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In this paper, we study the asymptotic behavior of Asian option prices in the worst-case scenario under an uncertain volatility
model. We derive a procedure to approximate Asian option prices with a small volatility interval. By imposing additional
conditions on the boundary condition and splitting the obtained Black–Scholes–Barenblatt equation into two Black–Scholes-like
equations, we obtain an approximation method to solve a fully nonlinear PDE.

1. Introduction

An option on a traded account is a financial contract that
allows the buyer of the contract the right to trade an un-
derlying asset for a specified price, called the strike price,
during the lifetime of the option. +ere are various options,
such as European options, American options, Asian options
and barrier options. +e foundation for the modern analysis
of options, the Black–Scholes–Merton pricing formula for
European options, was introduced by Black and Scholes [1]
and Merton [2]. +e Black–Scholes–Merton model assumes
constant volatility. However, constant volatility cannot ex-
plain the observed market prices for options.

After Black, Scholes and Merton’s work, some scholars
studied option pricing models with stochastic volatility. A
series of papers introduced several models for stochastic
volatility, such as the Hull–White stochastic volatility model
[3] and the Heston stochastic volatility model [4].

+e uncertain volatility model is another approach to
describe nonconstant volatility. In 1995, Lyons [5] and
Avellaneda et al. [6] introduced uncertain volatility models.
In these models, volatility is assumed to lie within a range of
values, so prices are no longer unique. We can only get the
best-case and worst-case scenario prices. Several studies
investigate problems with uncertain volatility. We can see
these results in Lyons [5], Avellaneda et al. [6], Dokuchaev
and Savkin [7], Zhou and Li [8], and Forsyth and Vetzal [9].

+ese papers show pricing in uncertain volatility models
involving nonlinear partial differential equations. Vorbrink
[10] and Epstein and Ji [11] generalized the no-arbitrage
theory to financial markets with ambiguous volatility in the
mathematically rigorous framework of G-Brownian motion.
Method of approximating the valuation equations and the
latest research on Fourier transform was given by Zhang
et al. [12] and Yu et al. [13]. Pooley et al. [14] and Avellaneda
et al. [6] propose some numerical methods.

In 2014, Fouque and Ren [15] studied the price of Eu-
ropean derivatives in the worst-case scenario with the un-
certain volatility model. +ey provide an approximate
method of pricing the derivatives with a small volatility
interval. In addition, the paper also shows that the solution
reduces to a constant volatility problem for simple options
with convex payoffs.

+is study examines the pricing problem of Asian op-
tions. +e payoff function is path dependent on risky asset
price processes with the addition of another variable to solve
the problem. +e first problem in estimating the worst-case
scenario Asian option prices is obtaining the Hamil-
ton–Jacobi–Bellman (HJB) equation for the prices. +e HJB
equation is called the Black–Scholes–Barenblatt (BSB)
equation in financial mathematics. We can obtain the BSB
equation using stochastic control theory. +e next difficulty
is to prove the convergence of the estimation. To control the
error term, we obtain its expectation form using the
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Dynkin’s formula and determine the conditions to impose
on the payoff function through proof and deduction. Finally,
we obtain the approximation procedure for the prices.
Compared to Fouque and Ren’s paper [15], we add an
equation to the stochastic control system, which we can also
reflect in the BSB equation. In terms of the dynamics of the
risky asset price process, we provide an equation to describe
the path dependence. When estimating the expectation
form, we use the relationship between the two processes, in
Section 4.4, we fix one of the two variables first to simplify
the problem. We manage the two variables using another
method that changes the form of the BSB equation.

+e paper is organized as follows. In Section 2, we briefly
describe Asian options under the uncertain volatility model
and give the BSB equations for the option prices. In Section
3, we estimate the Asian option prices in the worst-case
scenario, where the estimation relies on two Black–Scholes-
like PDEs. Next, we propose the main result of this study,
which shows the rationality of the estimation. In Section 4,
we give the proof of the main result. +rough the conditions
imposed on the payoff function, we obtain the convergence
of the error term. In the process, we obtain the expectation
form of the error term, which we divide into three parts. We
derive the control for each part using stochastic control
theory and the properties of the worst-case scenario Asian
option price process. Finally, we conclude the paper.

2. Asian Options under Uncertain
Volatility Model

In this section, we introduce Asian options under the uncertain
volatility model. +en, we provide the BSB equation of Asian
option prices. Suppose thatX is an Asian option written on a
risky asset withmaturity Tand payoff φ(·). φ(·) is a nonconvex
function and the result is identical to the Black–Scholes result
under convex conditions.+at is to say, this study results cover
generalized Asian options. Here, generality means that the
payoff function φ(·) can be in different forms, as long as it is
nonconvex. Assume that the price process of the risky asset Xt

solves the stochastic differential equation:

dXt � rXtdt + σtXtdWt, (1)

where r is the constant risk-free interest rate and Wt is a
standard Brownianmotion on the probability space (Ω,F,P).
Let σ and σ are two constants and there is σ ≤ σ. +e volatility
process σt ∈ A[σ, σ] for each t ∈ [0, T], which is a family of
progressively measurable and [σ, σ]-valued processes. By the
abovementioned definition, we know that volatility in an
uncertain volatility model is not a stochastic process with a
probability distribution, but a family of stochastic processes
with unknown prior information. +us, we can use model
ambiguity to distinguish between uncertain volatility models.

Due to the path dependence of risky asset price pro-
cesses, we assume that Yt,T satisfies

Yt,T �
YT − Yt

T − t
, (2)

where Yt � 􏽒
t

0 Xudu. +en, we can obtain Asian option
prices in the worst-case scenario at time t<T as follows:

V t, Xt, Yt( 􏼁 � exp(− r(T − t)) esssup
σ∈A σ,σ[ ]

E φ Y0,T􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌Ft􏼔 􏼕,

(3)

where esssup is the essential supremum. By the ambiguity of
the uncertain volatility model, we obtain the definition of
price as equation (3). Obviously, the worst-case scenario
price is for the option seller and is related to the coherent risk
measure that quantifies the model risk induced by volatility
uncertainty (see [16]). Moreover, model ambiguity in
mathematical finance has captured the attention of many.
+erefore, we should pay attention to the importance of the
worst-case prices.

+rough stochastic control theory (see [17]), V(t, Xt, Yt)

satisfies the HJB (BSB) equation.

Lemma 1. V(t, Xt, Yt) satisfies the following BSB equation:

ztV + r xzxV − V( 􏼁 + xzyV + sup
σ∈A σ,σ[ ]

1
2
x
2σ2z2xxV􏼔 􏼕 � 0,

0≤ t≤T, x≥ 0, y≥ 0,

V(T, x, y) � φ
y

T
􏼒 􏼓, x≥ 0, y≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Proof. Note that the stochastic control system is

dXt � rXtdt + σtXtdWt, σt ∈ A σ, σ􏼂 􏼃,

dYt � Xtdt.
􏼨 (5)

+en, for all (s, x, y) ∈ [0, T] × R+ × R+, we first estab-
lish the dynamic program frame:

dXt � rXtdt + σtXtdWt,

dYt � Xtdt,

Xs � x,

Ys � y.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

+e cost function is

J(s, x, y; σ) � Es e
− r(T− s)φ Y0,T􏼐 􏼑􏽨 􏽩, (7)

where Es[·] � E[· |Fs]. +e value function is

V(s, x, y) � esssup
σ∈A σ,σ[ ]

J(s, x, y; σ).
(8)

For all 0≤ s≤􏽢s≤T, σ ∈ A[σ, σ], we have

V(s, x, y)≥Es e
− r(T− s)φ Y0,T􏼐 􏼑􏽨 􏽩

� Es 􏽚
􏽢s

s
− re

− r(T− t)φdt + e
− r(T− 􏽢s)φ⎡⎣ ⎤⎦.

(9)

+en, we obtain

2 Mathematical Problems in Engineering



0≥Es 􏽚
􏽢s

s
− re

− r(T− t)φdt⎡⎣ ⎤⎦ + V(􏽢s, x, y) − V(s, x, y). (10)

Dividing both sides of the inequality by 􏽢s − s, we have

0≥Es

􏽚
􏽢s

s
− re

− r(T− t)φdt

􏽢s − s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

V(􏽢s, x, y) − V(s, x, y)

􏽢s − s
. (11)

Here, we assume that φ is Lipschitz continuous. +en,
according to It 􏽢o’s formula and equation (6), we obtain

dV � Vtdt + VxdXt + VydYt +
1
2
VxxdXtdXt +

1
2
VyydYtdYt

+
1
2
VxydXtdYt

� Vt + rXtVx + XtVy +
1
2
σ2t X

2
t Vxx􏼒 􏼓dt + σtXtVxdWt.

(12)

Let 􏽢s⟶ s. For all σ ∈ A[σ, σ], we have

0≥ − rEs e
− r(T− s)φ􏽨 􏽩 + Vt + rXsVx + XsVy +

1
2
σ2s X

2
s Vxx

≥ − rV(s, x, y) + Vt(s, x, y) + rxVx(s, x, y) + xVy(s, x, y)

+
1
2
σ2s X

2
s Vxx(s, x, y),

(13)

which is

0≥ − rV + Vt + rxVx + xVy + sup
σ∈A σ,σ[ ]

1
2
σ2x2

Vxx. (14)

In contrast, for any ε> 0, there is a σ(ε) ∈ A[σ, σ] such
that

V(s, x, y) − ε(􏽢s − s)≤Es e
− r(T− s)φ􏽨 􏽩

� Es 􏽚
􏽢s

s
− re

− r(T− t)φdt⎡⎣ ⎤⎦ + Es e
− r(T− 􏽢s)φ􏼔 􏼕.

(15)

+us, we have

− ε≤Es

􏽚
􏽢s

s
− re

− r(T− t)φdt

􏽢s − s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

V(􏽢s, x, y) − V(s, x, y)

􏽢s − s
. (16)

From the argument above, we obtain

0≤ − rV + Vt + rxVx + xVy + sup
σ∈A σ,σ[ ]

1
2
σ2x2

Vxx. (17)

Combining (14) with (17), we have

0 � − rV + Vt + rxVx + xVy + sup
σ∈A σ,σ[ ]

1
2
σ2x2

Vxx. (18)

□

Remark 1. Here, adding variable Y into the dynamic system
leads to a more complex stochastic control system, which
adds the dimensionality of the BSB equation.

Remark 2. Note that (4) is a fully nonlinear PDE which has
no solution, unlike the Black–Scholes equation. +us, we
solve the problem by reducing it to two Black–Scholes-like
PDEs.

3. Black–Scholes-Like PDEs and Main Result

In this section, we first reparameterize the uncertain volatility
model to study prices in the worst-case scenario. Assume that
the risky asset price process satisfies the following SDE:

dXε
t � rXε

tdt + σtX
ε
tdWt,

dYε
t � Xε

tdt,
􏼨 (19)

where σt ∈ Aε � σt|σt is a􏼈 [σ0, σ0 + ε]−
valued progressively measurable process} and σ0 ∈ [σ, σ].
+e cost function is

J
ε
(t, x, y; σ) � e

− r(T− t)
Etxy φ Y

ε
0,T􏼐 􏼑􏽨 􏽩, (20)

where Etxy[·] refers to the conditional expectation taken
with respect to Xε

t � x, Yε
t � y. +e value function is

V
ε
(t, x, y; σ) � esssup

σ∈Aε
J
ε
(t, x, y; σ)􏼂 􏼃. (21)

By Lemma 1, we obtain the following BSB equation for
Vε:

ztV
ε + r xzxVε − Vε( 􏼁 + xzyVε + sup

σ∈Aε

1
2
x
2σ2z2xxV

ε
� 0,

0≤ t≤T, x≥ 0, y≥ 0,

Vε(T, x, y) � φ
y

T
􏼒 􏼓, x≥ 0, y≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

which is equivalent to
ztV

ε + r xzxVε − Vε( 􏼁 + xzyVε

+ sup
c∈A[0,1]

1
2
x
2 σ0 + εc( 􏼁

2
z
2
xxV

ε
� 0,

0≤ t≤T, x≥ 0, y≥ 0,

Vε(T, x, y) � φ
y

T
􏼒 􏼓, x≥ 0, y≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

where A[0, 1] � ct | ct is a􏼈 [0, 1]−

valued progressively measurable process}. It is obvious that
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the worst-case scenario price is higher than any Black-
–Scholes price with a constant volatility of σ0 ∈ [σ, σ]. In the
following section, we will show that the worst-case scenario
price of Asian options will converge to its Black–Scholes
price with constant volatility σ0. In addition, we can obtain
the rate of convergence of the Asian option prices as the
volatility interval shrinks to a single point. +en, we can
estimate prices through this result when the interval is
sufficiently small.

Let V0 be the Black–Scholes prices, V0 � Vε|ε�0,
V1 � zεV

ε|ε�0. Now, we suppose that Vε is continuous with
respect to ε. +en, by the continuity of Vε and equation (3),
we have V0 � V0 � Vε|ε�0. It is well known that V0 satisfies
the following partial differential equation:

ztV0 + r xzxV0 − V0( 􏼁 + xzyV0 +
1
2
σ20x

2
z
2
xxV0 � 0,

0≤ t≤T, x≥ 0, y≥ 0,

V0(T, x, y) � φ
y

T
􏼒 􏼓, x≥ 0, y≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

In contrast, we have V1 � zεV
ε|ε�0, which is the rate of

convergence of the Asian option prices as ε approaches 0. To
obtain the equation characterizingV1, we differentiate both sides
of equation (23) with respect to ε and let ε � 0, then we have

ztV1 + r xzxV1 − V1( 􏼁 + xzyV1 +
1
2
σ20x

2
z
2
xxV1

+ sup
c∈A[0,1]

cσ0x2z2xxV0 � 0,

0≤ t≤T, x≥ 0, y≥ 0,

V1(T, x, y) � 0, x≥ 0, y≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

We now have two Black–Scholes-like PDEs. Next, we
want to find the connection between Vε and V0, V1. +en,
we try to prove whether it is possible to impose additional
conditions on the payoff function to make the error term
Vε − (V0 + εV1) be of order o(ε). +at is to say, the esti-
mation of the worst-case scenario Asian option prices will
approach the truth-value as the model ambiguity decreases.
+is will also provide a method to estimate the worst-case
Asian option prices. By the deduction in Section 4, we obtain
the following theorem, which is the main result of this study.

Theorem 1. Assume that φ ∈ C2
p(R+) is Lipschitz contin-

uous, the fourth derivative of φ exists and the second de-
rivative of φ is continuous. 0en,

lim
ε↓0

Vε − V0 + εV1( 􏼁

ε
� 0. (26)

Here, φ ∈ C2
p(R+) means that its derivatives up to order

2 have polynomial growth.

Remark 3. +ere are some difficulties in proving+eorem 1.
+e first is how to convert the error term into an estimable
form. Here, we obtain its expectation form and divide it into
three parts in Section 4. +e second difficulty is how to
estimate the three parts. Here, we will use stochastic control
theory, the zero set property of equation (33), the properties
of sublinear expectation in [18], and the properties of the
worst-case scenario Asian option price processes.

Remark 4. By +eorem 1, we can compute Asian option
price Vε(t, Xε

t , Yε
t) with its approximation,

V0(t, Xε
t , Yε

t) + εV1(t, Xε
t , Yε

t), where V0(t, Xε
t , Yε

t) is the
Black–Scholes price of the Asian option and we can compute
V1(t, Xε

t , Yε
t) numerically by a simple difference scheme

according to (25) (see [14]).

Remark 5. Note that (24) and (25) are independent of ε.
+us, when we compute Vε with different ε, we only need to
compute V0 and V1 once for all small values of ε by
+eorem 1.

4. Proof of the Main Result

In this section, we try to control the error term to prove that
we can compute Vε with its estimation V0 + εV1. Addi-
tionally, from the conditions imposed on φ mentioned in
+eorem 1, we have the following process of proof. +e
following parts also reflect our thought process.

4.1. 0e Lipschitz Continuity of the Payoff Function. From
Section 3, we know that only with the continuity of Vε can
we obtain the PDEs of V0 � (Vε | ε�0) and V1 � (zεV

ε | ε�0).
+us, to obtain the continuity of Vε, we suppose that φ is
Lipschitz continuous. +en, there exists a constant K1 such
that

|φ(x) − φ(y)|≤K1|x − y|, for allx≠y, x, y ∈ R
+
.

(27)

+us, we have the following Lemma.

Lemma 2. Assume that φ is Lipschitz continuous. 0en, Vε is
continuous with respect to ε.

Proof. Let 0≤ ε0 ≤ ε< 1. Note that

V
ε
(t, x, y; σ) � esssup

σ∈Aε
e

− r(T− t)
Etxy φ Y

ε
0,T􏼐 􏼑􏽨 􏽩􏽮 􏽯. (28)

We have

e
r(T− t)

V
ε0(t, x, y; σ) � esssup

σ∈Aε0
Etxy φ Y

ε0
0,T(σ)􏼐 􏼑􏽨 􏽩

� esssup
σ∈Aε

Etxy φ Y
ε
0,T σ∧ σ0 + ε0( 􏼁( 􏼁􏼐 􏼑􏽨 􏽩.

(29)

By the Lipschitz continuity of φ and equation (1), there is
a constant K1 such that
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e
r(T− t)

V
ε
(t, x, y; σ) − V

ε0(t, x, y; σ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ esssup
σ∈Aε

Etxy φ Y
ε
0,T(σ)􏼐 􏼑􏽨 􏽩 − Etxy φ Y

ε
0,T σ∧ σ0 + ε0( 􏼁( 􏼁􏼐 􏼑􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤K1 esssup
σ∈Aε

Etxy Y
ε
0,T(σ) − Y

ε
0,T σ∧ σ0 + ε0( 􏼁( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼐 􏼑
(1/2)

≤ K1/T( 􏼁 esssup
σ∈Aε

Etxy 􏽚
T

0
X

ε
u(σ) − X

ε
u σ∧ σ0 + ε0( 􏼁( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2du􏼠 􏼡

(1/2)

.

(30)

With the estimates of the moments of solutions of the
stochastic differential equations (+eorem 9 in Section 2.9
and Corollary 12 in Section 2.5 of [19]), we have the con-
stants
N � N(q, r, σ0), N′ � N′(q, r, σ0), andC � max NN′, N+􏼈

N}′ such that

Etxy sup
s≤u

X
ε
s(σ) − X

ε
s σ ∧ σ0 + ε0( 􏼁( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2q

􏼢 􏼣

≤Nu
q− 1

e
Nu

Etxy 􏽚
u

0
X

ε
s(σ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2q

· σs − σs ∧ σs + ε0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2qds􏼔 􏼕

≤Nu
q− 1

e
Nu

N′eN′u
u 1 + x

2q
􏼐 􏼑 ε − ε0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2q

� Cu
q
e

Cu 1 + x
2q

􏼐 􏼑 ε − ε0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2q

.

(31)

+us, we have

e
r(T− t)

V
ε
(t, x, y) − V

ε0(t, x, y)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤
K1

T
esssup
σ∈Aε

􏽚
T

0
Etxy sup

s∈[0,u]

X
ε
u(σ) − X

ε
u σ∧ σ0 + ε0( 􏼁( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2du􏼠 􏼡

(1/2)

≤
K1

T
esssup
σ∈Aε

􏽚
T

0
Cue

Cu 1 + x
2

􏼐 􏼑 ε − ε0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2du􏼠 􏼡

(1/2)

≤K1′ 1 + x
2

􏼐 􏼑
(1/2)

ε − ε0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

(32)

where K1′ � K1′(K1, C, T).
Let ε⟶ ε0. We have |Vε(t, x, y) − Vε0(t, x, y)|⟶ 0.
+e continuity of Vε with respect to ε can be proven

similarly when ε≤ ε0. □

4.2. Expectation Form of the Error Term. In this section, we
analyze the error term and give its expectation form as
preparation work before proving the convergence of
V0 + εV1.

Let 􏽢σt be the worst-case scenario volatility process and
􏽢X
ε
t be the worst-case scenario risky asset process. +en, we

can rewrite equation (19) as follows:

d 􏽢X
ε
t � r 􏽢X

ε
tdt + 􏽢σt

􏽢X
ε
tdWt,

d􏽢Y
ε
t � 􏽢X

ε
tdt.

⎧⎨

⎩ (33)

We can obtain the expression of 􏽢σ by equation (23), and
we have 􏽢σ(ε) � σ0 + ε􏽢c, where

􏽢c(t, x, y; ε) �
1, z2xxVε(t, x, y)≥ 0,

0, z2xxVε(t, x, y)< 0.

⎧⎨

⎩ (34)

Similarly, by solving equation (25) for V1, we have the
volatility process, σ(ε) � σ0 + εc, where

c(t, x, y) �
1, z2xxV0(t, x, y)≥ 0,

0, z2xxV0(t, x, y)< 0.

⎧⎨

⎩ (35)

Here, we use the short notation 􏽢ct and ct for 􏽢c(t, x, y; ε)
and c(t, x, y), respectively. Let Zε � Vε − (V0 + εV1). To
estimate the error term Zε, we define the operator
L(σ) � zt + rxzx − r + (1/2)σ2x2z2xx + xzy. According to
partial differential equations (22), (24) and (25), we have

L 􏽢σt( 􏼁Z
ε

� L 􏽢σt( 􏼁 V
ε

− V0 + εV1( 􏼁( 􏼁

� 0 − L 􏽢σt( 􏼁 V0 + εV1( 􏼁

� − L 􏽢σt( 􏼁 − L σ0( 􏼁( 􏼁V0 − L σ0( 􏼁V0 − ε L 􏽢σt( 􏼁(

− L σ0( 􏼁􏼁V1 − εL σ0( 􏼁V1

� ε ct − 􏽢ct( 􏼁σ0x
2
z
2
xxV0 −

ε2

2
􏽢ct( 􏼁

2
x
2
z
2
xxV0􏼐

+ 2σ0􏽢ctx
2
z
2
xxV1􏼑 −

ε3

2
􏽢ct( 􏼁

2
x
2
z
2
xxV1

� − f
ε
(t, x, y),

(36)

with the boundary condition Zε(T) � Vε(T) − V0
(T) − εV1(T) � 0.We have the following expectation form of
Zε by the Dynkin’s formula:

Z
ε

� Etxy 􏽚
T

t
f
ε
(s, x, y)ds􏼢 􏼣

� εEtxy 􏽚
T

t
􏽢cs − cs( 􏼁 · σ0 · 􏽢X

ε
s􏼐 􏼑

2
z
2
xxV0 s, 􏽢X

ε
s,

􏽢Y
ε
s􏼐 􏼑ds􏼢 􏼣

+ ε2Etxy 􏽚
T

t

1
2

􏽢cs( 􏼁
2 􏽢X

ε
s􏼐 􏼑

2
z
2
xxV0 s, 􏽢X

ε
s,

􏽢Y
ε
s􏼐 􏼑􏼚􏼢

+ σ0 􏽢cs( 􏼁 􏽢X
ε
s􏼐 􏼑

2
℘2xxV1 s, 􏽢X

ε
s,

􏽢Y
ε
s􏼐 􏼑􏼛ds􏼕

+ ε3Etxy 􏽚
T

t

1
2

􏽢cs( 􏼁
2 􏽢X

ε
s􏼐 􏼑

2
z
2
xxV1 s, 􏽢X

ε
s,

􏽢Y
ε
s􏼐 􏼑ds􏼢 􏼣

� εI1 + ε2I2 + ε3I3,
(37)

where
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I1 � Etxy 􏽚
T

t
􏽢cs − cs( 􏼁 · σ0 · 􏽢X

ε
s􏼐 􏼑

2
z
2
xxV0 s, 􏽢X

ε
s,

􏽢Y
ε
s􏼐 􏼑ds􏼢 􏼣,

(38)

I2 � Etxy 􏽚
T

t

1
2

􏽢cs( 􏼁
2 􏽢X

ε
s􏼐 􏼑

2
z
2
xxV0 s, 􏽢X

ε
s,

􏽢Y
ε
s􏼐 􏼑􏼚􏼢

+ σ0 􏽢cs( 􏼁 􏽢X
ε
s􏼐 􏼑

2
z
2
xxV1 s, 􏽢X

ε
s,

􏽢Y
ε
s􏼐 􏼑􏼛ds],

(39)

I3 � Etxy 􏽚
T

t

1
2

􏽢cs( 􏼁
2 􏽢X

ε
s􏼐 􏼑

2
z
2
xxV1 s, 􏽢X

ε
s,

􏽢Y
ε
s􏼐 􏼑ds􏼢 􏼣. (40)

Z
ε􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ ε I1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + ε2 I2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + ε3 I3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (41)

We can therefore estimate Zε by controlling |I1|, |I2|, and
|I3|.

4.3.0e Polynomial Growth Condition of the Payoff Function.
From Section 4.2, we know that to control the error term, we
need to analyze the three parts. By (41), we have

Zε

ε

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ I1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + ε I2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + ε I3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑. (42)

+erefore, it is sufficient to prove

lim
ε↓0

I1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + ε I2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + ε I3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 � 0. (43)

Obviously, it is necessary to obtain controls of the terms
|I2| and |I3|. For |I1|, we need to prove its convergence. We
first consider controls of the terms |I2| and |I3|.

By the expressions of I2 and I3, we can see that the partial
derivatives of V0 and V1 are involved. +us, we should
consider estimating them before controlling I2 and I3. Next,
we can obtain the expectation form of V0 and Vε by the
classical result. When ε � 0, we have

X(u) � x exp r −
σ20
2

􏼠 􏼡(u − t) + σ0 Wu − Wt( 􏼁􏼨 􏼩. (44)

+us,

V0(t, x, y) � e
− r(T− t)

Etxy φ Y0,T􏼐 􏼑􏽨 􏽩

� e
− r(T− t)

Etxy φ
1
T

􏽚
T

0
X(u)du􏼠 􏼡􏼢 􏼣

� e
− r(T− t)

Etxy φ
1
T

· x · 􏽚
T

0
e

r− σ20/2( )( )(u− t)+σ0 Wu− Wt( )du􏼠 􏼡􏼠 􏼡􏼢 􏼣

� e
− r(T− t)

Etxy[φ(x · H)],

(45)

where H(� (1/T) 􏽒
T

0 exp (r − (σ20/2))(u − t) + σ0(Wu−􏼈

Wt)}du) is a random variable for fixed t ∈ [0, T]. Similarly,
we have

V
ε
(t, x, y) � e

− r(T− t) esssup
σ∈Aε

Etxy φ Y
ε
0,T􏼐 􏼑􏽨 􏽩􏽮 􏽯

� e
− r(T− t)

Etxy[φ(x · G)],

(46)

where G(� (1/T) 􏽒
T

0 exp (r − (􏽢σu)2/2)(u − t) − 􏽢σu(Wu−􏽮

Wt)}du) is a random variable for a fixed t ∈ [0, T].
By equations (45) and (46), we note that it is necessary

to impose polynomial growth conditions on φ to control
z2xxV0 and z2xxVε. +en, we estimate z2xxV0(t, x, y) and
z2xxVε(t, x, y) in the following Lemma.

Lemma 3. Suppose that the second derivative of the payoff
function satisfies the polynomial growth condition, that is,
there are constantsK2 andm such that φ″(x)≤K2(1 + |x|m).
0en, we have constant K3 such that

z
2
xxV0(t, x, y)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤K3 1 +|x|

m
( 􏼁, (47)

where K3 depends on T, t, Etxy[|H|2], Etxy[|H|m+2], and K2.
Moreover, there is a constant K4 such that

z
2
xxV

ε
(t, x, y)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤K4 1 +|x|

m
( 􏼁, (48)

where K4 depends on T, t, Etxy[|G|2], Etxy[|G|m+2], and K2.

Proof. As the assumption of φ in the lemma, we have

z
2
xxV0(t, x, y) � e

− r(T− t)
Etxy φ″(xH)H

2
􏼔 􏼕

≤ e
− r(T− t)

Etxy K2 1 +|xH|
m

( 􏼁H
2

􏽨 􏽩

≤K3 1 +|x|
m

( 􏼁.

(49)

Here, K3 depends on T, t, Etxy[|H|2], Etxy[|H|m+2], and
K2.

Indeed, for a constant m> 0, we have

EH
m

�
1

(T)

m

E 􏽚
T− t

− t
exp

r − σ20
2

􏼠 􏼡u + σ0Wu􏼨 􏼩du􏼠 􏼡

m

≤
1
T

􏼒 􏼓
m

E 􏽚
T− t

− t
e

r− σ20/2| |(T− t)+σ0Wudu􏼠 􏼡

m

≤
1
T

􏼒 􏼓
m

e
m r− σ20/2| |(T− t)

E sups∈(− t,T− t) e
σ0Ws􏽮 􏽯􏼐 􏼑

m
< +∞.

(50)
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We obtain the control tial2xxVε similarly. +en, there is a
constant K4 that depends on T, t, Etxy[|G|2], Etxy[|G|m+2],
and K2 such that

z
2
xxV

ε
(t, x, y)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤K4 1 +|x|

m
( 􏼁. (51)

Now, by the following proposition, we can obtain
controls of the terms |I2| and |I3|. □

Proposition 1. Assume that φ ∈ C2
p(R+) and the Lipschitz

continuity condition holds. 0en, there exist constants C1 and
p1 such that I2 and I3 in equations (39) and (40) satisfy

I2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + I3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤C1 1 +|x|
p1( 􏼁. (52)

Proof. By Lemma 3, we have the following inequality from
(23) and (48):

ztV
ε

+ r xzxV
ε

− V
ε

( 􏼁 + xzyV
ε

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
1
2
σ0 + ε( 􏼁

2
x
2
z
2
xxV

ε
􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
K4

2
􏼒 􏼓 σ0 + ε( 􏼁

2
|x|

2
+|x|

m+2
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(53)

By the expression of V1, it is true that

ztV1 + r xzxV1 − V1( 􏼁 + xzyV1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ K4σ0 |x|
2

+|x|
m+2

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(54)

By (25) and (47), we get the controls for x2z2xxV1:

x
2
z
2
xxV1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � ztV1 + r xzxV1 − V1( 􏼁 + xzyV1 + gtσ0x

2
z
2
xxV0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ·
2
σ20

􏼠 􏼡

≤ ztV1 + r xzxV1 − V1( 􏼁 + xzyV1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + σ0x
2
z
2
xxV0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼒 􏼓 ·

2
σ20

􏼠 􏼡

≤ M1 |x|
2

+|x|
m+2

􏼐 􏼑,

(55)

where M1 depends on K3, K4, and σ0. We can obtain the
existence and uniqueness of 􏽢X

ε
t from+eorem 5.2.1 in [20].

+en, by the estimates of the moments of solutions of the
stochastic differential equations (Corollary 12 in Section
2.5 of [19]), there is a constant N1(q) for a fixed q> 0 such
that

Etxy sups∈[t,T]
􏽢X
ε
s

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

􏽨 􏽩≤N1(q)e
N1(q)(T− t) 1 +|x|

q
( 􏼁. (56)

By (40), (55), and (56), we have the following inequality:

I3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � Etxy 􏽚
T

t

1
2

􏽢cs( 􏼁
2 􏽢X

ε
s􏼐 􏼑

2
z
2
xxV1 s, 􏽢X

ε
s,

􏽢Y
ε
s􏼐 􏼑ds􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
M1

2
􏼒 􏼓Etxy 􏽚

T

t

􏽢X
ε
s

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ 􏽢X
ε
s

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
m+2

􏼒 􏼓ds􏼢 􏼣≤M1′ 1 +|x|
m+2

􏼐 􏼑.

(57)

Here, M1′ depends on T, t, N1(2), N1(m + 2), and M1.
By (39), (47), (55), and (56), we obtain the control of

term |I2|.

I2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � Etxy 􏽚
T

t

1
2

􏽢cs( 􏼁
2 􏽢X

ε
s􏼐 􏼑

2
z
2
xxV0 + σ0 􏽢cs( 􏼁 􏽢X

ε
s􏼐 􏼑

2
z
2
xxV1ds􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
K3

2
Etxy 􏽚

T

t

􏽢X
ε
s􏼐 􏼑

2
+ 􏽢X

ε
s􏼐 􏼑

m+2
ds􏼢 􏼣

+ M1Etxy 􏽚
T

t

􏽢X
ε
s􏼐 􏼑

2
+ 􏽢X

ε
s􏼐 􏼑

m+2
ds􏼢 􏼣

≤M2 1 +|x|
p1( 􏼁,

(58)
where M2 depends on T, t, M1, K3, N1(2), and N1(m + 2),
p1 ≥m + 2.Combining (57) and (58), we have a constant C1
such that

I2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + I3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤C1 1 +|x|
p1( 􏼁. (59)

□

4.4. 0e Continuity of the Second Derivative of the Payoff
Function. By Proposition 1, we obtain controls of the terms
|I2| and |I3|. Next, for the fixed point
(t, x, y) ∈ [0, T] × R+ × R+, it suffices to prove that

lim
ε↓0

I1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 0. (60)

Note that if φ ∈ C2
p(R+) (i.e., its derivatives up to order 2

have polynomial growth), we can obtain the following in-
equality by (38), (47), (56), and Hölder inequality:

I1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ Etxy 􏽚
T

t
σ0 􏽢X

ε
s􏼐 􏼑

2
z
2
xxV0􏼒 􏼓

2
ds􏼢 􏼣􏼢 􏼣

(1/2)

· Etxy 􏽚
T

t
􏽢cs − cs( 􏼁

2ds􏼢 􏼣􏼢 􏼣

(1/2)

≤M3 1 +|x|
p2( 􏼁

(1/2)
Etxy 􏽚

T

t
􏽢cs − cs

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds􏼢 􏼣􏼢 􏼣

(1/2)

.

(61)

Here, M3 depends on K3, T, t, σ0, and p2 ≥ 4 + 2m.
Moreover, M3 is independent of ε.

Let hε(t, x, y) � 􏽢c(t, x, y; ε) − c(t, x, y). By (34) and
(35), we have

h
ε
(t, x, y)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 �

1, z2xxVεz2xxV0 < 0,

0, z2xxVεz2xxV0 ≥ 0.

⎧⎨

⎩ (62)

+us, to prove |I1|⟶ 0 as ε⟶ 0, it suffices to prove
that

lim
ε↓0

Etxy 􏽚
T

t
h
ε

s, 􏽢X
ε
s,

􏽢Y
ε
s􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds􏼢 􏼣 � 0. (63)

By the expression of hε, we should analyze the derivatives
of V0 and Vε. Here, we find that the continuity of φ″ is
necessary.

Lemma 4. Assume that φ″ is continuous. 0en, z2xxV0 and
z2xxVε are continuous with respect to (x, y).
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Proof. By (45), we have V0(t, x, y) � e− r(T− t)Etxy[φ(xH)]

and z2xxV0(t, x, y) � e− r(T− t)Etxy[φ″(xH)H2]. If φ″ is
continuous, then for all x0 ∈ R+, δ > 0, there is a constant
ξ � ξ(δ, x0) such that

φ″(xH) − φ″ x0H( 􏼁
􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌≤ δ, (64)

for all xH ∈ (x0H − ξ, x0H + ξ). So, for all
(x0, y0) ∈ R+ × R+, xH ∈ (x0H − ξ, x0H + ξ), and
y ∈ (y0 − ξ, y0 + ξ), we have

z
2
xxV0(t, x, y) − z

2
xxV0 t, x0, y0( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � e

− r(T− t)
Etxy φ″(xH)H

2
− φ″ x0H( 􏼁H

2
􏼔 􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ e
− r(T− t)

Etxy H
2 φ″(xH) − φ″ x0H( 􏼁
􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼔 􏼕

≤ e
− r(T− t)δEtxy H

2
􏽨 􏽩.

(65)

+us, we obtain

lim
(x,y)⟶ x0 ,y0( )

z
2
xxV0(t, x, y) � z

2
xxV0 t, x0, y0( 􏼁. (66)

Similarly, we can obtain the continuity of z2xxVε. □

Remark 6. Rationally, Vε and its derivatives converge to V0
and its corresponding derivatives as ε approaches 0 by
Lemma 2.

Remark 7. To simplify the complexity brought by the var-
iable Y, which is called path dependence, and to study the
behavior of hε, we define

D
λ
ty � x ∈ R

+
􏼌􏼌􏼌􏼌 z

2
xxV

ε0z
2
xxV0 ≤ 0,∃ε0 > λ􏽮 􏽯. (67)

Let D0
ty � limλ↓0D

λ
ty. +en, we can obtain the following

equation when z2xxVε is continuous:

D
0
ty � x ∈ R

+
􏼌􏼌􏼌􏼌 z

2
xxV0(t, x, y) � 0􏽮 􏽯. (68)

Remark 8. To control hε, we divide Dλ
ty into two parts. Let

α(ρ) � [− ρ, ρ]. We will discuss the characteristics of
Dλ

ty ∩ α(ρ) and Dλ
ty ∩ α(ρ)c.

Lemma 5. Assume that φ″ is continuous and the fourth
derivative of φ exists. 0en, we have

Ptxy D
0
sys
∩α(ρ)􏼐 􏼑 � 0, for s ∈ [t, T]. (69)

Here, Ptxy(·) refers to the conditional probability with
respect to Xε

t � x and Yε
t � y.

Proof. By (33) and (24), we can obtain the equation

2ztV0 + r xzxV0 − V0( 􏼁 +
1
2
σ20x

2
z
2
xxV0 � 0,

V0(T) � φ(xH).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(70)

Let Q � z2xxV0. +en, by equation (70) and the existence
of the fourth derivative of φ, we have

2ztQ + r + σ20( 􏼁Q + r + 2σ20( 􏼁xzxQ +
1
2
σ20x

2
z
2
xxQ � 0,

Q(T) � φ″(xH)H2.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(71)

Let x � log k. +en, we have

2ztQ + r + σ20( 􏼁Q + r + 2σ20( 􏼁zkQ +
1
2
σ20z

2
kQ � 0,

Q(T) � φ″((log k)H)H2.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(72)

Note that the coefficients in equation (72) are constants
andQ is bounded on D0

sys
∩ α(ρ) by the continuity of φ″ and

Lemma 4. Moreover, by equation (72), we find that y has no
relationship with the equations. +en, by +eorem A of [21]
and the remark below it, we find that the number of zero
points of Q is only countable for all (s, ys) ∈ [t, T] × R.+us,
z2xxV0 has only countable zero points. Hence, we have
Ptxy(D0

sys
∩ α(ρ)) � 0 by Lemma 4.10 of [15] and then the

proof of Lemma 5 is complete.
Based on the previous analysis, we will now prove (63).

We split the expectation into two parts. By proving the
convergence of each part, we can show the convergence of
the expectation. □

Proposition 2. Assume that φ ∈ C2
p(R+), φ″ is continuous,

and the fourth derivative of φ exists. 0en, we obtain equation
(63).

Proof. Let D
λ
ty be the closure of Dλ

ty, D
0
ty � l im

λ↓0
D

λ
ty, and

0≤ λ< ε< 1.
By the definition of Dλ

ty, we have
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Etxy 􏽚
T

t
h
ε

s, 􏽢X
ε
s,

􏽢Y
ε
s􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds􏼢 􏼣

≤Etxy 􏽚
T

t
I
D

λ

s􏽢Y
ε
s( 􏼁

􏽢X
ε
s􏼐 􏼑ds⎡⎢⎢⎣ ⎤⎥⎥⎦

� Etxy 􏽚
T

t
I
D

λ

s􏽢Y
ε
s( 􏼁
∩α(ρ)

􏽢X
ε
s􏼐 􏼑ds⎡⎢⎢⎣ ⎤⎥⎥⎦

+ Etxy 􏽚
T

t
I
D

λ

s􏽢Y
ε
s( 􏼁
∩α(ρ)c

􏽢X
ε
s􏼐 􏼑ds⎡⎢⎢⎣ ⎤⎥⎥⎦

� Φ1 +Φ2.

(73)

Now, we consider the second part of (73) first. By (56)
and Chebyshev’s inequality,

Φ2 ≤Etxy 􏽚
T

t
Iα(ρ)c 􏽢X

ε
s􏼐 􏼑ds􏼢 􏼣

≤ 􏽚
T

t
Ptxy sups∈[t,T]

􏽢X
ε
s

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ ρ􏼐 􏼑ds

≤
T − t

ρ
Etxy sups∈[t,T]

􏽢X
ε
s

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩

≤
(T − t)N1(1)

ρ
e

N1(1)(T− t)
(1 +|x|).

(74)

+us, we have

lim
ρ⟶∞
Φ2 � 0. (75)

For the first part, we note that

Φ1 � 􏽚
T

t
Ptxy

􏽢X
ε
s ∈ D

λ
s􏽢Y

ε

s( 􏼁
∩ α(ρ)􏼒 􏼓ds. (76)

Let θ(Ω) � supλ∈[0,1]Ptxy(Ω); then,

Ptxy
􏽢X
ε
s ∈ D

λ
s􏽢Y

ε

s( 􏼁
∩ α(ρ)􏼒 􏼓≤ θ D

λ
s􏽢Y

ε

s( 􏼁
∩ α(ρ)􏼒 􏼓. (77)

Note that λ< ε. +en, D
λ
sy is a sequence of decreasing

closed sets as ε↓0. Obviously, 􏽢X
ε
s converges weakly to Xs.

+us, Xs􏼈 􏼉 is weakly compact. By Lemma 8 in [18], we can
see that

lim
ε↓0

θ D
λ

s􏽢Y
ε

s( 􏼁
∩ α(ρ)􏼒 􏼓 � θ D

0
s􏽢Y

0

s􏼐 􏼑
∩ α(ρ)􏼠 􏼡. (78)

By Lemma 4, there is D
0
sy � D0

sy. +en, by Lemma 5, we
have

Ptxy
􏽢X
ε
s ∈ D

0
s􏽢Y

ε

s( 􏼁
∩ α(ρ)􏼒 􏼓 � 0, for ε≥ 0. (79)

Next, by the definition of θ(Ω), we have

θ D
0

s􏽢Y
0

s􏼐 􏼑
∩ α(ρ)􏼠 􏼡 � 0. (80)

+us,

lim
ε↓0

θ D
λ

s􏽢Y
ε

s( 􏼁
∩ α(ρ)􏼒 􏼓 � 0. (81)

+en, we obtain

lim
ε↓0
Φ1 � lim

ε↓0
Ptxy

􏽢X
ε
s ∈ D

λ
s􏽢Y

ε

s( 􏼁
∩ α(ρ)􏼒 􏼓 � 0. (82)

By equations (75) and (82), for any δ > 0, there is ρ0 �

ρ0(t, x, y, δ)> 0 such that

Φ2 <
δ
2
, for all ρ> ρ0. (83)

Next, for a given ρ0 and δ, there is
ε0 � ε0(t, x, y, δ, ρ0(t, x, y, δ)) such that

Φ1 <
δ
2
, for all ε< ε0. (84)

+erefore, for any δ > 0, there is ε0 � ε0(t, x, y, δ) such
that

Φ1 +Φ2 < δ, for all ε< ε0, (85)

i.e.,

lim
ε↓0

Etxy 􏽚
T

t
h
ε

s, 􏽢X
ε
s,

􏽢Y
ε
s􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds􏼢 􏼣 � 0. (86)
□

4.5. Proof of the Main Result. Now, from the analysis above,
we can give the brief proof of +eorem 1.

By inequality (61) and Proposition 2, we have

lim
ε↓0

I1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 0. (87)

By inequality (41), we have
Vε − V0 + εV1( 􏼁

ε

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ I1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + ε I2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + ε I3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 � 0. (88)

By Proposition 1 and equation (87), we obtain the
theorem.

5. Conclusion

In this study, we analyze the behavior of Asian option
prices in the worst-case scenario using an uncertain
volatility model with volatility interval [σ0, σ0 + ε]. As ε
approaches 0, the ambiguity of the model vanishes. We
can also see that the worst-case scenario prices of Asian
options converge to its Black–Scholes prices with con-
stant volatility as the interval shrinks. Additionally, this
study provides an approach to estimate the worst-case
scenario Asian option prices. At the same time, we also
provide an estimation method to solve a fully nonlinear
PDE (22) by imposing additional conditions on the
boundary condition and splitting it into two Black-
–Scholes-like equations.
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