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To improve the accurate and sufficient recognition of abnormal points on the workpiece, a multidimensional anomaly point
identification approach based on an improved eigenvalue method is proposed in this paper. Whether a point is normal or not
depends on the angle between the two adjacent vectors which consisted of four adjacent points around the current focus. 'e
comprehensive judgment is carried out by multidimensional approximation. 'e numerical simulation and actual experiment
validate the efficiency of the proposed method to quickly and accurately identify the abnormal point cloud in the surface point
cloud data.

1. Introduction

As a typical mechatronics equipment, industrial robots have
been widely used in modern industrial production. Com-
bined with robot vision and artificial intelligence technology,
the intelligent production lines are formed by industrial
robots to replace some humans for heavy and boring works
and boring and repetitive tasks. Earlier industrial robots
were mainly used for assembly, welding, handling, spraying,
and other precision requirements. With the improvement of
precision and rigidity of industrial robots, more and more
industrial robots have been directly applied to grinding and
drilling. In the case of cutting, milling, etc., it gradually
replaces the traditional manual operation with harsh
working environment, low processing efficiency, and poor
consistency of surface polishing quality [1].

Robotic grinding has been widely used in industries such
as automotive manufacturing, glass processing, and phased
array radar and aircraft manufacturing. In automotive body
grinding, the body normal vector is directly obtained by
mathematical models; however, due to factors such as
machining, assembly errors, and stress concentration of the

body parts, the actual shape and theoretical shape of the
body often deviate. Grinding the surface normal in the
mathematical model will lead to defects in the quality of the
body grinding. At the same time, the body shape of each car
is often affected by unpredictable factors such as machining
error, assembly error, and material deformation of the
components, which often leads to different deviations be-
tween the actual shape and the theoretical shape of the same
part of the same workpiece.'e point cloud normal grinding
in the model will result in grinding quality defects. As a
single car, it is only necessary to ensure that the car body
surface has a high degree of smoothness, and it is not
necessary to ensure that each car has an absolute unity
smoothness at the same position.'erefore, in the process of
industrial robot grinding, it is necessary (i) to solve the body
normal vector according to the actual shape of the grinding
part, (ii) to adjust the corresponding posture of the end
effector, and (iii) to adjust the grinding of each grinding
according to the data of the specific abnormal point.

'e typical size of the workpieces is large, and hence the
corresponding surface to be ground can be approximated as
a plane feature within a certain range (10mm∗ 10mm). By
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extracting these plane features using a laser sensor, it is
possible to calculate the normal vector of each point. 'e
grinding parameters can also be determined during sub-
sequent grinding, and hence the surface feature extraction is
an important part of robotic vision grinding. At present,
there are many methods for fitting surface points to surface
equations, and many have studied the recognition and ex-
traction of abnormal point clouds. However, there are only
few studies on combining surface anomaly point cloud
recognition with industrial robot grinding.

Recently, many experts and scholars have carried out a
lot of research on the identification of abnormal points
obtained from the robot visual grinding system. Lindner
et al. [2] studied a novel robotic vision system that uses laser
dynamic triangulation to determine the three-dimensional
coordinates of an object of observation, thereby improving
the applicability of the vision system. Wu et al. [3] proposed
a kind of footwear tracking method based on industrial
robots. 'e proposed method mainly includes two steps of
three-dimensional point cloud reconstruction and feature
curve extraction. Princely and Selvaraj [4] proposed a vision-
guided robot system (VGRS) to remove burrs to eliminate
the weakness of “teaching” or “offline” programming. 'is
system collects each artifact as a two-dimensional graphic
data and automatically generates robot programs based on
workpiece graphic data and finishing parameters. 'e robot
system proposed by Ji et al. [5] consists of a structured light-
based 3D scanner and a robot arm UR5 fixed on a mobile
platform.'e 3D scanner is used to identify wall defects and
measure the roughness. Muja et al. proposed a fast method
to find the nearest neighbor search packet (FLANN)
based on the existing research results [6–9], including
layer k-means tree and multiple random k-dimensional
tree [10]. 'e methods described above do not have the
ability to detect and accurately identify abnormal points
and feature edges, resulting in an algorithm that is not
practical. In this paper, a reliable point cloud data plane
fitting method is proposed, which is called as the im-
proved eigenvalue method. 'is method eliminates
outliers in point cloud data by the multidimensional
improved eigenvalue method to achieve robust identifi-
cation of abnormal point cloud and feature edge.

2. Application of Improved Eigenvalue
Method in Robot Milling

2.1. Expression of Deterministic Surfaces. 'e point cloud
data of the grinding surface are obtained by a visual rec-
ognition device. When an abnormal point cloud is recog-
nized in the whole point cloud data obtained, the robot may
move to that abnormal point cloud performing an incorrect
grinding operation. Commonly, acquisition methods of
surface point cloud data include visual measurement sen-
sors, contact measurement sensors, and noncontact mea-
surement sensors. 'is study used the widely used
noncontact measurement sensor—point laser sensor (PLS)
[11].

B-spline curves and surfaces have local modifiability and
strong convexity, which can successfully solve the

description problem of free-curve surfaces. 'is paper de-
scribes the deterministic surface model by using bicubic
B-spline surfaces commonly used in engineering.

Given (n+ 1)× (m+ 1) points Qij (i� 0, 1, . . ., n; j� 0, 1,
. . ., m) in space, an n×m number of Bézier patches can be
approximated, as shown in Figure 1. 'e expression of
multiple cubic B-spline patches is expressed as follows
[12–17]:

S(u, v) � 􏽘
h+3

i�1
􏽘

l+3

j�1
Ui(u)Vj(v)Cij, (1)

whereUi (u) and Vi (v) are the B-spline basis functions, Cij is
the control point, and the number of patches is h× l. 'e
surface model is the linear combination of the tensor
product of the control point and the basis function.
'erefore, the above formula is expressed as

S(u, v) � 􏽘
N

k�1
XkCk, (2)

where Xk is the tensor product of the B-spline basis function,
Ck � (xck, yck, zck)T is the corresponding control point, and
N� (h+ 3)(l+ 3) is the number of control points.

'e surface to be ground is considered as a plane per-
pendicular to the normal of the point in a certain area. For
the shell of airplanes, high-speed trains, and automobile
sheet metal, the surface curvature changes gently and the
curvature is small. 'e parts to be ground is approximated as
plane treatment. On this basis, the analysis and calculation of
the measurement data are simplified accordingly. Proof can
meet the needs of the project [18, 19]. For general surfaces,
the normal vector is calculated by the vector method. To
simplify the problem without loss of generality, we ap-
proximate the surface in a small area to a plane, and the
normal vector at point P(u, v) is

n(u, v) �
Su(u, v) × Sv(u, v)

Su(u, v) × Sv(u, v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
. (3)

'erefore, the grinding surface is regarded as plane
grinding within a certain range.'ere are many methods for
fitting a point cloud to obtain a plane using a point laser
sensor. 'e commonly used methods are the least squares
method and the eigenvalue method. 'e above two methods
do not take into consideration the possible outliers in the
acquired planar point cloud data. For this reason, an im-
proved planar fitting method is adopted in this study based
on the eigenvalue method.

2.2. Eigenvalue Method. Define T � T1, T2, . . . , Tn􏼈 􏼉 as the
measurement points of the machined part, where Ti is the
element of the point.

'e equation of the space plane is expressed as

Ax + By + Cz + D � 0, (4)

whereA, B, andC are the unit normal vectors of the points to
be grounded, i.e., A2 + B2 + C2 � 1, and di is the distance
from the coordinate origin to the plane, di≥ 0; to determine
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the plane characteristics, the key is to determine the four
parameters A, B, C, and D [20, 21].

It is assumed that a certain plane is scanned, and n data
points {(xi, yi, zi), i� 1, 2, . . ., n} are obtained. Using equation
(4) to represent the plane equation, any data point (xi, yi, zi)
the distance to the plane di is

di � |Ax + By + Cz + D|. (5)

To obtain the best fit plane, the following formula should
be satisfied under the condition a2 + b2 + c2 � 1:

f(A, B, C, D) � 􏽘
i

d
2
i � 􏽘(Ax + By + Cz + D)

2⟶ min.

(6)

'e extremum of the function is calculated by the La-
grangian multiplier method which is expressed as

f � 􏽘
i

d
2
i − (Ax + By + Cz + D)

2
. (7)

Deriving the above formula for d and letting the de-
rivative be zero,

zf

zd
� − 2􏽘

i

Axi + Byi + Czi + D( 􏼁 � 0. (8)

'en, there is

D � A
􏽐ixi

n
+ B

􏽐iyi

n
+ C

􏽐izi

n
. (9)

'erefore, equation (5) is expressed as follows:

di � A xi − x( 􏼁 + B yi − y( 􏼁 + C zi − z( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (10)

among them

x �
􏽐ixi

n
, y �

􏽐iyi

n
, z �

􏽐izi

n
. (11)

Let equation (7) be derived for A and let the derivative be
zero:

2􏽘
i

AΔxi + BΔyi + CΔzi( 􏼁Δxi − 2λA � 0, (11a)

where Δxi � xi − x,Δyi � yi − y, andΔxi � xi − z. Simi-
larly, for formula (4) for B and C, let the derivative be equal
to 0 and the following is obtained:

2􏽘
i

AΔxi + BΔyi + CΔzi( 􏼁Δyi − 2λB � 0, (11b)

2􏽘
i

AΔxi + BΔyi + CΔzi( 􏼁Δzi − 2λB � 0. (11c)

'e characteristic equations of (11a)–(11c) are formed to
obtain the following equation:

􏽐
i

ΔxiΔxi 􏽐
i

ΔxiΔyi 􏽐
i

ΔxiΔzi

􏽐
i

ΔxiΔyi 􏽐
i

ΔyiΔyi 􏽐
i

ΔyiΔzi

􏽐
i

ΔxiΔzi 􏽐
i

ΔyiΔzi 􏽐
i

ΔziΔzi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A

B

C

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� λ

A

B

C

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

From equation (8), the problem of solving A, B, and C is
transformed into the solution of matrix eigenvalues and
eigenvectors.

Make

M �

􏽐
i

ΔxiΔxi 􏽐
i

ΔxiΔyi 􏽐
i

ΔxiΔzi

􏽐
i

ΔxiΔyi 􏽐
i

ΔyiΔyi 􏽐
i

ΔyiΔzi

􏽐
i

ΔxiΔzi 􏽐
i

ΔyiΔzi 􏽐
i

ΔziΔzi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

x � (A, B, C)
T
.

(13)

(x, y, z)

Figure 1: Surface schematic.
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Obviously, the matrixM is a 3∗ 3 real symmetric matrix,
which is known from the matrix knowledge. For a real
symmetric matrix, its eigenvalue can be obtained by using
the following formula:

λ �
(Mx, x)

(x, x)
, x≠ 0, (14)

where (,) represents the dot product of two vectors.
Expand (14) and consider that A2 + B2 + C2 � 1, i.e.,

(x, x) � 1, then we get

λ �
(Mx, x)

(x, x)
� 􏽘

​
AΔxi + BΔyi + CΔz2

i􏼐 􏼑 � 􏽘 d
2
i . (15)

'erefore, the minimum value of 􏽐 d2
i is the minimum

eigenvalue of a, and the eigenvector value corresponding to
the smallest eigenvalue is A, B, and C.

'e eigenvalues of the real symmetric matrix M can be
obtained by using the following equation:

|M − λI| � 0. (16)

M is a 3× 3 real symmetric matrix, so the matrix has at
most 3 real eigenvalues, and λmin is the smallest one. After
λmin is obtained, the corresponding homogeneous linear
equation is obtained:

M − λminI( 􏼁x � 0. (17)

'e obtained nonzero solution is the eigenvector cor-
responding to λmin.which are the parameters A, B, and C of
the plane equation. [A, B, C]T is the true unit normal vector
of the measurement site.

2.3. Multidimensional Improved Eigenvalue Method for
Identifying Abnormal Point Clouds. When using the laser
scanning system to scan the research object due to various
factors, such as occlusion and dust, there are abnormal
points in the acquired point cloud data. 'e eigenvalue
method does not consider the existence of these abnormal

points. It directly uses all the data points in the point cloud to
perform plane fitting, which results in the plane parameters
A, B, and C being not optimal, that is, the fitted plane does
not reflect the true shape of the scanned surface. Based on
the eigenvalue method, this paper obtains the estimated
values of the smooth plane parameters A, B, and C by
identifying the anomalous points in the point cloud, which is
called the improved eigenvalue method [22–25].'e specific
algorithm is as follows.

'e modified eigenvalue method is used to derive the
normal parameters of the local tiny parts. On this basis, the
abnormal point cloud can be identified. In the direction of the
normal vector, the angle between the point and the adjacent
two points is calculated by judging the abnormal point to
determine whether the point is an abnormal point. If θi is
smaller than the predetermined value, the point cloud is
considered as an abnormal point. 'e tool is processed by the
cutting tool, otherwise it is normal. As shown in Figures 2–4,
let Pi− 1(xi− 1, yi− 1, zi− 1),Pi(xi, yi, zi), and Pi+1(xi+1, yi+1, zi+1)

be the adjacent three points in the point cloud data, and the
judgment process of whether Pi(xi, yi, zi) is an abnormal
point is as follows:

(1) Calculate the corresponding unit vector Ti(xi, yi, zi)

and Ti+1(xi+1, yi+1, zi+1):

Ti xi, yi, zi( 􏼁 �
xi − xi− 1, yi − yi− 1, zi − zi− 1( 􏼁

���������������������������������

xi − xi− 1( 􏼁
2

+ yi − yi− 1( 􏼁
2

+ zi − zi− 1( 􏼁
2

􏽱 .

Ti xi+1, yi+1, zi+1( 􏼁 �
xi+1 − xi, yi+1 − yi, xi+1 − zi( 􏼁

���������������������������������

xi+1 − xi( 􏼁
2

+ yi+1 − yi( 􏼁
2

+ zi+1 − zi( 􏼁
2

􏽱 .

(18)

(2) Calculate the angle θi between Ti and Ti+1:

θi � arccos
xi, yi, zi( 􏼁∗ xi+1, yi+1, zi+1( 􏼁

����������
x2

i + y2
i + z2

i

􏽱 ��������������
x2

i+1 + y2
i+1 + z2

i+1

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ � arccos xi, yi, zi( 􏼁∗ xi+1, yi+1, zi+1( 􏼁( 􏼁. (19)

(3) Determine whether θi is less than a preset allowable
angle θ0 (according to experience, generally take
75°). If θi ≤ θ0t then the point cloud is abnormal and
may need to be grounded, otherwise it corresponds
to normal point cloud data of the workpiece contour
that needs to be retained.

(4) If the point is judged to be an abnormal point in the
tool running direction, pass Ti(xi, yi, zi) and
Ti+1(xi+1, yi+1, zi+1). 'e crossover direction is re-
evaluated using the method of steps 1–3.

As seen from Figure 4, the vertical distance Di of
Pi(xi, yi, zi) to the surface is expressed as follows:

Di � sin θi− 1∗
��������������������������������

xi − xi− 1( 􏼁
2

+ yi − yi− 1( 􏼁
2

+ zi − zi− 1( 􏼁
2

􏽱

.

(20)

'e occurrence of the abnormal point has a pre-
cursor. As shown in the figure, Pi− 1, Pi, and Pi+1 are
the data obtained by the path measurement, where
Pi(xi, yi, zi) is an abnormal point. Because the small
step size (0.2–0.5mm, empirical value) is used for
sampling, Pi− 2 and Pi− 1 are close to 180° when
judged by the angle method, Pi− 1 is the previous
point of the abnormal point Pi, and Pi− 1 will de-
crease by a certain extent compared with Pi− 2, but
Pi− 1 is generally not less than 90°. 'e angle
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corresponding to the abnormal point Pi is generally
less than 90°. From the above analysis, we can see
that before the occurrence of the abnormal point, θi

will shrink to a certain extent. For a special point
cloud, the measuring device can judge θi from all
directions. If the angle of the point cloud data in
each direction is smaller than the set value, then the
point must be an abnormal point. If only one di-
rection is judged to be an abnormal point, the point
may be either a normal point or an abnormal point.
'is method can be applied to the process of
judging the abnormal point of a complex surface,
and the abnormal point can be accurately deter-
mined. Subsequent processing may happen at this
step.

(5) Recalculate A, B, and C using all retained point cloud
data.

(6) Repeat steps 2–5 until all the remaining points θi are
less than the preset allowable angle θ0.

(7) Calculate the best A, B, and C values.
(8) Using equation (5) to calculate d, the best plane

fitting equation can be obtained.

'e abnormal point cloud identification process is
shown in Figure 5.

3. Simulation Analysis

For the identification of the abnormal point cloud on the
surface for the simulated improved eigenvalue method, use

Pi (xi, yi, zi)

Pi+1

Pi–1
Pi–2

Pi+2

θi

Figure 2: Schematic diagram of point cloud data angle calculation.

Pi (xi, yi, zi)

Pi+1

Pi+2

Pi–1

Pi–2Pi–3Pi–4

θi

θi–1

θi+1

Ti+1Ti

Di

θi–2θi–3θi–4

Figure 3: Schematic diagram of the occurrence of abnormal points.

Pj–1

Pi–1

Pi+1
Pi+2

Pi–2

Pj–2
θi

Ti × Ti+1

Pi(j)

Figure 4: Schematic diagram of multidimensional identification of abnormal point cloud data by the IEM method.
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MATLAB to fit the function f(x) � 2/5∗ e− x2/50, x ∈
[− 50, 30], y ∈ [− 50, 50]. If the surface can be regarded as a
plane within a certain range, the extraction plane must
satisfy Ax + By + Cz + D � 0. Randomly extract 10,000
points on this surface, as shown in Figure 6, artificially make
5 of them become abnormal points, 2 of which are on the
edge strips, and simulate the edge strips on the car sheet
metal, then the other 4 points are on the normal surface. As

shown in Figure 7, the circle indicates an abnormal point
[26, 27].

Using MATLAB tools, the least square method, eigen-
value method, and improved eigenvalue method were used
to estimate the parameters of the above simulation data.
Tables 1 and 2 show the calculation results.

Table 1 shows the calculation results of the parameters of
the three methods without abnormal values.

Using a laser sensor to extract surface point
cloud data on a workpiece to be polished 

Judge point data θi > θ0Yes

This point does
not need to be

polished 
Yes

This point needs
to be polished

Call polishing
program 

Continue to judge
the next point until

the border 

End of judgment

Start

No

Judging the position
of the Ti × Ti + 1
Direction′s θi > θ0

No

Figure 5: IEM method multidimensional identification abnormal point cloud data flow chart.
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Figure 6: Simulated surface point cloud data.
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When an abnormal point cloud is added to the point
cloud data, the calculation results by three different methods
are shown in Table 2.

From the data of the two tables, when there is no abnormal
value in the point cloud data, the calculation results of the three
methods are consistent; but when there is an abnormal point,
the eigenvalue method and the proposed improved eigenvalue
method based on this method are most accurate for the
identification of abnormal point clouds. At the same time,
when there are edge strips on the surface, the eigenvalue
method is not ready to identify the point cloud data of the edge
strips. 'e improved recognition algorithm can identify the
multidimensional comprehensive judgmentmethod.'e point
cloud is the characteristic edge strip to be ground by the ab-
normal point cloud or the curved surface, which reduces the
occurrence of misjudgment during the grinding process.

4. Experimental Verification

'e robot automatic grinding system is mainly composed of
tooling equipment, measuring instrument equipment,

control equipment, and software system. 'e tooling
equipment is composed of a robot, a mobile platform, and a
terminal actuator; the measuring instrument is mainly a
laser tracking range finder. 'e software system is composed
of a robot offline programming and simulation system, a
robot control system, an automatic grinding control system,
and a laser tracking measurement system.'is study belongs
to the abnormal point cloud identification of the

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
50

0Y

X

–50
–50 –40 –30 –20 –10 0 10 20 30

Z

Figure 7: Surface point cloud data with five exception points.

Table 1: Set value of simulation model parameters and various
method parameter estimates (no outliers).

Method a b c d Standard
variance δ

Least squares 3.000 1.012 − 1.116 0.707 3.245×10− 3

Eigenvalue method 3.000 1.524 − 1.118 0.707 2.754×10− 3

MIEM 3.000 1.524 − 1.118 0.707 2.274×10− 3

Table 2: Set values of simulation model parameters and various
method parameter estimates (adding outliers).

Method a b c d Standard
variance δ

Least squares 3.529 − 0.265 − 1.089 0.963 0.215×10− 3

Eigenvalue method 4.259 0.724 − 1.108 0.539 1.025×10− 3

MIEM 3.000 1.423 − 1.107 0.715 2.264×10− 5

Figure 8: Scanning device.
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measurement part. 'e integrated laser point cloud mea-
surement module is used for measurement. 'e laser
ranging module emits a laser beam to illuminate the surface
of the workpiece and receives the reflected laser light for
distance measurement. 'e laser ranging module can output
a standard signal, or can add a postprocessing unit to directly
output the distance value. 'e laser noncontact measure-
ment has high precision, is less affected by the material of the
workpiece, and is less prone to collision. 'e application
range is relatively wide. 'e measurement equipment and
point cloud data are as shown in Figure 8 [28–31].

Figure 9 shows the 3D point cloud data obtained by
scanning the car rearview mirror, converting the data
format and importing it into MATLAB. As can be seen
from Figures 10 and 11, the size of the rearview mirror
burrs is uneven, showing uneven and discontinuous dis-
tribution. 'e eigenvalue method and the multidimen-
sional improved eigenvalue method (MIEM) were used to
identify the anomaly points. It was found that the eigen-
value method can identify the anomalous points in the
plane area as well as abnormal points on the side strips, but
the identification accuracy is low. In fact, the feature edge
strip is correctly external with respect to the profile (see
Figure 10, the line highlighted in blue), but it is identified as
abnormal. 'is is showed that this method is not suited to
correctly identify abnormal points that are at the bound-
aries of the profile (i.e., between the edge strip and the
plane). On the other hand, the multidimensional improved
eigenvalue method (MIEM) can not only accurately
identify the abnormal points in the plane area, but can also
prepare to recognize the surface. 'is is because the im-
proved eigenvalue method (MIEM) is a comprehensive
judgment from multiple dimensions, the identified ab-
normal points are better than the previous two methods,
and the recognition of feature edges on complex surfaces is
particularly accurate.

5. Conclusion

Because the previous surface fitting algorithm only recog-
nizes abnormal points from one dimension, this paper
proposes an improved multidimensional identification
method, which is validated through numerical simulation
and actual experiment. 'e results prove the multidimen-
sional improved eigenvalue method’s (MIEM) feasibility
and robustness. 'is method can accurately obtain the
normal vector direction near the scanning point and then
judge the abnormal point cloud from multiple dimensions
by the angle method, which lays a theoretical foundation for
the subsequent determination of grinding thickness and
grinding method.

Data Availability

'e data used to support the findings of this study have not
been made available because the data of this study is mainly
the surface point cloud data, which can be scanned by the
network or other equipment. 'is study mainly proposes a
method.
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Figure 9: Scanned car rearview mirror point cloud.
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Figure 10: Car rearview mirror to be ground point cloud identified
by the eigenvalue method.
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Figure 11: IEM identified car rearview mirror to be ground point
cloud.
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