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Wheel-rail contact in railway engineering is an important topic. Due to different materials and surface roughness of wheel and rail,
the contact characteristics can alter significantly. +is article aims to investigate the effects of surface roughness and asperities on
the contact parameters such as contact area, contact force, and contact stiffness. +e lateral contacts between asperities are
assumed to be the general contact condition. Azimuthal and contact angles distributions are assumed to be spherical harmonic
distribution. +is assumption is compatible with the asperity distribution on the wheel and the rail surfaces. Besides, a new
combined model is developed to cover the stick-slip and the plasticity effects in contacting asperities. +e results of the presented
model offer very good estimations for the asperities contact characteristics, especially at the small-contact area and separation
where high-contact pressure and plastic deformation usually exist.

1. Introduction

Nowadays, railway engineering has enormously developed.
However, many unidentified subjects regarding wheel-rail
failure and maintenance cycles need to be investigated yet
[1]. Contact of surfaces is a high-risk matter from the
damage initiation point of view in engineering problems and
the railway industry. To develop the accuracy of the contact
modeling, the topography classification of the surfaces is a
real need. To this end, probabilistic models are presented to
describe the contact characteristics like contact load, contact
area, separation of surfaces, and contact stiffness. Further-
more, the contact stiffness may alter according to the stated
features. +ese features usually cause complicated and
nonlinear problems in studying the contacting surfaces
[2, 3]. To improve the modeling of contacting rough sur-
faces, the effects of the asperities should be taken into ac-
count. In this regard, the following applied models are
introduced.

Greenwood and Williamson [4] defined the roughness
distribution by considering the spherical asperities with
different heights on the surface and introduced the GW

model in terms of the Hertz theory for elastic contact. To
spread the GWmodel to a fully plastic zone, Chang et al. [5]
suggested their model named as CEB. +e ZMC model is
introduced by Zhao et al. [6] to evaluate the deformation of
asperities in the elastic-plastic regime. In this regard, they
examined the mathematical fitting approach. In [7], the
elastic-plastic asperity deformation in contacting surfaces by
using FEM is investigated by Kogut and Etsion. +eir ap-
proach is known as the KE model.

In [8], Etsion used another FE model to examine the
dependence of load to deformation and force considering
plasticity in contact problems. In [9], Jackson and Green
consider the effects of hardness variation by a FE analysis (JG
Model). +ey examined elastic-plastic contact of a sphere
with a rigid flat surface considering geometrical hardness
variation.+ementioned models are constructed in terms of
the idea of contacting an equal rough surface with a rigid one
without roughness. As a result, the stick-slip phenomenon at
the asperities shoulder may not be considered by these
models [10]. In [11], Ciavarella used an uncomplicated
model for contacting rough surfaces. However, his model
does not show good accuracy because of the assumptions
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and simplifications in many parameters in contact problems
that impose a significant effect on the final results.

Cinat et al. [12] proposed an algorithm that exploited an
analogy between genetics and the multiscale characterization
of roughness, where various-length scales are described in
terms of rough profiles. Wen et al. [13] studied a new elliptical
microcontact model considering elastoplastic deformation.
+ey described the relationship between the normal defor-
mation of the asperity and the mean contact pressure.

Some other works like Abuzeid et al. [14] have used
fractal methods for estimating the properties of the rough
surface contact. +is method is different from the statistical
model and usually is adequate for accounting based on
frequencies.

Lately, Megalingam and Hanumanth Ramji [15] pro-
posed a model of a deformable spherical asperity contact
with a rigid flat plate in a statistical method and combined
their model with the effects of Young’s modulus, Poisson’s
ratio, yield strength, and isotropic strain hardening rate by
using the finite element method.

Abdo and Farhang [16] suggested the AF model for
contacting of the rough surfaces by considering shoulder-to-
shoulder asperity contact and plasticity. +ey considered a
distinct condition among the different contact zones.

In [5], Chang et al. at the macroscopic level used an
elastic-plastic model while at the microscopic scale, they
considered asperities experience initially elastic deforma-
tion, and where their defined criterion had been met, they
assumed purely plastic deformation.

In recent studies, the used models almost consider the
elastic-plastic behavior of the materials [17, 18].

In [19], Gao et al. gave an elastic-plastic contact model
for contacting asperities. +ey assumed the lateral contact,
effects of adjacent asperities, and distribution of contact
angles. Although their research is the closest work to the
presented study, they did not consider the effects of the stick-
slip in the modeling of contacting asperities, and they used a
rather complicated model for implying the effects of contact
angles.

According to the performed analysis by using the
conventional models, there are still many lacks in the contact
modeling of asperities. For example, most of the existing
models assume that an equal rough surface contact with a
rigid flat one while the effects of friction and interaction
between adjacent asperities are passed over. Besides, many
models consider isotropic features for a rough surface that
may be unrealistic.

In this task, a new combined model is constructed to
study the contacting asperities. By this model, the lateral
contact between asperities and the elastic-plastic regime in
the contact area are considered. Using the base of the AF
model [16] for the elastic-plastic regime, focus on the slip-
stick in the asperity contact region is done. Furthermore, a
new spherical harmonic function is developed for asperity
contact modeling that its usage shows more precision in
comparison with the experimental results.

For a better understanding, the characteristics and main
fields of application of different well-known models are
shown in Table 1.

2. Methods

In this research, based on Gao et al.’s works [19], contact of
two single asperities under shoulder-to-shoulder interaction
is considered. +e model of contacting asperity is demon-
strated in Figure 1, where the mean separation d is the gap
between mean planes 1 and 2.+emean plane represents the
mean value of asperity height distribution on each surface.

In this task, to avoid the complexity in formulations, the
shape of the asperity’s tip was assumed to be spherical.

Abdo and Farhang [16] defined a fictitious asperity with a
fictitious surface which is related to the plastic deformation of
asperity (Figure 1). As is shown in Figure 1, ωc represents the
critical deformation at the beginning of plastic deformation
and R represents the radius of the spherical tip of asperity. By
analyzing the contact at the tip of the asperities, according to
Figure 2, the contact force relationships can be found.

+e total contact force decomposes into three compo-
nents as follows:

Fin � Fi cosφ,

Fiτ � Fi sinφ sin θ,

Fis � Fi sinφ cos θ,

(1)

where φ and θ are contact and azimuthal angles, respectively.
+e resultant force Fi is calculated as follows:

Fi �

������������

F
2
in + F

2
iτ + F

2
is



. (2)

+e normal component force Fin makes a relating
normal deformation δb in the Z′-axis direction which in-
cludes the deformation δbf (as shown in Figure 2) produced
due to the lateral contact of lower and upper asperities and
the deformation δbw created due to contact of the nearby
asperities. +e normal component of deformation δb is
shown as follows:

δb � δbf + δbw. (3)

+e tangential component of force Fiτ creates a tan-
gential displacement in the X′-axis direction, and the hor-
izontal component of force Fis generates a horizontal
displacement in the Y′-axis direction.

Considering the elastic-plastic model of material, Gao
et al [19] introduced the relations of force, contact area, and
contact stiffness between contacting asperities. +ey con-
sidered interactional deformation effects of adjacent as-
perities and anisotropic spreading of asperities. In this work
based on [7], [16], and [19], we analysed the elastic-plastic
contact regime by considering a new combined model for
the asperities contact problem. +e presented model is ac-
curately compatible with the physics of the asperities contact
problem and the results of the experiment. To examine the
validity of the presented method, the obtained results are
compared with the results of the other related works.

2.1. Analysis of the New Combined Method. In [7], Kogut
and Etsion solved the problem of elastic-plastic contacting
asperities and noted that the complete elastic-plastic state
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Table 1: Different important models in rough surfaces contact problem.

Model Key characteristics Main fields of application
GW model (Greenwood
and Williamson) Considering the spherical asperities +e elastic contact based on Hertz theory

CEB model (Chang, Etsion,
and Bogy) Considering plastic effects +e elastic- and fully-plastic zones in

rough surface contact
ZMCmodel (Zhao, Maietta,
and Chang) Evaluating the deformation of asperities +e elastic-plastic contact in rough

surfaces

KE model (Kogut and
Etsion) FEM for elastic-plastic asperity deformations

+e elastic-plastic contact in rough
surfaces (contact between asperity and a

flat surface)

Etsion model FE model to examine the dependence of load to deformation
and force

+e elastic- and perfect-plastic contact in
rough surfaces

JG model (Jackson and
Green) Considering the effects of hardness using the FE method

+e elastic-plastic contact in rough
surfaces (contact between asperity and a

flat surface)
AF model (Abdo and
Farhang) Considering shoulder-to-shoulder asperity contact +e elastic-plastic contact in rough

surfaces

Gao model (Gao et al.) Considering the lateral contact, effects of adjacent asperities,
and distribution of contact angles

+e elastic-plastic contact in rough
surfaces

Present model or ATmodel
(Amini and Tehrani)

Considering the lateral contact, effects of adjacent asperities,
distribution of contact angles, slip-stick effects, and

multiasperities contact

+e elastic-plastic contact in rough
surfaces

Mean plane 2

Mean plane 1

Mean separation (d)

Asperity surface

Fictitious plastic asperity

wc
R

Figure 1: Model of contacting asperities under shoulder-to-shoulder interaction.
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Figure 2: Asperities contact and force analysis.
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spreads over interference values in the range of 1≤δbf/
ωc< 110 with a marked variation in the mean contact
pressure at δbf/ωc � 6. Up to the δbf/ωc � 6, which is a shifting
value; a plastic zone grows under the contact boundary while
the whole contact area is elastic. Above δbf/ωc � 6, the contact
area includes an internal elastic circular core that is enclosed
by an outer plastic annulus.

Gao et al. [19] reported that the stick area is a circular
core at the elastic-plastic state and is bounded by an outer
plastic zone that is based on Cattaneo [20], Mindlin [21], and
Eriten et al.’s [22] works; we can mention this region as the
partial-slip area (Figure 3).

According to Kogut and Etsion’s [7] model, the whole
area of the contact is plastic, but the mean contact pressure
stays growing until it turns out to be unvarying and equal to
the hardness at δbf/ωc � 110, where the fully plastic contact
arises.

Considering the three general regimes elastic, elastic-
plastic, and entirely plastic deformations for asperities under
contact, Gao et al. [19] showed that the total force, contact
area, and stiffness are obtained as follows (if we assume that
Q is a property like a force or stiffness of asperities in
contact):

QTOT � Qe + Qep + Qp, (4)

where QTOT,Qe, Qep, and Qp are the total property of as-
perities in contact, the property related to elastic regime, the
property related to elastic-plastic regime, and the property
related to the fully plastic regime, respectively.

+erefore, based on the Kogut and Etsion’s [7] and Abdo
and Farhang’s [16] models and Gao et al.’s [19] works, we
can rewrite equation (4) as follows:

QTOT � Qe − Qep1 + Qep2 + Qp, (5)

where Qep1 is the elastic-plastic first component of the
property that is correlated to the stick area, and in terms of
the Abdo and Farhang’s [16] model, it should be subtracted
from the elastic property and Qep2 is the elastic-plastic
second component of the property that is related to the slip
area, and based on the Gao et al. [19], the formulation should
be added with the other regimes. In this analysis, we can
consider both slip and stick effects in the elastic-plastic zone
and modify the elastic-plastic formulations in the contact
problem of asperities. +e effects of fictitious asperity (AF
model) may be considered in relations as follows:

Rp � R − ωc( , (6)

where R is the equivalent radius of asperities,Rp is the
equivalent plastic radius based on the AF model [16], and ωc

is the critical deformation at the beginning of plastic state.
According to the CEB model [5] the relations for these
parameters can be expressed as follows:

R � R
−1
1 − R

−1
2 

−1
,

ωc �
πSH

2E
 

2
R,

(7)

where R1 and R2 are the radii of the asperities near the
contact zone and S is the maximum contact pressure factor,
which is based on the CEB model [5] obtained by
S� 0.454 + 0.41], ] and H are Poisson’s ratio and the
hardness of the softer material, respectively, and E is the
equivalent elastic modulus which is attained as follows:

E � E
−1
1 − E

−1
2 

−1
. (8)

2.2. Harmonic Spherical Distribution Function for Effects of
Contact Angles. In this work, we have chosen a new har-
monic spherical distribution function to reveal the effects of
shoulder-to-shoulder contact angles. Poorsolhjouy and
Gonzalez [23] introduced a new distribution function
ψ(φ, θ) for asperities contact as follows:

ψ(φ, θ) �
1
4π

1 + 

∞

k�2
ak0Pk(cosφ) + 

∞

m�1
P

m
k (cosφ) akm cosmθ + bkm sinmθ( ⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭, (9)

where φ and θ are contact and azimuthal angles, respectively.
+e summation over even k is represented by Σ’. Pk(cosφ) is
the kth order Legendre polynomial with respect to cosφ,

while Pm
k (cosφ) is its mth associated Legendre function.

Parameters ak0, akm, and bkm are fabric factors controlling
the form of the distribution function. +e shape of Legendre

Slip (plastic)

Slip (elastic) Stick (elastic)

Stick (plastic)

Slip (elastic-plastic)

Stick (elastic-plastic)

Figure 3: +e areas of the slip and stick.
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polynomials P2 and P1
2 are matched to the single asperity

contact problem which we assumed at the beginning to
simplify equation (9). According to Poorsolhjouy and
Gonzalez [23], parameter a20 is equal to −0.5 in a wide range
of density values. Furthermore, we assume parameters a21
and b21 are equal to 1 because the shape of the distribution
function for the azimuthal angles is harmonic in the as-
perities contact zone. Equation (9) can be simplified with
these assumptions as follows:

ψ(φ, θ) �
1
4π

1 −
1
4

3 cos2 φ − 1 

− 3(cosφ. sinφ)(cos θ + sin θ).

(10)

+e distribution function ψ, used in asperities contact
formulation, states the effects of the contact angle distri-
bution in the final formulation. +e variations of φ and θ
during integration are 0 to π and 0 to 2π, respectively.

2.3. Final Contact Formulations. According to the stated
theories and combining them for elastic-plastic interaction
zone and based on [19], the AF model [16], CEB model [5],
and KE model [7], the relations for contact force, contact
area, and contact stiffness may be computed as follows:

Ftot � Fe − Fep1 + Fep2 + Fp, (11)

where

Fe � ηAn 
d∗+δ∗bc

d∗

2π

0

π

0
F
∗
ie sinφψ(φ, θ)ϕ∗ z

∗
( dφdθdz, (12)

Fep1 � ηAn 
d∗+6δ∗bc

d∗+δ∗bc


2π

0

π

0
F
∗
iep1 sinφψ(φ, θ)ϕ∗ z

∗
( dφdθdz, (13)

Fep2 � ηAn 
d∗+110δ∗bc

d∗+6δ∗bc


2π

0

π

0
F
∗
iep2 sinφψ(φ, θ)ϕ∗ z

∗
( dφdθdz, (14)

Fp � ηAn 
∞

d∗+110δ∗bc


2π

0

π

0
F
∗
ip sinφψ(φ, θ)ϕ∗ z

∗
( dφdθdz. (15)

+e nondimensional deformation parameter δ∗bc is in-
troduced as δ∗bc � δbf/ωc. +e distribution function of Gauss
in nondimensional form [9] may be attained as follows:

ϕ∗ z
∗

(  � (2π)
− 1 σ

σz

 exp −
σ
σz

 

2
z
∗2

2
 ⎛⎝ ⎞⎠, (16)

in equations (12)–(16) η, An, z, d, σ, σz, and
∗ are the area

density of asperities, nominal contact area, height of asperity
calculated from the mean asperity height, mean separation

of two rough surfaces, standard deviation of the surface
heights distribution, standard deviation of asperity heights
distribution, and nondimensional parameters, respectively.

Gao et al. [19] obtained the relations for F∗ie, F∗iep2, and
F∗ip which are used in equations (12)–(15). In this task,
considering the same relations for F∗ie, F

∗
iep2, and F∗ip, we have

obtained a new expression for F∗iep1 based on Eriten’s model
[22] and combined it with the equation (11). +e main
formulations are as follows:

F
∗
ie �

���������������������������������������������

δ∗vf cosφ 
3

+
3
2
r
∗
ieζ
∗
v sinφ sin θ 

2
+

3
2
r
∗
ieξ
∗
v sinφ cos θ 

2


, (17)

where δ∗vfis the nondimensional normal component of
deformation in the Z-axis direction that is produced by the
normal component of force, ζ∗v and ξ∗v are nondimensional
tangential and horizontal component of displacement in the
Z-axis direction, respectively, and r∗ie is the nondimensional
elastic radius of the contact area between the asperities in
contact and is defined as r∗ie �

�����
δ∗bc/π


. +e relation between

δ∗vf and δ∗bc is δ
∗
bc � δ∗vf cosφ.

For elastic-plastic and fully plastic regimes according to
Section 3 and the AF model [16], the nondimensional radius

of the contact area can be considered as follows:

r
∗
i(p)AT �

ri(p) − ωc

ric

�
ri(p)

ric

−
ωc

ric

� r
∗
i(p) −

ωc����
ωcR

 � r
∗
i(p) −

��
ωc

R



,

(18)

where r∗i(p)AT is the nondimensional new radius of contact
area at plastic zones, ri(p) is the plastic or elastic-plastic
radius of contact area, ric is the critical radius at the be-
ginning of plastic deformation, and ric �

����
ωcR


. +e
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subscript (p) can be “ep” or “p” for elastic-plastic or plastic
deformations, respectively. +en, we have

F
∗
iep1 �

�����������������������������������������������������������������

1.32 δ∗vf cosφ − 1 
1.27

+ 1 
2

+
3
2
r
∗
iepATζ

∗
v sinφ sin θ 

2
+

3
2
r
∗
iepATξ

∗
v sinφ cos θ 

2


, (19)

where

r
∗
iepAT �

�����������������

1.19 δ∗vf cosφ − 1 
1.1

π



−

��
ωc

R



, (20)

and the relations for nondimensional tangential and hori-
zontal displacement are

ζ∗v �
16Gricζv

3Finc

, (21)

ξ∗v �
16Gricξv

3Finc

, (22)

where G is the equivalent shear modulus, G � (2 − v1/
G1 + 2 − v2/G2)

− 1, and Finc is the critical value at the be-
ginning of the plastic deformation that may be found as
Finc � 4ER1/2ω3/2

c /3.
According to the above corrections in the radius of the

contact area, we can write

F
∗
iep2 �

�������������������������������������������������������������������

1.32 δ∗vf cosφ − 1 
1.27

+ 1 
2

+ μepF
∗
in−ep 1 − 1 −

r∗iepATζ
∗
v sinφ cos θ

μepF∗in− ep

⎛⎝ ⎞⎠

3/2

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

2

+ μepF
∗
in−ep 1 − 1 −

r∗iepATξ
∗
v sinφ cos θ

μepF∗in− ep

⎛⎝ ⎞⎠

3/2

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

2












, (23)

F
∗
ip �

���������������������������������������������������

3δ∗vf cosφ
S

 

2

+
3
2
r
∗
ipATζ
∗
v sinφ sin θ 

2
+

3
2
r
∗
ipATξ
∗
v sinφ cos θ 

2




, (24)

where, according to Etsion’s model [12], F∗in−ep � 1.32
(δ∗vf cosφ − 1)1.27 + 1 and μep is the friction factor at elastic-
plastic contact deformations, and based on Jaeger’s model
[24] and CEB model [5], it can be written as
μep � 0.27 coth(0.27(F∗in−ep)0.35).

According to the JG model [6] and radius corrections in
this work,

r
∗
ipAT �

��������������������

δ∗vf cosφ δ∗vf cosφ/1.9 
B

π



−

��
ωc

R



, (25)

and B� 0.14 exp(23Sy/E), and Sy� (H/2.8).
Finally, we can apply relations (16) to (25) in equations

(12) to (15) and using the relation (11) for total asperities
contact force.

Similarly, the formulations for total contact area can be
written as follows:

Atot � Ae − Aep1 + Aep2 + Ap, (26)

where
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Ae � πβ
d∗+δ∗bc

d∗

2π

0

π

0
A
∗
ie sinφψ(φ, θ)ϕ∗ z

∗
(  dφdθdz,

Aep1 � πβp 
d∗+6δ∗bc

d∗+δ∗bc


2π

0

π

0
A
∗
iep1 sinφψ(φ, θ)ϕ∗ z

∗
(  dφdθdz,

Aep2 � πβp 
d∗+110

d∗+6δ∗bc


2π

0

π

0
A
∗
iep2 sinφψ(φ, θ)ϕ∗ z

∗
(  dφdθdz,

Ap � πβp 
∞

d∗+110δ∗bc


2π

0

π

0
A
∗
ip sinφψ(φ, θ)ϕ∗ z

∗
(  dφdθdz,

(27)

where β and βp are elastic and plastic roughness parameters
defined as β � πRσz and βp � π(R − ωc)σz.

+e relations for the contact area are as follows:

A
∗
ie � δ∗vf cosφ,

A
∗
iep1 � δ∗vf cosφ,

A
∗
iep2 � 1.19 δ∗vf cosφ − 1 

1.1
,

A
∗
ip � δ∗vf cosφ

δ∗vf cosφ
1.9

 

B

.

(28)

Similarly, for the total contact stiffness, we can write

Ktot � Ke − Kep1 + Kep2 + Kp, (29)

where

Ke � ηAn 
d∗+δ∗bc

d∗

2π

0

π

0
K
∗
ie sinφψ(φ, θ)ϕ∗ z

∗
(  dφdθdz,

Kep1 � ηAn 
d∗+6δ∗bc

d∗+δ∗bc


2π

0

π

0
K
∗
iep1 sinφψ(φ, θ)ϕ∗ z

∗
(  dφdθdz,

Kep2 � ηAn 
d∗+110δ∗bc

d∗+6δ∗bc


2π

0

π

0
K
∗
iep2 sinφψ(φ, θ)ϕ∗ z

∗
(  dφdθdz,

Kp � ηAn 
∞

d∗+110δ∗bc


2π

0

π

0
K
∗
ip sinφψ(φ, θ)ϕ∗ z

∗
(  dφdθdz,

K
∗
ie �

3
2

���������������

δ∗vf cosφ + 2 r
∗
ie( 

2


,

K
∗
iep1 �

�������������������������������������

1.6764 δ∗vf cosφ − 1 
0.27

 
2

+ 4.2426 r
∗
iepAT 

2



,

K
∗
iep2 �

��������������������������������������������������������������

2.81 δ∗vf cosφ − 1 
0.54

+ 2.25 r
∗
iepAT 

2
2 −

r
∗
iepAT sinφ ζ∗v sinφ + ξ∗v cosφ( 

μepF
∗
in−ep

⎛⎝ ⎞⎠




,

K
∗
ip �

���������������

3
S

 
2

+ 4.5 r
∗
ipAT 

2



.

(30)
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3. Results and Discussion

In this paper, a MATLAB program is employed to assess the
outcomes of the suggested theoretical model to determine
the contact problem of the rough surfaces considering as-
perities effects. +e rough surfaces’ properties assume to be
constant, and the contact properties like the contact stiffness,
which is very important in many applied problems such as
wheel and rail interaction, are studied.

In this paper, in order to compare the obtained results
with the results of the other works, the contact properties of
the Gao model [19] are used. +erefore, E� 116GPa,
G� 41GPa, v1 � v2 � 0.31, H� 1.12GPa, S� 0.58, ψ � 6, and
An � 3×10−5m2 are considered, and the following results
are attained.

Considering the presented model, Figure 4 shows the
total contact force variation versus mean separation for
different surface parameters σz. +is figure demonstrates
that the total contact force diminishes with growing sepa-
ration, which is acceptable in real contact situations. Fur-
thermore, whenever the surface parameter σ lessens, the
contact force decreases with a higher rate. +is fact shows
that, in the smooth surfaces, the contact force reduces at a
higher rate in comparison to a rough one with rising sep-
aration, which is logical since the figures of asperities in
contact on a smooth surface decrease at a higher rate than a
rough one.

In Figure 5, the total contact force variation versus
separation for different models is shown (the presented
model is called the “AT model”).

As is seen in Figure 5, the contact force of the AT model
is slightly lesser than the other models. However, its trend of
variation shows suitable concurrence with the other models.
In the AT model, the effects of the slip-stick area are con-
sidered in the formulation, and in this way, the slight di-
versity between the ATmodel and the other models may be
explained.

Considering the AT model, the real contact area varia-
tions versus mean separation for different surface param-
eters are shown in Figure 6. +e results indicate that the real
contact area has a reducing trend by rising mean separation,
which is logical because the figure of asperities in contact
diminishes with growing separation.

In Figure 6, considering a smoother surface (i.e., with
smaller σz), the real contact area decreases at a higher rate
with increasing separation in comparison to a rougher one,
because the figures of asperities in contact on a smooth
surface reduce at a higher rate with increasing separation in
comparison to a rough one.

+e real contact area variations versus mean separation
for different models are shown in Figure 7. +e effects of
considered fictitious asperity in the elastic-plastic zone and
its subtraction from the total results and some considered
corrections in the AT model like riepAT and βp cause the
results of the real contact area in this model to be lesser than
the other models. At bigger separations, where the plastic
region diminishes, the results are closer.

+e variations of the contact stiffness versus the mean
separation and the effects of the surface parameter σz on the

contact stiffness are shown in Figure 8. As is seen from this
figure in lower separation, the contact stiffness rises.

+is trend can be explained by the hardening process,
which occurs in contacting asperities or the connection
which exists between the mean separation and the real
contact area. Figure 8 demonstrates that the contact stiffness
of smoother surfaces rises at a higher rate than the rougher
one with diminishing separation.+is is logical since the real
contact area of the smoother surface rises at a higher rate
than the rougher one with diminishing separation.

Contact stiffness variations versus mean separation for
different models are shown in Figure 9. As can be seen from
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Figure 4: Variations of the total contact force with separation for
different surface parameters.
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Figure 5: Total contact force variation versus separation for dif-
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this figure, the variation trend of the ATmodel results shows
good agreement with other recognized models.

In Figure 10 the results of the contact area variations
versus mean separation considering the experimental re-
sults, based on Kucharski et al [17] and other models, are
compared. +e material properties of the steel specimens
considered in the experimental work are as follows: Young’s
modulus E� 200GPa, Poisson’s ratio v � 0.3, and tensile
yield strength Y� 400MPa. +e specimens are made of
carbon steel with 0.45% of carbon.

In [17], measuring of contact load and the contact area is
performed by the test, and sand-blasting is used to produce

the surface roughness of specimens. +e loadings of the
surfaces are performed incrementally in a few steps up to
300MPa of nominal load. After each step of loading, the 3D
topography of the surface is mapped and areas of plastic
deformation are identified in the isometric view. +e real
contact area is measured by summarizing the areas of in-
dividual contact spots.

According to Figure 10, the results of the AT model
rather than other analytical models are very close to the
experimental results. Since in employed formulations of this
model, the slip-stick effects are considered in elastic-plastic
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zones and corrections on the modified plastic radius and
plastic roughness parameters are performed.

In comparison to the experimental results, the error of
the presented model at low mean separation and where the
effects of plasticity are maximized is about 14%. However,
for the other models, this error is too high, and for bigger
mean separation, where the plastic region diminishes, all the
results are closed to each other. On the other hand, the AT
model offers a worthy assessment for the asperities contact
problem, especially at the low contact area and separation
where high contact pressure and plastic deformation usually
exist.

4. Conclusions

In this task, the effects of the surface asperities on the contact
force, contact area, and contact stiffness are studied. +e
lateral contact between asperities is assumed to be the
general condition for contacting surfaces. +e Gao model is
used for the fundamental of formulations, and corrections
for the elastic-plastic contact zone, fictitious asperity theory,
and slip-stick effects are carried out. Also, a new harmonic
spherical distribution function for applying the contact angle
effects is introduced, and a corrected radius for plastic
deformation is obtained. From the achieved results and
performed discussion, the following major outcomes are
derived:

(1) In the contact of rough surfaces, total contact force,
real contact area, and contact stiffness decrease with
increasing the mean separation. +ese parameters
increase at a higher rate with decreasing mean
separation on a smoother surface.

(2) +e outcomes of the ATmodel are close to the other
available analytical models. +e deviations in some

results, especially where the plastic deformation is
greater, are due to the effects of the considered
parameters like the effects of the slip-stick in the
elastic-plastic formulation and corrections in some
important parameters like plastic radiuses and
plastic roughness.

(3) Because of considering the effects of slip-stick in the
elastic-plastic regime, performing some modifica-
tions in plastic region parameters such as plastic
radius, roughness parameter, formulations of Fep1,
Aep1, and Kep1, and using a new harmonic spherical
distribution function for contact angles effects, the
results of the AT model, in comparison with the
other considered models with high accuracy, are
near to the experimental results, especially in a lower
separation where the plastic deformation is
dominated.

(4) In comparison to the experimental results, the error
of the ATmodel considering low mean separation is
about 14%. While for the other models, this error is
too high. For greater mean separation, where the
plastic region diminishes, all results are approxi-
mately close to each other. On the other hand, the
results of the presented model offer very good es-
timations for the asperities contact characteristics,
especially at the small-contact area and separation
where high-contact pressure and plastic deformation
usually exist.

In future works, the presented model can be used to
simulate the applied problems with high accuracy. For ex-
ample, in the wheel-rail contact problem, various failures
such as fracture and wear are prevalent that need to be
expressed and analyzed with an accurate model.

Nomenclature

Ae: Elastic contact area
Aep1: Elastic-plastic first component of contact area
Aep2: Elastic-plastic second component of contact area
Ap: Plastic contact area
An: Nominal contact area
Atot: Total contact area
ak0: Fabric factor
akm: Fabric factor
bkm: Fabric factor
d: Mean separation of two rough surfaces
E: Equivalent elastic modulus
Fi: Resultant force
Fin: Normal component of force
Fiτ: Tangential component of force
Ftot: Total contact force
Fe: Elastic contact force
Fep1: Elastic-plastic first component of contact force
Fep2: Elastic-plastic second component of contact force
Fp: Plastic contact force
Finc: Critical value at the inception of plastic deformation
G: Equivalent shear modulus
H: Hardness of softer material
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Figure 10: Contact area variations versus mean separation con-
sidering the experiment and other models.
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Ktot: Total contact stiffness
Ke: Elastic contact stiffness
Kep1: Elastic-plastic first component of contact stiffness
Kep2: Elastic-plastic second component of contact

stiffness
Kp: Plastic contact stiffness
Qp: Property symbol related to fully plastic regime
R: Equivalent radius of asperities
Rp: Equivalent plastic radius
r∗i(p)AT: Nondimensional new radius of contact area at

plastic zones
r∗i(p): Nondimensional plastic or elastic-plastic radius of

contact area
ric: Critical radius at the inception of plastic

deformation
r∗ie : Nondimensional elastic radius of the contact area

between the contacting asperities
S: Hardness factor
Z: Height of asperity measured from the mean asperity

height
β: Elastic roughness parameters
βp: Plastic roughness parameters
δbw: Deformation caused by the interaction between the

adjacent asperities
δ∗bc: Nondimensional deformation parameter
δ∗vf: Nondimensional normal component of

deformation in the Z-axis direction
ζ∗v : Nondimensional tangential component of

displacement in the Z-axis direction
η: Area density of asperities
Φ: Contact angle
θ: Azimuthal angle
μep: Friction factor at elastic-plastic contact

deformations
v: Poisson’s ratio
ξ∗v : Nondimensional horizontal component of

displacement in the Z-axis direction
ϕ∗: Nondimensional Gaussian distribution function
σ: Standard deviation of the surface height

distribution
σz: Standard deviation of asperity height distribution
ψ: Distribution function for asperity contacts
ωc: Critical deformation at the inception of plastic

deformation
∗: Nondimensional parameters.

Data Availability
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