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0is paper focuses on tackling the two drawbacks of the dual boundary element method (DBEM) when solving crack problems
with a discontinuous triangular element: low accuracy of the calculation of integrals with singularity and crack front element must
be utilized to model the square-root property of displacement. In order to calculate the integrals with higher order singularity, the
triangular elements are segmented into several subregions which consist of subtriangles and subpolygons.0e singular integrals in
those subtriangles are handled by the singularity subtraction technique in the integration space and can be regularized and
accurately calculated. For the nearly singular integrals in those subpolygons, the element subdivision technique is employed to
improve the calculation accuracy. In addition, considering the location of the crack front in the element, special crack front
elements are constructed based on a 6-node discontinuous triangular element, in which the displacement extrapolation method is
introduced to obtain the stress intensity factors (SIFs) without consideration of orthogonalization of the crack front mesh. Several
numerical results are investigated to fully verify the validation of the presented approach.

1. Introduction

Accurate computation of the SIFs is of great importance for
analysis of 3D fracture mechanical problems. For such
problems, it is necessary to accurately calculate the SIFs,
which can characterize the fracture property. 0e major
difficulty in the calculation of SIFs is approximation of the
displacement distribution nearby the crack front.

In order to tackle this problem, numerical methods
including the finite element method (FEM) and the
boundary element method (BEM) have been widely applied
[1–4]. In the application of the FEM or BEM in crack
problems, special crack front elements are usually employed
to model the square-root distribution of the displacements
nearby the crack front. Many special crack front elements
have been defined to capture the asymptotic behavior of a
specific node in the FEM [1]. In the 3D BEM, however, the
available crack front elements are only of quadrilateral type,

such as 8-node crack front elements proposed by Mi and
Aliabadi [5], 9-node crack front elements in the pioneering
work of Li et al. [6], and also crack front elements in the work
of Pan and Yuan [7]. 0e crack front elements of the tri-
angular type have not been found by authors [8, 9]. Due to
the general geometric adaptability of the triangular mesh, a
special triangular crack front element of which one edge lies
in the crack front for the BEM is also necessary.

For solutions of crack problems, the dual boundary
element method (DBEM), which is originated from the
BEM, is a more general and efficient method than other
extension methods [6, 10–15] in the range of BEMs, such as
the multidomain BEM [16], the symmetric Galerkin
boundary element method [17, 18], and the displacement
discontinuity method [11]. In this method, crack front el-
ements are widely employed.0ey are of great importance to
the accuracy and efficiency of the method [14, 19]. In this
paper, a type of special discontinuous triangular crack front
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element is constructed to model the square-root distribution
of the displacement nearby the crack front. It should be
noted that, in Frangi et al.’s pioneer work [18], they have
already constructed a series of mixed elements including
both the quadrilateral element and the triangular element
and obtained accurate results in a symmetric Galerkin BEM
framework. In their work, however, the elements employed
in the crack front are also quadrilateral elements. Generally,
the quadrilateral element could provide a more accurate
interpolation result than the triangular one. In the case of the
crack of complicated shape, however, the crack surface can
bemore easily meshed by the triangular elements rather than
by the quadrilateral ones. In other words, the triangular
element could be generated more easily with high quality
and could be applied to model the crack front with arbitrary
shape. Furthermore, it is believed that the computed stress
intensity factors (SIFs), which are usually computed through
an extrapolation method, in the triangular element are less
than those in the quadrilateral one.

To improve the computational accuracy of integrals with
high-order singularities, the integral patch is divided into
several subpatches which consist of subtriangles and sub-
polygons at first. 0en, the subtriangles are mapped into
normalized isosceles right triangles. In the normalized space,
a polar coordinate transformation is finally performed to
cancel the singularity of the integral. With these three steps,
the high-order singular integrals can be calculated accu-
rately. 0e integrals in other types of subpatches can also be
computed through an element subdivision method, in which
the subpolygons are subdivided into several triangular
patches.

In the computation of the SIFs, a crack opening dis-
placement (COD) extrapolation method is adopted without
consideration of orthogonalization of the mesh nearby the
crack front.

0e remainder of this paper is organized as follows: In
Section 2, the displacement and traction boundary integral
equations which are involved in the DBEM are briefly in-
troduced. A 6-node discontinuous triangular element
modeling strategy is introduced in Section 3. Section 4
mainly describes the regularization of singular integrals. 0e
computational method of SIFs is detailed in Section 5 which
is followed by some benchmark testing numerical examples
in Section 6. 0is paper ends with conclusions in Section 7.

2. The Displacement and Traction Boundary
Integral Equations

In Figure 1, a finite region containing a crack is shown. 0e
displacement boundary integral equation is

cij PS( uj PS(  � 
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u
∗
ij PS, Q( tj(Q)dS(Q)
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S+C++C−

t
∗
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(1)

in which u∗ij and t∗ij are Kelvin solutions of displacement type
and traction type. PS(x, y, z) and Q(x, y, z) represent the
source and field points. cij � δij/2, if Ps locates at a smooth

boundary, where δij is the Kronecker delta. 0e expression
of u∗ij and t∗ij can be found in [11].

The traction boundary integral equation is
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0e expression of U∗ijk and T∗ijk can also be found in [11].
In the DBEM, the following relations are considered:
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in which Q+ ∈ C+, Q− ∈ C− , and tk(Q+) and tk(Q− ) rep-
resent tractions on the two crack surfaces, respectively. Con-
sidering equations (3)–(7), (1) and (2) can be rewritten into
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where, in the crack surface, the CODs are Δuk(Q) which is
uk(Q+) − uk(Q− ), in which uk(Q+) and uk(Q− ) represent
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–

Figure 1: A finite region containing a crack.
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displacements on the two crack surfaces. Equations (8) and
(9) are collocated on noncrack surfaces and crack surfaces,
respectively.

3. 6-Node Discontinuous Triangular Elements

Due to the existence of Cauchy and Hadamard principle
value integrals in the DBEM [20], the shape function
derivatives of elements on crack surfaces must be Holder
continuous. 0us, 6-node discontinuous triangular ele-
ments (6DTEs) are employed in the crack surfaces, while
nearby the crack front, we applied some specially con-
structed elements. 0e 6-node discontinuous triangular
element is illustrated in Figure 2, in which k is the offset
parameter, varying from 0.05 to 0.4 in our
implementation.

In 6DTEs, the geometric shape functions ϕi
geo are dif-

ferent from the physical shape functions ϕi
coll, which are both

listed in Appendix A (equations (9) and (A.2)).
For the crack front elements, special shape functions

with asymptotic properties are constructed to approxi-
mate the distribution of the displacement in the vicinity
of the crack front. In the first case, the edge, the
formulation of which is ξ + η � 1 in the parametric
space, of the special crack front element lies in the crack
front.

From the geometric meaning of area coordinates
about the triangular element, we can find that
r � |P(ξ, η) − Q(ξ, 1 − ξ)| is in proportion to |1 − ξ − η|.
From the work of Yates et al. [19], equation (10) obtained
is an approximation formula, which omits high-order
terms (o(r)), and two terms in the asymptotic expansion
of the near-front relative crack-face displacement can be
accurately captured, i.e.,

�
r

√
and r. In [19], it can also be

found that the terms of order r3/2 or o(r3/2) are omitted to
obtain the relations between stress intensity factors and
displacements in the near-front field. 0us, from
those pioneering works in [17], it can be found that the
crack opening displacements should have the following
form:

Δu(ξ, η) � L2(ξ)r + L1(ξ)
�
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(10)

Based on the idea that is similar to that in the pioneer
work of Li et al. [6], we construct the shape function
through equation (10) in which

�������
1 − ξ − η


and 1 − ξ − η

are included. 0is type of shape function is designed to
approximate the physical variables nearby the crack
front.
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in which i� 0, . . ., 5. In order to determine the value of the
coefficients in equation (11), the following condition is
imposed:

M
i ξj, ηj  � δij, i � 0, . . . , 5, (12)

in which (ξj, ηj) are the collocation node coordinates of the
element in the (ξ, η) coordinate system. Inversing the 6 × 6
matrix obtained by equation (12), the coefficients ai

j can be
determined. Assume that k � 0.25; the physical shape
functions for the crack front element are given in Appendix
B (equation (A.3)).

In the second case, the edge η � 0 lies in the crack
front. It can be found that r � |P(ξ, η) − Q(ξ, 0)| is in
proportion to |η|. 0e shape functions for physical
quantities should be
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where i � 0, . . ., 5. Inversing the 6 × 6 matrix obtained by
equation (13), the coefficients ai

j can be obtained.
We assume k � 0.25; the physical shape functions for the
crack front element are given in Appendix C (equation
(A.4)).

In the final case, the edge ξ � 0 lies in the crack front.
It can be found that r � |P(ξ, η) − Q(0, η)| is in proportion
to |ξ|. 0e shape functions for physical quantities should
be

M
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where i � 0, . . ., 5. Inversing the 6 × 6 matrix obtained by
equation (14), the coefficients ai

j can be obtained. We
assume k � 0.25; the physical shape functions for the
crack front element are given in Appendix D (equation
(A.5)).

Substituting the special shape functions into equations
(8) and (9), the following discretized boundary integral
equations can be obtained:

(0, 1)

(1 – k, 0.5k)

(0.5k, 0.5k)

(0.5k, 1 – k)

(0, 0) (1, 0)

η

ξ

Figure 2: 6-node discontinuous triangular element.
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where ne1 and ne2 are the total number of elements on S or
C+.Qα denotes the collocation nodes, whileQ is the inner field
points. J(ξ, η) is the Jacobian. For 6DTEs, Nα(ξ, η) � ϕαColl.
For the crack front elements, Nα(ξ, η) � Mα.

Collocating Ps through all field points, the boundary
conditions are imposed and the linear equations are rear-
ranged into

Ax � f , (17)

where x contains the unknowns ui, ti, and Δui and f is
obtained by the given boundary quantities.

4. Regularization of Singular Integrals

To achieve high computational accuracy, the integrals with
singularity in the DBEM must be accurately computed
[9, 12, 15, 19–27]. In this section, the singular integral is
gradually computed through three steps. First, the consid-
ered integral patch is divided into several subpatches in
which both subtriangles and subpolygons are involved.
Second, the subpolygon patches are further subdivided into
triangular patches and the subtriangles are normalized into
some isosceles right triangles. Finally, in the normalized
space, a classical singularity subtraction method [15, 19–21]
based on the polar coordinate transformation is imple-
mented to eliminate the singularity of the integral. After
these three steps of operation, the Cauchy principle value
integral and the Hadamard finite part integral can be ac-
curately calculated. A more detailed discussion about these
two types of integrals can be found in [9, 15].

4.1. Triangular Element Subdivision Technique. To cope with
the singular integrals, the element subdivision is necessary in
the 3D BEM [9, 19–25]. Moreover, a suitable integral area is
of great importance to improving the accuracy of singular
integral calculation, especially for Cauchy or Hadamard
finite part integrals. 0us, in this part, considering the lo-
cation of the source point x in the element, the element can
be segmented into several subregions which contain

subtriangles and subpolygons. Adaptive integration based
on element subdivisions for the integrals on subpolygons is
employed to improve the calculation accuracy of the sin-
gularity subtraction method.

Considering the location of the source point, the source
point might locate near the corner node or edge node, as
shown in Figures 3(a) or 3(b). It can be found that if the
triangular element is directly subdivided into three sub-
triangles, one angle of subtriangles may belong to [2π/3, π).
0us, the accuracy of numerical results will become poor
which can be found in Section 6.1.0is will cause large errors
in the integral calculation over the singular integration el-
ements. In order to improve the calculation accuracy, an
element subdivision method, in which the source points,
corner points, and edge middle points are all considered the
vertexes in the subdivided triangular elements, is applied, as
shown in Figures 3(c) or 3(d). As illustrated in numerical
examples, however, the computational accuracy is still very
sensitive to the value of the offset parameter k.

Furthermore, to overcome this drawback, an adaptive
patch subdivision scheme for an arbitrary triangular element
has been developed. In this scheme, the triangular element is
firstly divided into several triangular and polygon patches
around the source point, as illustrated in Figure 3(e). 0e
integrals over these triangles around the source point are
singular and hypersingular. 0en, the polygons are further
subdivided into several subtriangles, over which the integrals
are treated as nearly singular integrals or regular integrals.
0e element subdivision scheme can be described as follows.

Firstly, we should draw parallel lines of three edges of the
triangle through the source point P, compute the distances
in the Cartesian coordinate system from P to the intersection
point between the parallel lines and the triangular element
edges, and find the minimum distance d.

Secondly, we construct isosceles subtriangles, the edge
length of which is d1 � 0.5 d, around the source point P. In
Figure 3(e), it can be found that 6 triangles can be obtained,
i.e., ΔPI1I2, ΔPI2I3, ΔPI3I4, ΔPI4I5, ΔPI5I6, and ΔPI6I1. It
is worth noting that if the angles around P are larger than
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Figure 3: Subdivisions of the triangular element according to the location of the source point.
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2π/3, the corresponding triangle can be further subdivided
into two subtriangles. Without loss of generality, assume
that 〈I2PI3〉2π/3, taking the midpoint of the line segment
I2I3 as I23. ΔPI2I3 can be divided into two triangles, i.e.,
ΔPI2I23 and ΔPI23I3. 0is step is to ensure fine shape of the
subtriangles, which is important for accurate calculation of
the singular integrals, especially for hypersingular integrals.
In each triangular patch, the singular integrals are calculated
by the singularity subtraction method.

Finally, we construct additional subtriangles which the
source point is not located in. Take subpolygon I2I3O3CO2
for example; three subtriangles can be obtained, i.e., I2O2C,
I2CI3, and I3CO3. 0e integrals over these subtriangular
patches are treated as nearly singular integrals. 0e calcu-
lation accuracy is also very important for the final results.
0ese integrals can be accurately calculated by the method in
[21].

4.2. Mapping a Subtriangle from the Local Intrinsic Coordi-
nates (ξ, η) to an Isosceles Right Triangle in the Integration
Space (a, b). To implement the singularity subtraction
method, firstly we introduce a coordinate transformation
from the intrinsic coordinate (ξ, η) space to the integration
space (a, b). As shown in Figure 4, any subtriangle for
singular or hypersingular integrals in the (ξ, η) space can be
transformed into an isosceles right triangle in the integration
space (a, b) as follows:

ξ � (1 − a − b)ξ0 + aξ1 + bξ2,

η � (1 − a − b)η0 + aη1 + bη2.
(18)

Using polar transformation in the integration space
(a, b), the singularity subtraction can be directly applied. It
should be noted that, for each subtriangle Δm around the
source point, [θ1, θ2] � [0, π/2] and [0, R(θ)] �

[0,
�
2

√
/cos(θ − π/4)]. It should be noted that the term


Se

u∗ij(PS, Q(ξ, η))Nα(ξ, η)J(ξ, η)dξdη in equation (13)
possesses singularity when PS locates in the integration
element, and singular integrals arise. 0e most common
methods to remove the weak singularity are based on var-
iable transformations [9, 19, 20, 24]. In our application, the
polar transformation is applied. Combined with element
subdivision, the integrals with weak singularity fall into two
parts: singular integrals and nearly singular integrals, as in


Se
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In each subtriangle Δm around the source point, the
polar transformation is performed to eliminate the singu-
larity of the integral, and the following equation can be
obtained:


SΔm

u
∗
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SΔm
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u
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ij PS, Q(ρ, θ)( Nα(ρ, θ)J(ρ, θ)Jab(ρ, θ)ρ dρ dθ,

(20)

where Jab(a, b) is the Jacobian from the (ξ, η) space to the
integration space (a, b).

4.3. Evaluation of the Cauchy Principle Value Integral and the
Hadamard Finite Part Integral. Employing the simple solu-
tion method and the polar transformation, calculation of sin-
gular integrals in the DBEM can be solved when the collocation
point is not on the crack surface. However, if the collocation
point belongs to the crack surfaces, the integrands with high-
order singularity should be regularized.0e singular term of the
integrand is separated in an analytical or a semianalytical form.
0e remaining part is regular, which can be directly calculated.
In equation (16), the expression of the Hadamard finite part
integral is 

C+
e

T∗ijk(PC+ , Q(ξ, η))Nα(ξ, η)J(ξ, η)dξdη, which is
similar to equation (19); the polar transformation is applied in

our method. Combined with element subdivision, the integrals
with high-order singularity fall into two parts: singular and
nearly singular integrals, as found in
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e
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T
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ijk PC+, Q(ξ, η)( Nα(ξ, η)J(ξ, η)dξ dη.

(21)

For each subtriangle Δm around the source point, using
the polar transformation in the integration space (a, b), the
following equation can be obtained:
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Using Taylor series expansions of kernel, shape func-
tions, and the Jacobian of the transformation, the integrand
F(ρ, θ) � T∗ijk(PC+ , Q(ρ, θ))Nα(ρ, θ)J(ρ, θ)Jab(ρ, θ)ρ can be
expanded as

F(ρ, θ) �
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ρ2
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+ O(1). (23)

Using equation (23), equation (22) can be transformed
into the following form:
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In the right-hand side of equation (24), the first integral
is regular and can be integrated accurately by the standard
Gaussian quadrature method. 0e second integral has the
same singularity as the original integrand with a simpler
form which can be integrated analytically or semianalyti-
cally. More details of the singularity subtraction technique
can be found in [15].

5. Calculation of SIFs

Using the asymptotic behavior of displacement and elasticity
solutions obtained by the DBEM, the SIFs can be evaluated
by results of any point nearby the crack front. Assume thatO
is an arbitrary point at the crack front. We construct a local

coordinate system in which the center is O. 0e unit tangent
vector of the crack front at point O is t, the unit normal of
the crack surface is b, and n � b × t/|b × t|, whose direction
points into the body, as shown in Figure 5.

0e SIFs can be evaluated as r approaches zero:
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where Δub � Δu · b, Δun � Δu · n, Δut � Δu · t, and v and E
are Poisson’s ratio and Young’s modulus. Using the dis-
continuous elements, CODs are obtained at the collocation
nodes inside the element. As shown in Figure 6, employing
the one-point formula, SIFs are expressed as

K
P′
I �

E

4 1 − v2( )

��������
π

2r cos(ϕ)



ΔuP
b ,

K
P′
II �

E

4 1 − v2( )

��������
π

2r cos(ϕ)



ΔuP
n ,

K
P′
III �

E

4(1 + v)

��������
π

2r cos(ϕ)



ΔuP
t .

(26)

In equation (26), ϕ is the angle of P1P′ (P2P′ or P3P′)
and n. r is the distance between points P and P’. 0is is
because that P1P′ (P2P′ or P3P′) may not be perpendicular
to the crack front, where the CODs ΔuP are evaluated at
point P (such as P1, P2, and P3), as shown in Figure 6. ΔuP

b ,
ΔuP

n , and ΔuP
t are the projections of ΔuP in the coordinate

directions of the local crack front coordinate system, as
shown in Figure 5.

In this method, the COD extrapolation applied for
calculating SIFs is as follows: As found in Figure 6, points P1,
P2, P3, and P′ are in a line. Firstly, we compute the distance
rP1 � P1P′, rP2 � P2P′, and rP3 � P3P′. 0en, we calculate
the SIFs using equation (27) through the CODs of P1, P2, and
P3. We denote the results as Kp1 , Kp2 , and Kp3 . Finally, using

a

b

(0, 0) (1, 0)

(0, 1)

(ξ0, η0)

(ξ1, η1)

(ξ2, η2)η

ξ

Figure 4: A coordinate transformation from the (ξ, η) space to the integration space (a, b).
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a linear extrapolation of Kp2 and Kp3 , we obtain the SIFs of
P′.

K
P′

�
rP3KP2 − rP2KP3

rP3 − rP2
. (27)

6. Numerical Examples

6.1. Singular Integrals on Triangles Considering Vertex Angles
and Aspect Ratios of Two Edge Lengths. In this example, the
following integral is computed:

I � 
S

1
r
dS. (28)

Considering singular integrals I in equation (24), firstly,
assume S is an isosceles triangle with (0, 0), (1, 0), and
(cos θ, sin θ) being its three vertexes and a � b � 1. θ varies

from 4π/9 to 8π/9. In Figure 7, it can be found that as θ
becomes larger, the computational accuracy decreases
quickly from 10− 5 to 10− 1. When θ � 2π/3, the computa-
tional accuracy is about 1.9 × 10− 3, while when θ � 13π/18,
the computational accuracy is about 5.0 × 10− 3. 0us, we
choose θ � 2π/3 as the demarcation point.

0en, we assume the three vertexes of the triangles are
(0, 0), (1, 0), and (b cos θ, b sin θ), respectively. In this ex-
ample, a � 1 and b varies from 1 to 10. We fix
θ � iπ/6, i � 1, . . . , 5. It can be found that, in Figure 8, as the
values of b/a become larger, the computational accuracy
decreases quickly; especially, θ> 2π/3 and b/a> 5. 0us, the
distortion and aspect ratio of special crack elements will also
affect the accuracy of the computed stress intensity factors
along the crack front. In order to obtain stress intensity
factors with high accuracy, the fine shape of elements should
be ensured.

6.2.APenny-ShapedCrack in an Infinite SpaceunderUniform
Loading. Firstly, we consider an embedded penny-sha-
ped crack in Figure 9. 0e parameters of this problem are
as follows: a � 1.0. In the z-direction, a far-field unit
stress is imposed. Material constants are chosen as E �

1.0 and v � 0.25. 0e crack surface is discretized into 58
elements in Figure 10, including 16 crack front elements.
0e results of our method (element subdivision in
Figure 3(e)) with those obtained by element subdivision
in Figures 3(c) and 3(d) combined with the singularity
subtraction technique are compared first to test the ef-
ficiency of our method. 0e results in Table 1 show that
the results of our method are more accurate and less
affected by the offset parameter of the collocation nodes.
In Table 1, method A represents the singularity sub-
traction method with element subdivision in Figure 3(e),
while method B represents the singularity subtraction
method with element subdivision in Figures 3(c) and
3(d). 0e results with different offset parameters from
0.05 to 0.4 agree well with the exact solutions. 0e largest
error is within 1%. 0e exact solutions of Δu are given in
[28, 29]. As shown in Figure 11, the results of our method
are in good agreement with the exact solutions with
different offset parameters. 0e largest error arises when
the offset parameter k is 0.05, which is about 2%. 0e
convergence of Δu calculated by our method is shown in
Figure 12. Assuming the offset is 0.25, it can be found that
the curves of Δu obtained by our method are nearly
indistinguishable from the exact solutions when the
number of elements varies from 58 to 244. And the
largest error of our method is within 0.8%. It should be
noted that if we use element subdivision in Figure 3(a)
and 3(b), the results are very poor. 0us, we compare the
results in the case of Figure 3(a) to those in the cases of
Figures 3(c) and 3(d). From Table 2, we note that, in Liu’s
method, the SIF results converge within 2% of the an-
alytical solutions very quickly using 864 elements and
then improve slowly afterwards [30]. 0e result with the
finest mesh (4704 elements) still has a relative error of
1.66%. However, in our method, with the help of special

Crack surface

Crack front

b

t

O

nφ

Figure 5: Local coordinate system at the crack front.

P1

P2

P3

P′

n

b

t

Geometry nodes
Sample nodes

Crack front

Figure 6: Calculation of the SIFs at the crack front.
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crack front elements, the results agree well with the
analytical solutions. 0is numerical example is illus-
trated clearly. 0e relative error in our method is much
lower than that in the comparison work [30]. 0e shape
of the element may affect the accuracy of the integral. But
the influence is not quite significant.

6.3. Elliptical Crack in an Infinite Space. As shown in
Figure 13, the elliptical crack in an infinite solid is
subjected to uniform inclined traction. Young’s Modulus
(E) is 1, and Poisson’s ratio (v) is 0.25, when
c � π/4, w � 0. 6-node triangular elements are used to

discretize the crack surface, and special crack front el-
ements proposed in our paper are also employed. 0e
elliptic equation is x2/a2 + y2/b2 � 1, a≥ b. In this paper,
a/b varies from 2 to 5. We compute SIFs of three modes at
different sample points along the crack front. 0e po-
sition of the crack front is denoted by the angle ϕ from
the positive direction of the largest radius of the ellipse to
the negative direction of the largest radius of the ellipse.
ϕ varies from 0 to π.

0e convergence of the SIFs computed by our method
is studied with different numbers of elements. In this
example, we assume the offset parameter k � 0.25. We treat
the solutions of Irwin et al. as the exact solutions [28].

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

a = b, θ from 4π/9 to 8π/9

|lo
g 1

0 
(l e

rr
or

s)|

1.6 1.8 2.0 2.2 2.4 2.6 2.81.4
θ

Figure 7: Errors of singular integrals on isosceles triangles with different θ values.
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s)|

b/a

θ = π/6, b/a = 1..10
θ = π/3, b/a = 1..10
θ = π/2, b/a = 1..10

θ = 2π/3, b/a = 1..10
θ = 5π/6, b/a = 1..10

Figure 8: Errors of singular integrals on triangles with different ratios of b/a.
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From Figures 14–18, it can be found that the results of our
method agree well with the exact solutions. And SIFs of
three modes obtained by our method show a high con-
vergence rate as the number of elements increases. In

Figure 14, for the case a/b � 2, when 74 elements are used,
it can be found that the largest error arises when ϕ ap-
proaches zero. 0e largest error is about 1.5%. And the
largest error is about 1% when the element number is 108.

(a) (b) (c)

Figure 10: Boundary element discretization of a penny-shaped crack in an infinite space: (a) 58 elements; (b) 162 elements; (c) 244 elements.

Table 1: Comparisons with other methods with different k; the normalized SIF (KI/
���
πa

√
) is 0.6366.

k SIFs by method A SIFs by method B
0.05 0.6372 Wrong
0.1 0.6349 Wrong
0.15 0.6358 Wrong
0.2 0.6367 0.5755
0.25 0.6373 0.6554
0.3 0.6372 0.6401
0.4 0.6366 0.6380

z

a
r

σ

σ

Figure 9: A penny-shaped crack in an infinite space.
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Exact solutions of ∆u
∆u when k = 0.05
∆u when k = 0.1
∆u when k = 0.15

∆u when k = 0.2
∆u when k = 0.25
∆u when k = 0.3
∆u when k = 0.4
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r

Figure 11: Comparisons of Δu over the crack surface with different offset parameters using 58 elements.

Exact solutions of ∆u 
∆u using 58 elements

∆u using 162 elements
∆u using 244 elements
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Figure 12: Convergence of Δu calculated by our method when k� 0.25.

Table 2: Comparison with Liu’s method for different number of mesh.

Methods Mesh Errors (%)

Method of Liu [30]

96 4.63∗
384 2.60∗
864 1.96∗
1536 1.92∗
2400 1.69∗
3456 1.69∗
4704 1.66

Our method
58 0.11
162 0.20
244 0.17

∗Values are obtained from the figures in [30], which may have errors.
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In Figure 15, for a/b � 2.5, the error is 1.7% when 96
elements are employed and the error is about 1% using
206 elements. In Figure 16, for the case a/b � 3, the error is
about 1.9% employing 72 elements and the error is about
1.6% employing 172 elements. In Figure 17, in the case
a/b � 4, the error is 2.0% when 128 elements are
employed, while the error is reduced to 1.5% when 212

elements are employed. In Figure 18, in the case a/b � 5,
the relative error is 2.5% if we employ 126 elements, while
the error is 2.0% when we use 42 more elements.

6.4. A Penny-Shaped Crack in an Infinite Space under Non-
uniform Loading. In this example, an embedded penny-

x

(x2/a2) + (y2/b2) = 1, a ≥ b

y

z x′

y′

w

γ

σ

σ

b

a

A (acosϕ, bsinϕ, 0)

Figure 13: An elliptical crack in an infinite solid under inclined traction [28].

Exact solutions
KI using 74 elements
KII using 74 elements
KIII using 74 elements

KI using 108 elements
KII using 108 elements
KIII using 108 elements
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Figure 14: SIFs along the front of the elliptical crack in the finite space when a� 2b.
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shaped crack under nonuniform loading is considered
[31]. 0e geometry can be found in Figure 9, and three
mesh models can also be found in Figure 10(a). 0ree
nonuniform loadings are considered. σzz � − y,
σzz � − 2xy, or σzz � y2 − x2. 0e stress intensity factors

along the front of the penny-shaped crack can be found
in Figure 19. And the largest errors are all within 3%. In
order to test the accuracy, we also list the results in
Tables 3–5.

Exact solutions
KI using 96 elements
KII using 96 elements
KIII using 96 elements

KI using 206 elements
KII using 206 elements
KIII using 206 elements
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Figure 15: SIFs along the front of the elliptical crack in the finite space
when a� 2.5b.

Exact solutions
KI using 72 elements
KII using 72 elements
KIII using 72 elements

KI using 172 elements
KII using 172 elements
KIII using 172 elements
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Figure 16: SIFs along the front of the elliptical crack in the finite space
when a� 3b.
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KIII using 212 elements
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Figure 17: SIFs along the front of the elliptical crack in the finite
space when a� 4b.
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Figure 18: SIFs along the front of the elliptical crack in the finite
space when a� 5b.
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7. Conclusions

A novel discontinuous triangular crack front element for
calculating SIFs was presented in this paper. In our nu-
merical implementation, the crack surface was modeled with
6-node discontinuous triangular elements which can satisfy
the existence of the finite part integrals. And an element
subdivision technique for the singular element was intro-
duced. Combined with the element subdivision technique
and singularity subtraction technique in the integration
space, the high-order singular integrals can be calculated
with high accuracy. Furthermore, special crack front ele-
ments were constructed. 0ese specially constructed ele-
ments can successfully approximate the distribution of
displacements nearby the crack front. And the SIFs can be
obtained by a COD extrapolation method without consid-
eration of orthogonalization of the crack front mesh. 0e
SIFs obtained by the present method were in very good
agreement with previously published results.

Appendix

A. Shape Functions for Geometric Quantities
and Physical Quantities in Normal Elements

0e shape functions ϕi
geo used for 6DTEs in Figure 2 are as

follows:

ϕ0geo � ξ(2ξ − 1),

ϕ1geo � η(2η − 1),

ϕ2geo � (1 − ξ − η)(2(1 − ξ − η) − 1),

ϕ3geo � 4ξη,

ϕ4geo � 4η(1 − ξ − η),

ϕ5geo � 4ξ(1 − ξ − η).

(A.1)

0e functional shape functions ϕi
coll for 6DTEs in Figure 2

are as follows:

ϕ0Coll � −
[ξ − (0.5 − 0.25k)](ξ − 0.5k)

(0.5 + 0.75k)(1 − 1.5k)
,

ϕ1Coll � −
[η − (0.5 − 0.25k)](η − 0.5k)

(0.5 + 0.75k)(1 − 1.5k)
,

ϕ2Coll �
(1.0 − 0.5k − ξ − η)(0.5 + 0.25k − ξ − η)

(1 − 1.5k)(0.5 − 0.75k)
,

ϕ3coll �
(ξ − 0.5k)(η − 0.5k)

(0.5 − 0.75k)(0.5 − 0.75k)
,

ϕ4coll �
(1.0 − 0.5k − ξ − η)(η − 0.5k)

(0.5 − 0.75k)(0.5 − 0.75k)
,

ϕ5coll �
(1.0 − 0.5k − ξ − η)(ξ − 0.5k)

(0.5 − 0.75k)(0.5 − 0.75k)
.

(A.2)

σzz = –y using 58 elements

σzz = –y using 162 elements

σzz = –y using 244 elements

σzz = –2xy using 58 elements

σzz = –2xy using 162 elements

σzz = –2xy using 244 elements

σzz = y2 – x2 using 58 elements

σzz = y2 – x2 using 162 elements

σzz = y2 – x2 using 244 elements

Analytical solutions
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Figure 19: SIFs along the front of a penny-shaped crack in the
finite space under nonuniform loadings.

Table 3: Stress intensity factors along the crack front under
nonuniform loadings compared with analytical solutions [31] for
the case σzz � − y.

ϕ Our method Analytical solutions Relative errors (%)
0.1608 0.06834 0.06797 0.54
0.3566 0.14788 0.14816 0.19
0.5532 0.22185 0.22298 0.51
0.7497 0.28726 0.2892 0.67
0.9455 0.34171 0.34412 0.70
1.1422 0.38287 0.38602 0.82
1.3388 0.40941 0.41304 0.88

Table 4: Stress intensity factors along the crack front under
nonuniform loadings compared with analytical solutions [31] for
the case σzz � − 2xy.

ϕ Our method Analytical solutions Relative errors (%)
0.1608 0.10464 0.10735 2.52
0.3566 0.21707 0.22214 2.28
0.5532 0.29645 0.30356 2.34
0.7497 0.33104 0.33866 2.25
0.9455 0.31525 0.32226 2.18
1.1422 0.25091 0.25669 2.25
1.3388 0.14878 0.15196 2.09

Table 5: Stress intensity factors along the crack front under
nonuniform loadings compared with analytical solutions [31] for
the case σzz � y2 − x2.

ϕ Our method Analytical solutions Relative errors (%)
0.1608 0.31486 0.32211 2.25
0.3566 0.25127 0.25678 2.15
0.5532 0.1488 0.15209 2.16
0.7497 0.02395 0.02423 1.16
0.9455 − 0.10432 − 0.1069 2.41
1.1422 − 0.21689 − 0.22224 2.41
1.3388 − 0.29664 − 0.30363 2.30
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B. Shape Functions for Physical Quantities
in the Crack Front Element for the First Case

M
0

� 0.28 − 2.88ξ + 5.12ξ2,

M
1

� 4.769793547343419 − 9.754660727535320ξ + 5.12ξ2 − 10.980025029089198
�������

1 − ξ − η


+ 10.393510076000469ξ
�������

1 − ξ − η


+ 6.337852243920629(1 − ξ − η),

M
2

� 2.230460956401501 − 9.680836269589136
�������

1 − ξ − η


+ 9.537852243920629(1 − ξ − η),

M
3

� − 1.419332590941917 + 12.634660727535321ξ − 10.239999999999997ξ2

+ 1.299188759500061
�������

1 − ξ − η


− 10.393510076000473ξ
�������

1 − ξ − η


,

M
4

� − 5.320254503744919 + 3.674660727535317ξ + 20.660861298678334
�������

1 − ξ − η


− 10.393510076000464ξ
�������

1 − ξ − η


− 15.875704487841258(1 − ξ − η),

M
5

� 0.459332590941916 − 3.674660727535321ξ − 1.299188759500061
�������

1 − ξ − η


+ 10.393510076000473ξ
�������

1 − ξ − η


.

(A.3)

C. Shape Functions for Physical Quantities
in the Crack Front Element for the Second Case

M
0

� 0.28 − 2.88ξ + 5.12ξ2,

M
1

� 2.230460956401502 − 9.680836269589138
��
η

√
+ 9.537852243920629η,

M
2

� 4.769793547343419 − 9.754660727535322ξ + 5.12ξ2 − 10.980025029089200
��
η

√

+ 10.393510076000474ξ
��
η

√
+ 6.337852243920630η,

M
3

� 0.459332590941916 − 3.674660727535319ξ − 1.299188759500060
��
η

√

+ 10.393510076000471ξ
��
η

√
,

M
4

� − 5.320254503744920 + 3.674660727535323ξ + 20.660861298678338
��
η

√

− 10.393510076000480ξ
��
η

√
− 15.875704487841258η,

M
5

� − 1.419332590941917 + 12.634660727535319ξ − 10.239999999999998ξ2

+ 1.299188759500060
��
η

√
− 10.393510076000471ξ

��
η

√
.

(A.4)
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D. Shape Functions for Physical Quantities in
the Crack Front Element for the Third Case

M
0

� 2.230460956401501 − 9.680836269589131
�
ξ


+ 9.537852243920622ξ,

M
1

� 0.28 − 2.88η + 5.12η2,

M
2

� 4.769793547343415 − 9.754660727535320η + 5.12η2 − 10.980025029089189
�
ξ



+ 10.393510076000471η
�
ξ


+ 6.337852243920622ξ,

M
3

� 0.459332590941915 − 3.674660727535319η − 1.299188759500059
�
ξ



+ 10.393510076000471η
�
ξ


,

M
4

� − 1.41933259094191 + 12.634660727535319η − 10.24η2

+ 1.299188759500059
�
ξ


− 10.393510076000471η

�
ξ


,

M
5

� − 5.320254503744915 + 3.674660727535319η + 20.660861298678320
�
ξ



− 10.393510076000471η
�
ξ


− 15.875704487841244ξ.

(A.5)
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