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In this paper, we introduce various definitions of practical stability and integral stability for nonlinear singular differential systems
with maxima and give criteria of stability for such systems via the Lyapunov method and comparison principle.

1. Introduction and Preliminaries

Differential equations with maxima are a special type of
differential equations that contain the maximum of the
unknown function over a previous interval, of which many
examples are found in the fields of application such as
automatic control, population dynamics, disease control,
and so on. Recently, the research interest in differential
equations with maxima has increased exponentially. Some
stability results for such equations can be found in the
monographs [1, 2], the papers [3–9], and references cited
therein.

In practical applications, many problems can be de-
scribed by singular system models, such as optimal control
problems and constrained control problems, which can be
found in the monographs of Campbell [10] and Dai [11].
Singular system is a type of dynamic system which is more
complicated than the ordinary one. Owing to its complicated
structure and many other factors, the study of stability for
singular systems involves greater difficulty than that of
nonsingular systems. Till now, various types of stability for
singular systems have been investigated via Lyapunov
functions. However, most previous studies focused on the
singular systems described by ordinary differential equations
[10–13], difference equations [14–17], and delay differential
equations [18–20], and there are a few results for singular
differential systems with maxima. In addition, differential
equations with maxima have some different properties from

the well-known differential equations and delay differential
equations.

)e purpose of this paper is to integrate these two areas
and analyze the practical stability and integral stability of
nonlinear singular systems with maxima. To extend Lya-
punov’s stability and support the specific needs of singular
systems, we introduce the function q(t, x) and obtain some
different types of stability criteria by using the Lyapunov
function method and comparison principle.

2. Practical Stability

)e practical stability, being quite different from the stability
in the sense of Lyapunov, is neither weaker nor stronger than
the usual stability. It is significant from the perspective of
engineering application (see [21–25]). In this section, by
using Lyapunov functions and the comparison principle, we
study some practical stability for the following singular
differential systems.

Consider the singular differential systems with maxima

E _x � f t, x, max
s∈[t−τ,t]

x(s) , for t≥ t0 ≥ 0,

xt0
� φ(t), t ∈ [−τ, 0],

⎧⎪⎪⎨

⎪⎪⎩
(1)

where E ∈ Rn×n with rank (E)< n is a singular constant
matrix, x ∈ Rn, f ∈ C(R+ × Rn × Rn, Rn), f(t, 0, 0) ≡ 0, τ > 0
is a constant, and φ ∈ C([−τ, 0], Rn).
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Firstly, we introduce the following notations and sets for
convenience.

Let Tk � [0, tk), where 0< tk ≤ +∞; q(t, x) ∈ C1(J ×

Rn, Rm), q(t, 0) ≡ 0, J⊆R+. Sk(t0) is a set of all consistent
initial functions at initial time t0. )en, for any φ ∈ Sk(t0),
there exists at least one continuous solution of systems (1) in
[t0 − τ, +∞) through (t0,φ) (see [20]).

K � a(t) ∈ C(Tk, R+) | a(t);

is strictly increasing and a(0) � 0}

K∗ � a(t0, r) ∈ C(Tk × R+, R+) | a(t0, r);

is strictly increasing in r and a(t0, 0) � 0}

Q(ε) � x ∈ Rn | ‖q(t, x)‖< ε, t ∈ Tk, ε> 0 is a constant 

D(A) � x ∈ Rn | ‖q(t, x)‖<A, A> 0 is a constant 

Λ� V | V∈C(R × D(A),R+) and

V islocallyLipschitzianin x}

G⟹ H means that G implies H

We denote by x(t) ≡ x(t; t0,φ) the solution of the initial
value problems (1).

Definition 1. Let V ∈ Λ, t ∈ Tk, and we define the derivative
of the function V (t; x) along the trajectory of solution of the
singular systems (1) as follows:

D
+
(2.1)V(t, x(t)) � lim sup

h⟶0

1
h

V t + h, x(t) + hf t, x(t), max
s∈[−τ,0]

x(t + s)   − V(t, x(t)) . (2)

Definition 2. Let φ ∈ Sk(t0). )e singular systems (1) is said
to be

(S1) stable with respect to (q(t, x), Tk) if for any ε> 0,
and some t0 ∈ Tk, there exists δ(t0, ε)> 0, such that

max
s∈[−τ,0]

‖φ(s)‖< δ t0, ε( ⟹ q t, x t; t0,φ( ( 
����

����< ε,

for t≥ t0.

(3)

Definition 3. Let φ ∈ Sk(t0). )e singular systems (1) is said
to be (PS1) practically stable for given (λ, A) with 0< λ<A

and some t0 ∈ Tk, such that

max
s∈[−τ,0]

‖φ(s)‖< λ⟹ q t, x t; t0,φ( ( 
����

����<A,

for t≥ t0,

(4)

(PS2) uniformly practically stable if (PS1) holds for all
t0 ∈ Tk

(PS3) practically quasistable for given (λ, B, T) with
λ, B, T> 0, and some t0 ∈ Tk, we have

max
s∈[−τ,0]

‖φ(s)‖< λ⟹ q t, x t; t0,φ( ( 
����

����<B,

for t≥ t0 + T,

(5)

(PS4) uniformly practically quasistable if (PS1) holds
for all t0 ∈ Tk

(PS5) strongly practically stable if (PS1) and (PS3) hold
simultaneously
(PS6) strongly uniformly practically stable if (PS2) and
(PS4) hold simultaneously

Remark 1. If q(t, x) � x, tk � +∞, and Sk(t0, tk) � C([−τ,

0], Rn), then Definitions 2 and 3 reduce to the concepts of
classic Lyapunov stability.

It is well known that the comparison principle plays an
important role in the development of stability theory. By the
comparison principle, we can reduce the study of a given
complicated differential system to that of a relatively simpler
differential equation. For this purpose, we give the following
lemma and definition.

Lemma 1 (See [1]). Assume that the following conditions
hold

(A1)m(t) ∈ C(R+, R+), g(t, u) ∈ C(R+ × R+, R) and for
any t ∈ Tk such that m(t)>m(t + s) for s ∈ [−τ, 0), the
inequality

D
+
m(t)≤g(t, m(t)), (6)

holds, where D+m(t) � lim suph⟶0+ (1/h)[m(t + h) −

m(t)], g(t, 0) ≡ 0
(A2) the maximal solution r(t) ≡ r(t; t0, u0) of the
scalar equation

_u � g(t, u), u t0(  � u0, (7)

exists, on [t0, +∞). 4en, m(t)≤ r(t), t≥ t0, provided
maxs∈[−τ,0]m(t0 + s)≤ u0.

Definition 4. Comparison equation (7) is said to be (PS7)

practically stable if for given (λ, A) with 0< λ<A and some
t0 ∈ R+, we have u0 < λ implies u(t)<A, for t≥ t0

(PS8) uniformly practically stable if (PS7) holds for all
t0 ∈ R+

(PS9) practically quasistable if for given (λ, B, T) with
0< λ<A, B> 0, T> 0, and some t0 ∈ R+, we have that
u0 < λ implies u(t)<B, for t≥ t0 + T

(PS10) uniformly practically quasistable if (PS9) holds
for all t0 ∈ R+
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Theorem 1. Assume that the following conditions hold

(A3)(q(t, x), Tk, λ, A) with 0< λ<A are given
(A4) there exists a function V ∈ C(Tk × D(A), R+) and
V ∈ Λ such that

(i) for any t> t0,V(t, x(t))>V(t + s, x(t + s)), s ∈ [−τ,

0), the inequality

D
+
(2.1)V(t, x(t))≤g(t, V(t, x(t))), (8)

holds, where g ∈ C(Tk × R+, R) and g(t, 0) ≡ 0
(ii) b(‖q(t, x)‖)≤V(t, x)≤ a(‖x‖), where a(·), b(·) ∈ K

and a(λ)< b(A)

4en, equation (7) is (uniformly) practically stable
with respect to (a(λ), b(A)) implies that system (1) is
(uniformly) practically stable with respect to
(q(t, x), Tk, λ, A).

Proof. Assume that u(t; t0, u0) is a solution of the equation
(7), and is practically stable with respect to (a(λ), b(A)) for
given 0< λ<A. Let m(t) � V(t, x(t)), where x(t) is a so-
lution of the systems (1). From the condition (i) of (A4), it
follows that D+m(t)≤g(t, m(t)), for t≥ t0. Let

u t0(  � max
s∈[−τ,0]

V t0 + s,φ(s)(  � max
s∈[−τ,0]

m t0 + s( . (9)

By Lemma 1, we know that the inequality V(t, x(t)) �

m(t)≤ r(t), for t≥ t0, holds, where r(t) is the maximal so-
lution of comparison equation (7) existing on Tk. Assume
that maxs∈[−τ,0]‖φ(s)‖< λ, then, we have

u t0(  � max
s∈[−τ,0]

V t0 + s,φ(s)( ≤ max
s∈[−τ,0]

a(‖φ(s)‖)

� a max
s∈[−τ,0]

‖φ(s)‖ < a(λ).

(10)

Furthermore, from the condition (ii) of (A4) and Lemma
1, we get b(‖q(t, x)‖)≤V(t, x) � m(t)≤ r(t)< b(A). )us,
maxs∈[−τ,0]‖φ(s)‖< λ implies ‖q(t, x)‖<A, t≥ t0, that is,
system (1) is practically stable with respect to (q(t, x),

Tk, λ, A).
Similarly, we can prove that equation (7) is uniformly

practically stable with respect to (a(λ), b(A)) implies that
the systems (1) is uniformly practically stable with respect to
(q(t, x), Tk, λ, A). )e proof is completed.

By )eorem 1, we can obtain the following
corollaries. □

Corollary 1. Assume that the conditions (A3) and (ii) of (A4)
hold in 4eorem 1, and

(A5) there exists a function V ∈ C(Tk × D(A), R+) and
V ∈ Λ such that for any t> t0, V(t, x(t))>V(t + s, x

(t + s)), s ∈ [−τ, 0), the inequality

D
+
(2.1)V≤ 0 (11)

holds. 4en, system (1) is uniformly practically stable
with respect to (q(t, x), Tk, λ, A).

)e conclusion of Corollary 1 can be obtained by
considering the case of g(t, u) ≡ 0 and _u � 0 is uniformly
practically stable with respect to (a(λ), b(A)) for given
0< λ<A.

Corollary 2. Assume that the conditions (A3) and (ii) of
(A4) hold in 4eorem 1, and

(A6) there exists a functionV(t, x) ∈ C(Tk × D(A), R+)

and V ∈ Λ such that for any t> t0, V(t, x(t))>V(t+

s, x(t + s)), s ∈ [−τ, 0), the inequality

D
+
(2.1)V≤ α(t)F(V(t, x)), (12)

holds, where F ∈ C(R+, R+) and 0<F(V)≤V

(A7) the inequalities


t

t0

α(t)dt≤M< +∞, M≤ ln
b(A)

a(λ)
, t ∈ t0, +∞ ,

(13)

hold
4en, system (1) is uniformly practically stable with
respect to (q(t, x), Tk, λ, A).

Proof. By )eorem 1, we only prove that the system _u �

(α(t)F(u)) is uniformly practically stable with respect to
(a(λ), b(A)). In fact, let u(t0) � u(t0; t0, u0) � maxs∈[−τ,0]

V(t0 + s,φ(s)). Assume that maxs∈[−τ,0]‖φ(s)‖< λ, it follows
from the condition (ii) of (A4) that

u t0; t0, u0( ≤ max
s∈[−τ,0]

a(‖φ(s)‖) � a max
s∈[−τ,0]

‖φ(s)‖ < a(λ).

(14)

Furthermore, by condition (A7), the inequality

u t; t0, u0( ≤ u0 exp 
t

t0

α(s)ds < a(λ)e
M < b(A), (15)

holds. )en, system (1) is uniformly practically stable with
respect to (q(t, x), Tk, λ, A). )e proof is completed. □

Corollary 3. Assume that the conditions (A3) and (ii) of (A4)
hold in 4eorem 1, and

(A8) there exists a function V ∈ C(Tk × D(A), R+) and
V ∈ Λ such that for any t> t0, V(t, x(t))>V(t + s, x

(t + s)) for s ∈ [−τ, 0), the inequality
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D
+
(2.1)V≤ − αF(V(t, x)) + β, (16)

holds, in which α and β are positive constants,
0<F(V)≤V

(A9) the inequalities

a(λ)< b(A),

a(λ) +
β
α
≤ b(A),

(17)

hold
4en, system (1) is uniformly practically stable with
respect to (q(t, x), Tk, λ, A).

Proof. In fact, we only need to prove that the system _u �

−αF(u) + β is uniformly practically stable with respect to
(a(λ), b(A)). Let u(t0) � u(t0; t0, u0) � maxs∈[−τ,0]V(t0+

s,φ(s)); then, we have

u t0; t0, u0( ≤ max
s∈[−τ,0]

a(‖φ(s)‖) � a max
s∈[−τ,0]

‖φ(s)‖ < a(λ).

(18)

Furthermore, by condition (A8), the inequality

u t; t0, u0( ≤ u0e
−α t− t0( ) +

β
α
< a(λ) +

β
α
≤ b(A) (19)

holds. )en, system (1) is uniformly practically stable with
respect to (q(t, x), Tk, λ, A). □

Theorem 2. Assume that the conditions (A3) and (ii) of (A4)
hold in 4eorem 1, and (iii) V(t, x)≥ b(‖q(t, x)‖),

V(t0, x)≤ a(t0, ‖x‖), where b(·) ∈ K, a(t0, ·) ∈ K∗.

)en, equation (7) is (uniformly) practically stable with
respect to (a(t0, λ), b(A)) implies that the systems (1) is
(uniformly) practically stable with respect to (q(t, x),

Tk, λ, A).

Proof. In fact, by the condition (iii) of (A4), we have

u t0(  � max
s∈[−τ,0]

V t0 + s,φ(s)( ≤ max
s∈[−τ,0]

a t0, ‖φ(s)‖( 

� a t0, max
s∈[−τ,0]

‖φ(s)‖ .

(20)

)en, we can get the result by using a method similar to
)eorem 1. We omit its details. □

Theorem 3. Assume that the following conditions hold

(A10)(q(t, x), Tk, λ, A, B, T) with 0< λ<A, 0<B<A

and T> 0 are given
(A4) there exists a function V ∈ C(Tk × D(A), R+) and
V ∈ Λ such that

(i) for any t> t0,V(t, x(t))>V(t + s, x(t + s)), s ∈ [−τ,

0), the inequality

D
+
(2.1)V(t, x(t))≤g(t, V(t, x(t))), (21)

holds, where g ∈ C(Tk × R+, R), g(t, 0) ≡ 0
(ii) b(‖q(t, x)‖)≤V(t, x)≤ a(‖x‖), where a(·), b(·) ∈ K

and a(λ)< b(A)

4en, equation (7) is (uniformly) practically quasi-
stable with respect to (a(λ), b(B), T) implies that
system (1) is (uniformly) practically quasistable with
respect to (q(t, x), Tk, λ, B, T).

Proof. Assume that u(t; t0, u0) is a solution of equation (7)
and is practically quasistable with respect to (a(λ), b(B), T)

for given 0< λ<A, 0<B<A and T> 0. Let m(t) �

V(t, x(t)), where x(t) is a solution of system (1). It follows
from the condition (A4) that

D
+
m(t)≤g(t, m(t)), for t≥ t0. (22)

Let u(t0) � maxs∈[−τ,0]V(t0 + s,φ(s)) � maxs∈[−τ,0]

m(t0 + s). )en, by Lemma 1, we know that the inequality

V(t, x) � m(t)≤ r(t), for t≥ t0, (23)

holds, where r(t) is the maximal solution of comparison
equation (7) existing on Tk. Assume that φ(s) ∈ C([−τ, 0],

Rn) and maxs∈[−τ,0]‖φ(s)‖< λ. )en, we obtain

u t0(  � max
s∈[−τ,0]

V t0 + s,φ(s)( ≤ max
s∈[−τ,0]

a(‖φ(s)‖)

� a max
s∈[−τ,0]

‖φ(s)‖ < a(λ).

(24)

Furthermore, by comparison equation (7) which is
practically quasistable with respect to (a(λ), b(B), T), the
condition (A4), and Lemma 1, we get

b(‖q(t, x)‖)≤V(t, x) � m(t)≤ r(t)< b(B), for t≥ t0 + T.

(25)

)us, maxs∈[−τ,0]‖φ(s)‖< λ implies ‖q(t, x)‖<B,
t≥ t0 + T, that is, system (1) is practically quasistable with
respect to (q(t, x), Tk, λ, B, T).

Similarly, we can prove that equation (7) is uniformly
practically stable with respect to (a(λ), b(B), T) implies that
the systems (1) is uniformly practically stable with respect to
(q(t, x), Tk, λ, B, T). □

Theorem 4. Assume that the conditions (A10) and (i) of (A4)
hold in4eorem 3, and the condition (ii) of (A4) is replaced by

(iv) V(t, x)≥ b(‖q(t, x)‖), V(t0, x)≤ a(t0, ‖x‖), where
b(·) ∈ K, a(t0, ·) ∈ K∗

4en, equation (7) is (uniformly) practically quasistable
with respect to (a(λ), b(B), T) implies that the systems (1) is
(uniformly) practically quasistable with respect to
(q(t, x), Tk, λ, B, T).

)e proof of )eorem 4 is similar to that of )eorem 3,
so we omit its details.
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3. Integral Stability

)e concept of integral stability, which was introduced for
ordinary differential equations by Vrhoc in 1959 [26] and
Lakshmikantham in 1969 [27], enlarges the collection of
dynamical properties of solutions which can be investigated
by the direct Lyapunov method. )e integral stability theory
has been rapidly developed recently. For example, Marty-
nyuk [28], Salvadori and Visentin [29], Soliman and Abdalla
[30] obtained the integral stability criteria for nonlinear
differential equations, respectively; Hristova [31] obtained
the integral stability in terms of two measures for impulsive
differential equations; and Sood and Srivastava [32] gave the
φ0-integral stability criteria for impulsive differential
equations. )e main purpose of this section is to discuss the
integral stability of singular differential systems with max-
ima and its perturbed systems.

Consider singular differential system (1) and its per-
turbed systems

E _x � f t, x, max
s∈[t−τ,t]

x(s)  + h t, x, max
s∈[t−τ,t]

x(s) , for t≥ t0 ≥ 0,

xt0
� φ(t), t ∈ [−τ, 0],

⎧⎪⎪⎨

⎪⎪⎩

(26)

where h ∈ C(R+ × Rn × Rn, Rn), h(t, 0, 0) ≡ 0.
Let Spk(t0) be a set of all consistent initial functions of (1)

and (26) in [t0, tk) through (t0,φ). For any φ ∈ Spk(t0),
assume that there exists a continuous solution of (1) and (26)
in [t0, tk) through (t0,φ) at least.

B(φ, δ) � ψ ∈ C [−τ, 0], R
n

( 
 max

s∈[−τ,0]
‖ψ(s) − φ(s)‖

< δ,φ ∈ C [−τ, 0], R
n

( , δ ∈ R+.

(27)

Definition 5. Let φ ∈ Spk(t0). Singular system (1) is said to be

(IS1) equi-integrally stable on q(t, x), Tk , if for given
α≥ 0 and t0 ∈ Tk, there exists a positive function
β � β(t0, α), which is continuous in t0 for each α and
β ∈ K, such that, for every solution x(t; t0,φ) of the
perturbed systems (26),

q(t, x) ∈ D(β), t≥ t0, (28)

holds, provided that φ ∈ B(0, α)∩ Spk(t0) and


t0+T

t0

sup‖q(t,x)‖≤β h s, x, max
u∈[s−τ,s]

x(u) 

��������

��������
ds≤ α,

forT> 0;

(29)

(IS2) uniformly integrally stable on q(t, x), Tk , if the
β in (IS1) is independent of t0

(IS3) equiasymptotically integrally stable on
q(t, x), Tk , if (IS1) holds and for every ϵ > 0, α≥ 0 and

t0 ∈ Tk(tk � +∞), there exist positive functions T �

T(t0, α, ϵ) and c � c(t0, α, ϵ), which are continuous in
t0 for each α and ϵ, and for every solution x(t; t0,φ) of
the perturbed systems (26),

q(t, x) ∈ D(ϵ), t≥ t0 + T, (30)

holds, provided that φ ∈ B(0, α)∩ Sp(t0), and


+∞

t0

sup
‖q(t,x)‖≤β

h s, x, max
u∈[s−τ,s]

x(u) 

��������

��������
ds≤ c, (31)

(IS4) uniformly asymptotically integrally stable on
q(t, x), Tk  if the T and c in (IS3) are independent of

t0 and (IS2) holds

Now, we consider comparison scalar differential equa-
tion (7) and its perturbed equation

_u � g(t, u) + p(t), u t0(  � u0, (32)

where g(t, 0) ≡ 0, g ∈ C[Tk × R+, R], p(t) ∈ C[Tk, R+].

Definition 6. Equation (7) is said to be equi-integrally stable,
if for given α1 ≥ 0, t0 ∈ Tk, there exists a positive function
β1 � β1(t0, α1) that is continuous in t0 for each α1 and
β1 ∈ K, such that, for every solution u(t; t0, u0) of the
perturbed differential equation (32), the inequality

u t; t0, u0( 


< β1, (33)

holds, provided that |u0|≤ α1 and 
t0+T

t0
p(s)ds≤ α1 for every

T> 0.

Remark 2. Similar to Definition 5, we can give the corre-
sponding concepts of stability of equation (7).

Next, we investigate the integral stability of system (1) via
the Lyapunov function method and comparison principle.

Theorem 5. Assume that the condition (i) of (A4) holds in
4eorem 1, and condition (ii) of (A4) is replaced by

A4′( b(‖q(t, x)‖)≤V(t, x), t≥ t0,where b ∈ K,

and b(r)⟶ +∞ as r⟶ +∞.
(34)

)en, equation (7) which is equi-integrally stable implies
that system (1) is equi-integrally stable on q(t, x), Tk .

Proof. Let φ ∈ B(0, α)∩ Spk(t0) for every α≥ 0, t0 ∈ Tk.
Since V(t, x) is Lipschitzian in x, we have

|V(t, x) − V(t, y)|≤ L‖x − y‖, L> 0 is a constant,

max
s∈[−τ,0]

V t0 + s,φ(s)( ≤L max
s∈[−τ,0]

‖φ(s)‖≤ Lα � α1.
(35)

Let x(t) � x(t; t0,φ) be any solution of (26).)us, by the
condition (i) of (A4) and (29), we get

D
+
(21)V(t, x)≤g(t, V(t, x)) + L h t, x, max

s∈[t−τ,t]
x(s) 

��������

��������
.

(36)
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Defining p(t) � L‖h(t, x,maxs∈[t−τ,t]x(s))‖ and choos-
ing u0 � maxs∈[−τ,0]V(t0 + s,φ(s)), by Lemma 1, we have

V(t, x)≤ r t; t0, u0( , (37)

where r(t; t0, u0) is the maximal solution of (32).
If equation (7) is equi-integrally stable, then for α1 ≥ 0

and t0 ∈ Tk, there exists a β1 � β1(t0, α1), which is contin-
uous in t0 for each α1 and β1 ∈ K, such that, for every so-
lution u(t; t0, u0) of (32), the inequality

u t; t0, u0( < β1, t≥ t0 (38)

holds, whenever u0 ≤ α1 and 
t0+T

t0
p(s)ds≤ α1 for any T> 0.

By the condition (A4′), it is possible to choose a β �

β(t0, α) satisfying

b(β)≥ β1. (39)

It is easily shown that β is continuous in t0 for each α and
β ∈ K for each t0 ∈ Tk. Moreover, we claim that system (1) is
equi-integrally stable on q(t, x), Tk . In fact, if this is not
true, there exists a t1 > t0 such that

q t1, x( 
����

���� � β, and ‖q(t, x)‖< β, t ∈ t0, t1 . (40)

From (37)–(40), we have

β1 ≤ b(β)≤V t1, x t1; t0,φ( ( ≤ r t1; t0, u0( < β1, (41)

which is a contradiction. )us, system (1) is equi-integrally
stable on q(t, x), Tk . □

Corollary 4. Assume that the conditions of 4eorem 5 hold.
4en, equation (7) which is uniformly integrally stable implies
that system (1) is uniformly integrally stable on {q(t; x); Tk}.

)e detailed proof of Corollary 4 is similar to the proof in
)eorem 5, so we omit it.

Theorem 6. Assume that the conditions of 4eorem 5 hold
and tk �+∞4en, equation (7) which is equiasymptotically
integrally stable implies that system (1) is equiasymptotically
integrally stable on {q(t. x), R+}.

Proof. It can be known from the proof of )eorem 5 that
system (1) is equi-integrally stable on q(t, x), R+ . Let
φ ∈ B(0, α)∩ Sp(t0, +∞) and α1 � Lα, for given α≥ 0 and
t0 ∈ [0, +∞). For given .., α1 ≥ 0 and t0 ∈ R+, there exist c1 �

c1(t0, α1, ε) and T � T(t0, α1, ε), such that for every solution
u(t; t0, u0) of (32),

u t; t0, u0( < b(ε), t≥ t0 + T, (42)

holds, whenever u0 � maxs∈[−τ,0]V(t0 + s,φ(s))≤ α1 and

∞
t0

p(s)ds< c1.
Choosing a positive number c � c(t0, α, ϵ) such that

Lc � c1, for given c and T, system (1) satisfies (IS3) of
Definition 5. In fact, suppose that the conclusion is not true,
then q(t, x) ∈ D(ϵ), t≥ t0 + T cannot be satisfied when

φ ∈ B(0, α)∩ Sp t0, +∞( 

and 
+∞

t0

sup
‖q(t,x)‖≤β

h s, x, max
u∈[s−τ,s]

x(u) 

��������

��������
ds≤ c.

(43)

Let tk  be a sequence such that tk ≥ t0 + T and
limk⟶+∞tk � +∞. Suppose that there is a solution x(t) �

x(t; t0,φ) of system (26), such that for every k,

q tk, x tk; t0,φ( ( 
����

����≥ ε. (44)

By the condition (A4′) and (44), we obtain

b(ε)≤ b q tk, x tk; t0,φ( ( 
����

���� ≤V tk, x tk; t0,φ( ( . (45)

Furthermore, by the equiasymptotical integral stability
of equations (7), (37), and (42)–(59), we can get

b(ϵ)≤V tk, x tk; t0,φ( ( ≤ r tk; t0, u0( < b(ϵ). (46)

which is a contradiction. )us, system (1) is equi-
asymptotically integrally stable on q(t, x), [0, +∞) . □

Corollary 5. Assume that the conditions of 4eorem 6 hold.
4en, equation (7) which is uniformly asymptotically inte-
grally stable implies that system (1) is uniformly asymptoti-
cally integrally stable on {q(t; x); Tk}.

In fact, we can show that the positive numbers T and c1
in proof of )eorem 6 are independent of t0; therefore, (44)
implies that c is independent of t0. )e rest of the proof is
similar to that of )eorem 6, so we omit the details here.

For the comparison equation (7), if we suppose that the
function g(t, u) is nonincreasing in u for t ∈ [t0, +∞); then,
we can get the uniform asymptotic integral stability of system
(1) by the uniform asymptotic stability of the comparison
equation (7).)erefore, we firstly give the following definition
and Lemmas, which can be found in [27].

Definition 7. Comparison equation (7) is said to be

(S1) equistable, if for each ϵ > 0, t0 ∈ R+, there exists a
positive function δ � δ(t0, ϵ), such that

u0


≤ δ⟹ u t; t0, u0( 


< ε, for t≥ t0, (47)

(S2) uniformly stable if δ in (S1) is independent of t0

(S3) equiasymptotically stable, if it is equistable and for
each ϵ > 0, t0 ∈ R+, there exists a positive function
δ0 � δ0(t0), T � T(t0, ϵ), such that

u0


≤ δ0⟹ u t; t0, u0( 


< ϵ, for t≥ t0 + T, (48)

(S4) uniformly asymptotically stable if (S2) holds and
the numbers δ0 and T in (S3) are independent of t0

Lemma 2 (see [27]). Equation (7) is uniformly stable if and
only if there exists a function a(r) ∈K, such that

u0


≤ δ⟹ u t; t0, u0( 


≤ a u0


 , for t≥ t0. (49)
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Lemma 3 (see [27]). Equation (7) is uniformly asymptoti-
cally stable if and only if there exist functions a(r) ∈K and
σ(r) ∈ S, such that

u0


≤ δ⟹ u t; t0, u0( 


≤ a u0


 σ t − t0( , for t≥ t0,

(50)

whereF � σ(r) ∈ C[R+, R+]σ(r) is monotone decreasing in
r, and σ(r)⟶ 0 as r⟶ +∞.

Theorem 7. Assume that the conditions of 4eorem 6 hold,
the function g(t; u) be nonincreasing in u for any
t ∈ [t0, +∞), and

V(t, x(t))>V(t + s, x(t + s)) − L 
t+s

t
h v, x, max

u∈[v−τ,v]
x(u) 

��������

��������
dv,

for s ∈ [−τ, 0).

(51)

)en, equation (7) which is uniformly asymptotically
stable implies that system (1) is uniformly asymptotically
integrally stable on q(t, x), Tk .

Proof. Firstly, we prove system (1) is uniformly integrally
stable. Because equation (7) is uniformly stable, by Lemma 2,
there exists a function β1 ∈ K, such that

0< u0 ≤ α1 implies u t; t0, u0( < β1 u0( , t≥ t0. (52)

For given α> 0 and t0 ∈ Tk, where Lα � α1, let
φ ∈ B(0, α)∩ Sp(t0). Since V(t, x) is Lipschitzian in x, we
have

max
s∈[−τ,0]

V t0 + s,φ(s)( ≤ L max
s∈[−τ,0]

‖φ(s)‖≤ Lα � α1. (53)

Let x(t) � x(t; t0,φ) be any solution of (26) with
φ ∈ B(0, α)∩ Sp(t0), and

V t, x t; t0,φ( (  ≡ m(t) + p(t), (54)

where p(t) � L 
t

t0
‖h(s, x,maxu∈[s−τ,s]x(u))‖ds. According

to the condition (i) of (A4), we get

D
+
m(t)≤D

+
(3.1)V(t, x(t)) − L h t, x, max

s∈[t−τ,t]
x(s) 

��������

��������

≤D
+
(2.1)V(t, x(t))≤g(t, m(t)).

(55)

By (51) and Lemma 1, we have

m(t)≤ r t; t0, u0( , (56)

where r(t; t0, u0) is the maximal solution of (7) with
u0 � maxs∈[−τ,0]m(t0 + s).

We choosing β> 0, such that

b(β)> β1(Lα) + Lα. (57)

In view of the condition b(r)⟶ +∞ as r⟶ +∞,
the choice of β is reasonable. It is obvious that β � β(α) and
β ∈ K. At the same time, we can claim that system (1) is
uniformly integrally stable. In other words, the solution of

system (26) satisfies q(t, x) ∈ D(β), t≥ t0, whenever
φ ∈ B(0, α)∩ Sp(t0), and


t0+T

t0

sup
‖q(t,x)‖≤β

h s, x, max
u∈[s−τ,s]

x(u) 

��������

��������
ds≤ α, forT> 0.

(58)

Suppose that this is not true; there exists a t1 > t0 such
that

q t1, x t1( ( 
����

���� � β and ‖q(t, x(t))‖ ≤ β, t ∈ t0, t1 . (59)

From the condition (A4′) and (54)–(58), we get

b(β)≤V t1, x t1( ( ≤ r t1; t0, u0(  + p t1( 

≤ β1(Lα) + L 
t1

t0

sup
‖q(t,x)‖≤β

h s, x, max
u∈[s−τ,s]

x(u) 

��������

��������
ds

≤ β1(Lα) + Lα< b(β).

(60)

)is is a contradiction, and then system (1) is uniformly
integrally stable.

Secondly, we prove that system (1) is uniformly as-
ymptotically integrally stable. By the uniform asymptotic
stability of equation (7) and Lemma 3, we have

u t; t0, u0( ≤ β1 u0( σ t − t0( , t≥ t0, (61)

where β1 ∈ K and σ ∈ F. For given ϵ > 0, α≥ 0 and t0 ∈ Tk,
let φ ∈ B(0, α)∩ Sp(t0), and

L 
+∞

t0

sup
‖q(t,x)‖≤β

h s, x, max
u∈[s−τ,s]

x(u) 

��������

��������
ds≤Lc1 < b(ε),

(62)

where c � min(c1, α). For any solution x(t) � x(t; t0,φ) of
(26) and (56), holds whenever u0 � max

s∈[−τ,0]
V(t0 + s,φ(s)). By

(54), (56), and (61), together with (A4′), we can obtain the
inequality

b(‖q(t, x(t))‖) ≤V(t, x(t))≤ r t; t0, u0( 

+ L 
t

t0

h s, x, max
u∈[s−τ,s]

x(u) ds

��������

��������

≤ β1(Lα)σ t − t0( 

+ L 
t

t0

sup
‖q(t,x)‖≤β

h s, x, max
u∈[s−τ,s]

x(u) 

��������

��������
ds

< β1(Lα)σ t − t0(  + Lc.

(63)

Since σ ∈F, then there exists a T � T(α, ϵ), such that

σ t − t0( <
b(ϵ) − Lc

β1(Lα)
, t≥ t0 + T. (64)

Furthermore, we have

b(‖q(t, x(t))‖)< b(ϵ), t≥ t0 + T, (65)

which implies that
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‖q(t, x(t))‖ < ϵ, t≥ t0 + T, (66)

provided φ ∈ B(0, α)∩ Sp(t0), and (62) is satisfied. )ere-
fore, system (1) is uniformly asymptotically integrally
stable. □

4. Conclusion

)is paper discussed a class of nonlinear singular differential
systems withmaxima. Some notions of practical stability and
integral stability for such systems were introduced, and
various stability criteria were obtained by using the Lya-
punov method and comparison principle.
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