure 10: ,e relationship between amplitude a1 and tuning
parameter σ1 in different internal force amplitudes f1.
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Figure 13: ,e relationship between amplitude a2 and tuning
parameter σ2 in different decoupling parameters ε.
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Figure 12: ,e relationship between amplitude a1 and tuning
parameter σ1 in different decoupling parameters ε.
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Figure 14: ,e bifurcation diagram of the laminated composite cantilever plate for x3 via the forcing excitation l2.
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Figure 15: Continued.
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Figure 15: ,e period motion of the laminated composite cantilever plate is obtained when l2 � 21.5.
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Figure 16: Continued.
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Figure 16: ,e multiperiod motion of the laminated composite cantilever plate is obtained when l2 � 22.7.
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Figure 17: ,e quasi-period motion of the laminated composite cantilever plate is obtained when l2 � 25.3.
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In Figures 15–18, (a) and (c) show the waveforms on the
planes (t, x1) and (t, x3), (b) and (d) depict the phase portraits
on the planes (x1, x2) and (x3, x4), and (e) represents the
three-dimensional phase portrait in the space (x1, x2, x3).

From Figures 15–18, the periodic and chaotic motions
of the laminated composite cantilever plate occur with the
increase of the amplitude of the parameter l2 can be seen.
It is noticed that both the power spectrum and the
Poincaré map can distinguish the periodic motions and
the chaotic motions. When the l2 is in the range of [21, 27],
the periodic motions and chaotic motions alternately
occur, the system experiences periodic motion, multi-
periodic motion, quasi-periodic motion, and chaotic
motion. It is obvious that the nonlinear vibration char-
acteristics of the system are complicated under the in-
fluence of external excitation.

7. Conclusions

,e nonlinear dynamics of the laminated composite can-
tilever plate under subsonic excitation force have been in-
vestigated in this paper. ,e aerodynamic force of a three-
dimensional flat wing was calculated. Unlike a two-di-
mensional airfoil or an infinite length wing, the aerodynamic
force of a three-dimensional flat wing is calculated. Some
results are obtained:

(1) According to the ideal incompressible fluid flow
condition and the Kutta–Joukowski lift theorem, the
subsonic aerodynamic lift on the three-dimensional
finite length flat wing is calculated by using the
vortex lattice (VL) method.

(2) ,e finite length flat wing is modeled as a laminated
composite cantilever plate based on Reddy’s third-
order shear deformation plate theory and the von
Karman geometry nonlinearity is introduced. ,e
nonlinear partial differential governing equations of
motion for the laminated composite cantilever plate
subjected to the subsonic aerodynamic force are
established via Hamilton’s principle.

(3) ,rough comparing the natural frequencies of the
linear system with different materials and geometry
parameters, the relationship of 1 : 2 internal reso-
nance is found and considered for the nonlinear
vibration analysis.

(4) Corresponding to several selected parameters, the
frequency-response curves are obtained. ,e hard-
ening-spring-type behaviors and jump phenomena
are exhibited with the variation of the tuning
parameters.

(5) ,e influence of the force excitation on the bifur-
cations and chaotic behaviors of the laminated
composite cantilever plate have been investigated
numerically. ,e periodic motion, multiperiodic
motion, quasi-periodic motion, and chaotic motion
of the system occurred with the increasing of the
external excitation.
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Figure 18: ,e chaotic motion of the laminated composite cantilever plate is obtained when l2 � 26.5.
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