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+e inverse problem is always one of the important issues in the field of fluid machinery for the complex relationship among the
blade shape, the hydraulic performance, and the inner flow structure. Based on Bayesian theory of posterior probability obtained
from known prior probability, the inverse methods for the centrifugal pump blade based on the single-output Gaussian process
regression (SOGPR) and themultioutput Gaussian process regression (MOGPR) were proposed, respectively.+e training sample
set consists of the blade shape parameters and the distribution of flow parameters. +e hyperparameters in the inverse problem
models were trained by using the maximum likelihood estimation and the gradient descent algorithm. +e blade shape cor-
responding to the objective blade load can be achieved by the trained inverse problem models. +e MH48-12.5 low specific speed
centrifugal pumpwas selected to verify the proposed inverse methods.+e reliability and accuracy of both inverse problemmodels
were confirmed and compared by implementing leave-one-out (LOO) cross-validation and extrapolation characteristic analysis.
+e results show that the blade shapes within the sample space can be reconstructed exactly by both models.+e root mean square
errors of the MOGPR inverse problem model for the pump blade are generally lower than those of the SOGPR inverse problem
model in the LOO cross-validation. +e extrapolation characteristic of the MOGPR inverse problem model is better than that of
the SOGPR inverse problem model for the correlation between the blade shape parameters can be fully considered by the
correlation matrix of the MOGPR model. +e proposed inverse methods can efficiently solve the inverse problem of centrifugal
pump blade with sufficient accuracy.

1. Introduction

Due to the complex internal flow constraints of fluid ma-
chinery, there is a complex implicit relationship among its
geometric parameters, internal flow, and hydraulic perfor-
mance. +e problems related to the internal flow of fluid
machinery can be summarized as the direct problem and the
inverse problem. +e direct problem focuses on the flow
structure by experimental and numerical approaches [1–3],
and the inverse problem mainly studies how to acquire the
blade geometry shape according to the objective flow field
distribution [4–7]. Usually, the inverse problem of fluid
machinery can be considered as the design issues. In recent
decades, with the rapid development of computational fluid

dynamics (CFD) and modern flow testing techniques, the
researches on the direct problem of centrifugal pump have
made much progress. Compared with the direct problem of
flow field analysis for pumps, the inverse problem is much
more difficult. Hawthorne et al. [8] and Tan et al. [9] first
proposed the inverse design method of fluid machinery.
Borges [4] developed the theory of inverse method to three-
dimensional under incompressible conditions, and then
Zangeneh and Goto [5] extended the three-dimensional
inverse method to compressible conditions. Furthermore,
Zangeneh et al. [6, 7] used the three-dimensional inverse
method to suppress secondary flow in the pump impeller.
Bonaiuti et al. [10, 11] combined the inverse design method
with optimization techniques to realize the optimization

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 4605625, 10 pages
https://doi.org/10.1155/2020/4605625

mailto:zhangrhlut@163.com
https://orcid.org/0000-0003-1063-5694
https://orcid.org/0000-0003-4921-9233
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4605625


design of the pump blade. At present, the inverse methods
for the centrifugal pump impeller can in general be classified
into two categories: one is the inverse method based on the
general theory of relative stream surfaces proposed by Wu
[12] and the other is the iterative method based on the it-
eration between flow simulation and modification design of
impeller geometry [13–15]. In the first method, the blade
shape is reconstructed with the assumption that the flow
must be aligned to the blade surfaces [5–7, 16, 17]. +e CFD
model is greatly simplified, which leads to the flow simu-
lation without sufficient accuracy, so the accuracy of this
inverse method is hard to ensure. In the second method, the
more accurate turbulence model is employed to simulate the
flow field and the accuracy of numerical simulation is im-
proved. However, it is hard to get a feasible blade geometry
which agrees well with the specified flow field distribution,
for the modification of blade geometry is highly dependent
on the experiences of designers. Recently, the proper or-
thogonal decomposition (POD) reduced-order model was
proposed for the inverse method of centrifugal pump blade.
Zhang et al. [18] proposed the inverse method of centrifugal
pump blade based on the POD model and then performed
the inverse design of the two-dimensional and three-di-
mensional centrifugal pump blades by the Gappy POD
model. +e inverse method based on the POD model has a
feature of quicker convergence, but the accuracy of it needs
to be further improved.

Gaussian process regression (GPR) is a machine
learning approach based on the Bayesian theorem, which
provides a flexible framework for probabilistic regression
and has good adaptability to deal with the high-dimen-
sional and small-sample problems, etc. [19]. Gaussian
process regression is mainly divided into the SOGPRmodel
and the MOGPR model. +e SOGPR model has less un-
known parameters and can be easily explained, which has
been widely used in dimensionality reduction [20], time-
series analysis [21, 22], nonlinear regression [19], etc. Based
on the SOGPR model, the MOGPR model is improved to
learn the correlation information between the outputs of
models, which can provide more accurate predictions in
comparison with modeling outputs individually by the
SOGPR model [23–26]. Liu et al. [27] constructed a
multiresponse surface model for airfoil design based on the
MOGPR model. Chai et al. [28] took the multitask
Gaussian process to compute the inverse dynamics prob-
lem for a robotic manipulator. Wu et al. [29] combined the
MOGPR model with the optimization algorithm to opti-
mize the supercritical airfoils.

+e GPR method has high prediction accuracy in the
case of a small number of samples. To improve the accuracy
of the centrifugal pump blade inverse problem, the GPR was
introduced to the inverse method of centrifugal pump blade.
+e blade load distributions of the pump were considered as
the model input, the blade shape parameters were taken as
the output, and then the inverse problem calculation of blade
shapes was implemented by both of the models. +e reli-
ability of both models was verified, respectively, and the
accuracy was compared and analyzed.

2. Gaussian Process Regression Models

2.1. Single-Output Gaussian Process Regression Model. A
brief introduction to the SOGPR model is provided here,
and a more detailed description can be found in [19]. A
training sample set is defined as D � (xi, yi)

􏼌􏼌􏼌􏼌i � 1, 2, . . . , n􏽮 􏽯,
where xi is the d-dimensional input and yi is the one-di-
mensional output. +e input xi corresponds to the random
variable function f(xi), and the collection of f(xi) satisfies the
joint Gaussian distribution, which can be interpreted as

f(x) ∼ GP m(x), k x, x′( 􏼁( 􏼁, (1)

where m(x) is the mean function, which is commonly as-
sumed to be zero, and k(x, x′) is the covariance function. f(x)
is completely specified by the mean function and the co-
variance function. In many realistic scenarios, the values of
outputs are replaced by observations, which can be
expressed as yi � f(xi) + ε, where ε ∼ N(0, σ2n) is inde-
pendent and identically distributed, which accounts for the
measurement errors and is known as noise in the Gaussian
process models.+erefore, the joint Gaussian distribution of
the vector y is expressed as

y ∼ GP 0, k x, x′( 􏼁 + σ2nδij􏼐 􏼑, (2)

where δij is the Kronecker delta function. +e joint prior
distribution of observed values y and the function value
f(x∗) at a test point x∗ is

y

f∗
􏼢 􏼣 ∼ N 0,

K(X,X) + σ2nI K X, x∗( 􏼁

K x∗,X( 􏼁 K x∗, x∗( 􏼁 + σ2n
⎡⎣ ⎤⎦􏼠 􏼡, (3)

where K(X,X) ∈ Rn×n is the covariance matrix of inputs
with the element Kij � k(xi, xj), which can describe the
information between the inputs in the training sample set.
According to the inference of conditional distribution based
on multivariate Gaussian distribution, the posterior distri-
bution of f∗ is analytically derived as

f∗ x∗,
􏼌􏼌􏼌􏼌 X, y ∼ N f∗, cov f∗( 􏼁􏼐 􏼑, (4)

where the prediction mean f∗ can approximate the value of
the unknown output of the test sample and the prediction
variance cov(f∗) can provide the uncertainty in the solution
of the unknown output; they are, respectively, given as

f∗ � K x∗,X( 􏼁 K(X,X) + σ2nI􏽨 􏽩
− 1
y, (5)

cov f∗( 􏼁 � K x∗, x∗( 􏼁 − K x∗,X( 􏼁

· K(X,X) + σ2nI􏽨 􏽩
− 1

K X, x∗( 􏼁.
(6)

During the calculation of the covariance matrix K in the
previously mentioned SOGPR model, according to the
Mercer theorem, the well-known squared exponential (SE)
kernel function was used to calculate the covariance matrix
K. +e SE kernel function has good performance within the
kernel machine field, and it is expressed as
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kSE xi, xj􏼐 􏼑 � σ2f exp −
xi − xj􏼐 􏼑

2

2l2
⎛⎝ ⎞⎠, (7)

where the signal variance σ2f controls the output scale of the
kernel function and the characteristic length scale l repre-
sents the level that the output result is impacted by different
dimensionalities of the input x. +e vector of hyper-
parameters θ is defined, which contains the characteristic
length scale l, the signal variance σ2f, and the noise variance
σ2n. +e values of the hyperparameters were optimized by the
maximum likelihood estimation and the gradient descent
algorithm.

It is known that the vector of the outputs y obeys the
multivariate Gaussian distribution, the negative log mar-
ginal likelihood (NLML) of which is defined as

NLML � − log P(y|X, θ) �
1
2
yT

K + σ2nI􏼐 􏼑
− 1
y

+
1
2
log K + σ2nI

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

n

2
log 2π.

(8)

+e optimal values of θ can be obtained by using the
gradient descent algorithm to minimize the NLML. In order
to avoid optimization falling into local minima in the NLML,
the hyperparameters usually need to be initialized randomly
for multiple times and the hyperparameters with the lowest
NLML will be selected [30].

2.2. Multioutput Gaussian Process Regression Model.
Based on the SOGPR model, the MOGPR is improved to
model t outputs simultaneously to learn their correlation,
which can outperform individual modeling. +e flow charts
of the SOGPR model and the MOGPR model are shown in
Figure 1. +e main difference between MOGPR and SOGPR
is the construction of the kernel function matrix K. A
correlation matrix based on the Kronecker product is
employed to describe the correlation between t outputs.

Consider a set of training samples D � (xi, yi)
􏼌􏼌􏼌􏼌i �􏽮

1, 2, . . . , n}, where xi is the d-dimensional input and yi
contains t one-dimensional outputs. For a model with n
samples, each sample has t outputs, and the kernel function
matrix can be expressed as

K X, t, θc, θx( 􏼁 � Kc t, θc( 􏼁 ⊗ Kx X, θx( 􏼁, (9)

where ⊗ represents the Kronecker product and Kx is the
same as the kernel function matrix in the SOGPRmodel and
has a size of n× n. It describes the relationship between the
inputs of all samples. Kc expresses the correlation between
outputs, which is referred to as the correlation matrix and
has a size of t× t. +e diagonal elements of Kc represent the
correlation between outputs and themselves, and the non-
diagonal elements describe the correlation between the
different outputs. If Kc is the identity matrix, all outputs
would be considered to be independent and have no cor-
relation. Generally,Kc is initialized as the identity matrix.Kc
and Kx lead to a matrix of size nt× nt for K. θc and θx are
vectors including hyperparameters for Kc and Kx, respec-
tively. +e number of elements in θc increases rapidly with

the increase of outputs. θc and θx can be learned together by
optimizing the NLML.

3. InverseMethod of PumpBlade Based onGPR

+e inverse problem of centrifugal pump blade also belongs
to the pump design issues, the target of which is to get the
desired blade shape which can produce the prescribed flow
field distribution. In this research, according to the models
mentioned above, the blade load distributions xi and the
blade shape parameters yiwere defined as the input and
output of both models, respectively. +e objective blade
shapes can be obtained by both of the trained inverse
problem models when the objective blade load distributions
are given. +e algorithm of the proposed centrifugal pump
blade inverse methods can be summarized as follows:

Step 1. Parameterize the prototype blade shape and
obtain the initial samples of the blade shape by ex-
perimental design
Step 2. Simulate the inner flow by the CFD method and
calculate the blade load distribution of all samples
Step 3. Combine the blade load distribution data and
blade shape parameters of all initial samples into a
training sample set D � (xi, yi)

􏼌􏼌􏼌􏼌i � 1, 2, . . . , n􏽮 􏽯

Step 4. Give the initial values of the hyperparameters
and get the optimal hyperparameters θ[l, σf, σn]of
SOGPR or θ[l, σf, σn, Kc] of MOGPR by using the
gradient descent algorithm to minimize the NLML
Step 5. Get the mean and variance of blade shape
parameters corresponding to the given objective blade
load by equations (5) and (6)
Step 6. Plot the blade shape and the corresponding 95%
confidence interval according to the mean and the
variance of the blade shape parameters, respectively

In step 1, as we can see in Figure 2, the prototype blade
shape was parameterized by the cubic Bezier curve. +e
blade inlet and outlet angles were, respectively, controlled by
the slopes of edges AB and CD. +e blade wrap angle was
controlled by the movement of point D in the circumfer-
ential direction of the outlet diameter of the impeller.

4. Results and Discussion

4.1. Sample Set and Training Data Generation. +e MH48-
12.5 low specific speed centrifugal pump (Q� 12.5m3/h,
H� 30.7m, n� 2900 r/min, η� 53%) was applied to verify
the inverse method of centrifugal impeller based on
Gaussian process regression. +e meridional plane and end
view of the prototype centrifugal impeller are shown in
Figure 3. +e wrap angle Φ of the impeller is 143°, the inlet
blade angle β1 is 30°, and the outlet blade angle β2 is 17°. +e
prototype blade shape was parameterized by the cubic Bezier
curve. +e uniform design of experiments was employed to
generate the sample set. In the condition that the meridional
plane of the impeller was fixed, there were eight initial blade
samples generated by the perturbation of β1, β2, andΦ for 5°,
5°, and 10° on the basis of the prototype blade shape,
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Figure 2: Parametric control of the prototype blade shape.
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respectively. +e wrap angle, inlet blade angle, and outlet
blade angle of all blade samples are listed in Table 1, and all
blade shapes are shown in Figure 4. +e angular coordinates
of 20 points uniformly distributed along the radius of the
impeller from the blade inlet to the outlet, as shown in
Figure 2, were defined to control the blade shape. Hence, the
blade shape can be expressed as yi � [θ1i , θ2i , . . . , θ20i ].

In the field of hydraulic machinery, the change of the
energy gradient of fluid from the impeller inlet to the outlet
determines the internal flow characteristics and hydraulic
performances of pump impellers. +erefore, the gradient of
the flow head zHi/zm was directly defined as the blade load,
which can be obtained by CFD simulation [31, 32]. In order
to get blade load data conveniently, the hexahedral struc-
tured grids were adopted to discretize the computational
domains of the impeller, volute, inlet pipe, and outlet pipe.
+e details of the grid independence test at the design flow
rate are shown in Figure 5, and the final grid number for the
computation was determined as 1.1 million.+e commercial
code ANSYS FLUENT 16.0 with the RNG k − ε turbulence
model and SIMPLEC algorithm was employed for CFD
calculation. A uniform velocity was set to the inlet boundary
condition, and the free outflow was set to the outlet
boundary condition. +e near wall flow was treated by
standard wall function. +e convergence criterion of all
residuals was set as 10− 5. +e calculated blade load distri-
butions of all samples are shown in Figure 6. As we can see,
the blade load distributions vary with the blade shapes, the
blade load distributions on the front section of the blades are
obviously affected by the inlet blade angles, and the blade
load distributions on the trailing section of the blades are
significantly influenced by the outlet blade angles. +e blade
load values of 63 grid nodes from the inlet to the outlet of the
pump blade were considered as the model input, and they
were expressed as xi � [ΔH1

i ,ΔH2
i , . . . ,ΔH63

i ]. +e whole
sample set was described as D � X Y􏼂 􏼃, where
X � [xT

1 , xT
2 , . . . , xT

8 ]T and Y � [yT
1 , yT

2 , . . . , yT
8 ]T. +e rows

of X and Y both represent the number of samples. +e
columns of X and Y represent the dimension of the model
input and output, respectively.

4.2. Results of Inverse Methods. +e SOGPR model and the
MOGPR model were, respectively, used to construct the
inverse methods for the centrifugal pump blade. Both of the
inverse problem models were programed by using the
MATLAB code. In the SOGPR model, X was used as the
model input, and each column of Y was taken as the one-
dimensional output of the model, so that 20 SOGPR models
were trained independently. +e angular coordinates of 20
points on blade shape can be obtained by the 20 trained

models according to the given blade load distribution. +e
impeller blade geometry can be reconstructed by the pre-
scribed meridional plane and these 20 points on blade shape.
In the MOGPR model, however, the entire Y was taken as
the output, which has 20 dimensionalities. During the

Table 1: Perturbation parameter values of all blade samples.

Prototype blade Extrapolation blade
Sample blades

Blade 1 Blade 2 Blade 3 Blade 4 Blade 5 Blade 6 Blade 7 Blade 8
Φ (°) 143 113 153 153 153 153 133 133 133 133
β1 (°) 30 35 25 35 35 25 25 35 35 25
β2 (°) 17 20 22 22 12 12 22 22 12 12
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training of this model, all dimensionalities of the output
were trained simultaneously to consider their correlation so
that there was only one model that needs to be trained.

Firstly, the prototype blade was selected as the objective
blade to achieve the inverse problem calculation for the
centrifugal pump blade. +e hyperparameters were initial-
ized according to the training samples [33]. +e charac-
teristic length scale l, the signal variance σ2f, and the noise
variance σ2n were finally initialized to 2.6, 0.9, and 0.05 for
both models, respectively. +e correlation matrix of the
MOGPR model was initialized as an identity matrix. Re-
garding hyperparameter learning, the gradient descent al-
gorithm was employed to minimize the NLML and the
maximum number of function evaluations was set as 800 for
both models. +e blade shapes, shown in Figures 7 and 8,
were, respectively, calculated by the trained MOGPR and
SOGPR models according to the objective blade load dis-
tribution. It can be seen that the blade shapes generated by
the SOGPR model and the MOGPR model both are almost
coincident with the objective blade shape, and the variances
of blade shape parameters for each model are low enough,
which are illustrated by the 95% confidence interval. +e
average variances of 20 blade shape parameters calculated by
SOGPR and MOGPR models are 1.20 and 0.94, respectively.
It can be concluded that the blade shapes obtained by both
inverse problem models have sufficient accuracy and low
uncertainty.

Secondly, the LOO cross-validation was employed to
fully confirm the reliability of the Gaussian process re-
gression models to achieve the inverse problem calculation
for the centrifugal pump blade. In the LOO cross-validation,
the sample set was reconstructed including eight training
samples and the prototype sample. Each blade shape was
predicted by both of the constructed inverse problem
models, which were trained by the other eight samples, and
the prediction errors were analyzed. +ese nine samples

were cross-validated, respectively. +e blade shape param-
eters were calculated by both models, respectively, according
to the blade load distribution of the test sample. Table 2
shows the values of the root mean square error (RMSE)
between the inverse design blade shapes calculated by both
inverse problem models and their objective blade shapes
during the LOO cross-validation. +e RMSE is defined as

RMSE �

���������������

1
N

􏽘

N

d�1

θd − θd

Φ
􏼠 􏼡

2
􏽶
􏽴

× 100%, (10)

where θd and θd denote the angular coordinates of the
objective blade shape and the inverse design blade shape,
respectively; Φ is the wrap angle corresponding to the blade
shape; and N stands for the total number of angular coor-
dinates. We can see in Table 2 that the RMSE values of
SOGPR and MOGPR models are almost within 1%, and this
would be a reasonable range for pump design. It indicates
that both models are robust to calculate the inverse problem
of pump blade. Moreover, the RMSE values of the MOGPR
model are generally lower than those of the SOGPRmodel. It
can be concluded that the MOGPR model provides a sig-
nificant improvement based on the SOGPR model. In the
process of calculating blade 7 and blade 8, however, we can
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see that the accuracy of the SOGPRmodel is higher than that
of the MOGPR model, which is not as expected. +is
phenomenon may be caused by the following reason: We
mentioned above that the number of hyperparameters in the
MOGPR model is much larger than that in the SOGPR
model. During the optimization of hyperparameters in the
MOGPR model, the results of optimization may only suc-
cumb to local minima in the NLML, not the global minima.
As a consequence, the training of the MOGPR model is not
enough, and finally, the accuracy of it is lower than that of
the SOGPR model. +erefore, in order to ensure the ac-
curacy, efficiency, and reliability of inverse problem calcu-
lation for pump blade design, reasonable selection of the
initial values of hyperparameters during the model training
is necessary.

Finally, an objective blade shape out of the sample space
was generated to analyze the extrapolation characteristics of
both inverse problem models. +e blade shape out of the

sample space is shown in Figure 4, and we refer to this blade
as an extrapolation blade. +e sample set reconstructed in
the LOO cross-validation was used to train both models.
Regarding model parameter settings of both models, the
characteristic length scale l was initialized to 2.68, the signal
variance σ2f was initialized to 1.08, and the noise variance σ2n
was initialized to 0.57.+e correlationmatrix of theMOGPR
model was also initialized as an identity matrix. +e max-
imum number of function evaluations was set as 800 for
both models. In the gradient descent algorithm of the
MOGPR model, the NLML value shows a tendency toward
stabilization with the increase of iteration numbers. As
shown in Figure9, we can see that the NLML value remains
almost constant after 800 steps of iteration, so the optimi-
zation results of hyperparameters at 800 steps were used to
calculate the inverse problem of extrapolation blade.

+e blade shapes corresponding to the objective ex-
trapolation blade load were obtained by the trained SOGPR
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Figure 8: Prototype blade calculated by SOGPR.

Table 2: Root mean square errors in LOO cross-validation (%).

Prototype blade Blade 1 Blade 2 Blade 3 Blade 4 Blade 5 Blade 6 Blade 7 Blade 8
SOGPR 0.83 0.89 1.08 1.30 0.95 0.92 1.35 0.22 0.55
MOGPR 0.60 0.85 1.04 1.12 0.75 0.87 1.08 0.55 0.86
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and MOGPR models, respectively. We can see in Figure 10
that the extrapolation blade shape calculated by the MOGPR
model almost approaches its objective blade shape, and the
blade shape is smoother and continuous for the correlation
between the blade shape parameters that is taken into ac-
count by the correlation matrix. Some elements of the
learned correlation matrix Kc are shown in equation (11). It
can be seen that the correlation matrix is a symmetric
matrix, and the farther the elements are from the principal
diagonal, the smaller the element values are, which reveals
that the correlation between any output parameters of blade
shape decreases gradually with the increase of their distance.
As shown in Figure 11, however, the extrapolation blade
shape acquired by the SOGPR model is messy in the middle
section of the blade because the 20 parameters for blade
shape were calculated by the 20 SOGPR models individually
and the correlation information between the blade shape
parameters is ignored. Consequently, the MOGPR inverse
problem model has better extrapolation characteristic than
the SOGPR inverse problem model. +e correlation matrix
can restrict the relationship between blade shape parameters
so that the blade shape characteristic is formulated more
exactly. In addition, comparing Figures 7 and 10, we can find
that the inverse problem of extrapolation blade has higher
uncertainty than that of interpolation blade.

Kc �

1 0.960 0.854 0.729 0.614 · · · − 0.502

0.960 1 0.964 0.881 0.768 − 0.561

0.854 0.964 1 0.972 0.884 − 0.584

0.729 0.881 0.972 1 0.962 − 0.579

0.614 0.768 0.884 0.962 1 − 0.550

⋮ ⋱ ⋮

− 0.502 − 0.561 − 0.584 − 0.579 − 0.550 · · · 1
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

20×20

.

(11)

5. Conclusions

(1) +e Gaussian process regression method was in-
troduced to the inverse problem of centrifugal pump
blade. +e complicated inverse problem was con-
verted into the problem of getting the posterior
distribution from the known prior distribution based
on the Bayesian theorem in the background of
machine learning. Both of the inverse problem
models for pump blade design have good interpo-
lation characteristics.

(2) +e LOO cross-validation was carried out, respec-
tively, on both models, and the results were com-
pared and analyzed. +e blade shapes within the
sample space can be achieved exactly and efficiently
by both of the SOGPR and MOGPR inverse problem
models according to the given objective blade load
distributions. Both inverse problem models are ro-
bust to calculate the inverse problem of pump blade.
+e RMSE values of the MOGPR inverse problem
model are generally lower than those of the SOGPR
inverse problem model. +e research shows that the
accuracy of the MOGPR inverse problem model to
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Figure 9: NLML value varying with the number of iterations in the
MOGPR model.
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Figure 10: Extrapolation blade calculated by MOGPR.
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calculate the inverse problem of pump blade is better
than that of the SOGPR inverse problem model.

(3) +e extrapolation characteristics of both models
were tested and compared. +e extrapolation blade
obtained by the MOGPR inverse problem model
almost approaches its objective blade shape, and the
blade shape is continuous and smoother. However,
the extrapolation blade shape acquired by the
SOGPR inverse problem model is messy, which is
unable to achieve the inverse design. Since the
outputs are considered dependent on each other in
the MOGPR inverse problem model, the correlation
between the outputs is adequately learned by the
kernel function matrix. +e extrapolation charac-
teristic of the MOGPR inverse problem model is
much better than that of the SOGPR inverse problem
model. In addition, the accuracy of the proposed
inverse methods for the interpolation blade is higher
than that for the extrapolation blade.
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