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Cervical cancer is the fourth most common type of cancer and is also a leading cause of mortality among women across the world.
Various types of screening tests are used for its diagnosis, but the most popular one is the Papanicolaou smear test, in which cell
cytology is carried out. It is a reliable tool for early identification of cervical cancer, but there is always a chance of misdiagnosis
because of possible errors in human observations. In this paper, an auto-assisted cervical cancer screening system is proposed that
uses a convolutional neural network trained on Cervical Cells database. )e training of the network is accomplished through
transfer learning, whereby initializing weights are obtained from the training on ImageNet dataset. After fine-tuning the network
on the Cervical Cells database, the feature vector is extracted from the last fully connected layer of convolutional neural network.
For final classification/screening of the cell samples, three different classifiers are proposed including Softmax regression (SR),
Support vector machine (SVM), and GentleBoost ensemble of decision trees (GEDT).)e performance of the proposed screening
system is evaluated for two different testing protocols, namely, 2-class problem and 7-class problem, on the Herlev database.
Classification accuracies of SR, SVM, and GEDT for the 2-class problem are found to be 98.8%, 99.5%, and 99.6%, respectively,
while for the 7-class problem, they are 97.21%, 98.12%, and 98.85%, respectively. )ese results show that the proposed system
provides better performance than its previous counterparts under various testing conditions.

1. Introduction

Cervical cancer is the leading cause of cancer-related deaths
in females. It arises from the cervix, i.e., the lower and
narrow end of the uterus, as shown in Figure 1. It starts due
to abnormal growth of cells that have the ability to spread
into other parts of the body. Human Papilloma Virus (HPV)
infection is the major risk factor for cervical cancer. )ere
are no symptoms in the beginning of the disease, while with
the passage of time symptomsmay include abnormal vaginal
bleeding, pelvic pain, and pain during sexual intercourse. It

can be diagnosed earlier through regular medical check-ups
[1].

)ere are many diagnostic tests for cervical cancer
identification. Papanicolaou (PAP) smear is the most
commonly used test for cervical cancer screening worldwide.
In the conventional PAP smear procedure [2], a speculum is
inserted into vagina to widen the walls so that vaginal smear
can be viewed. Several weeks are required to prepare for the
final results of the PAP smear test. )e process is time-
consuming and laborious. It requires microscopic exami-
nation of hundreds of thousands of cells for the diagnosis of
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precancerous and cancerous cells. In every 10 to 15 positive
cases, there is a chance of one case to be missed in con-
ventional screening [3].

)e rate of the incidence of cervical cancer is lesser in the
USA and other parts of developed countries because of early
detection and better screening methods [4]. Its rate of oc-
currence has been dropped by 80% since the screening
systems are introduced in some Nordic countries. In Sweden
[5], it is dropped by 65% during the last four decades and the
occurrence of cervical cancer and mortality figures are stable
over the last decade. However, improved screening systems
are still unavailable in underdeveloped countries, partly due
to the complexity and tedious nature of manual screening of
abnormal cells from a cervical cytology specimen [6, 7].
While auto-assisted mass screening techniques can boost
efficiency, they are not accurate enough to be used as a
primary tool for cervical screening [8].

During the past few years, extensive research has been
carried out for the development of computer-assisted au-
tomated reading systems based on cell image analysis
[7, 9, 10].)emanual screening process is normally initiated
with the collection of cervical cell samples from the uterine
cervix and their placement on a glass slide. After visual
inspection under a microscope, these are classified into
different categories.)e shape, size, texture, ratio of nucleus,
and cytoplasm are the main characteristics for the classifi-
cation task. Hence, for an automated system, the first step
may include segmentation of images of cell samples to
extract regions of interest, containing single cells with nu-
cleus and cytoplasm, from the noncell regions. )is initial
segmentation is then followed by separation of main cell
components including the nucleus and cytoplasm and ex-
traction of their shape/textural features. However, the
separation of main components and shape feature extraction
is not an integral part of an automated screening system, as
proposed schemes in the literature include both options, i.e.,
with geometrical feature extraction and without prior
extraction.

For a system that includes prior feature extraction, ac-
curate segmentation of nucleus from cytoplasm in cervical
cell images is a difficult task and is prone to error, thus

limiting the success of overall system. )e presence of large
irregular shapes, appearance dissimilarities, and cell clusters
between malignant and benign cell nucleus is the major
problem in accurately segmenting the cytoplasm and nu-
cleus. Various segmentation algorithms have been proposed
by researchers to segment out cell components. An iterative
algorithm for assigning pixels based on a statistical criterion
function was proposed in [11] to separate the nucleus, cy-
toplasm, and background. In another study [12, 13], Gabor
filters were applied for exploiting textural variation of the
cervical cells to segment out regions of interest. Fuzzy
C-means clustering was used in [14, 15] to segment the
single cell images into nucleus, cytoplasm, and background.
However, if the overlapping cells are taken into account, the
classification accuracy is decreased significantly.)erefore, a
majority of the presented segmentation approaches [16–20],
[11, 12, 14] are effective in terms of their performance for
single and clear cervical cell images only, but in the case of
overlapping cells or other shape changes, they lack the
performance accuracy.

To overcome this dependency on segmentation, many
techniques have been proposed during the past few years,
which do not include prior segmentation and directly
classify the unsegmented cell images. A pixel-level classifi-
cation method is proposed in [21] to classify normal and
abnormal cells without prior segmentation using block-wise
feature selection and extraction techniques. However, the
validation accuracy of the proposed algorithm is not up to
the mark. In [22], block image processing was proposed that
includes cropping arbitrary image blocks prior to feature
extraction, and the cropped blocks are then classified using
SVM. However, in their approach, arbitrary cropping could
potentially separate a full cell into distinct patches.

Recently, feature representation in image classification
problems based on deep learning methods has become more
popular [23]. In particular, convolutional neural networks
(ConvNets) [24] have achieved unprecedented results in the
2012 ImageNet Large Scale Visual Recognition Challenge,
which consisted of classifying natural images in the
ImageNet dataset into 1000 fine-grained categories [25].
Besides, they have drastically increased the accuracy in the
field of medical imaging [26, 27], specifically classification of
lung diseases and lymph nodes in CT images [28, 29], and
detecting cervical intraepithelial neoplasia based on cervi-
gram images [30] or multimodal data [31]. ConvNets have
also shown superior performance in the classification of cell
images for diagnosis of pleural cancer [32].

However, large datasets are essential to achieve high
performance and to overcome the problem of overfitting
with ConvNets [33]. )is is a major limitation in applying
ConvNets to the cervical cell classification problem as in the
case of cervical cells, and a limited number of annotated
datasets are available. For instance, the Herlev dataset [34]
only contains 917 cervical cells with 675 abnormal and 242
normal cells that are insufficient for ConvNets. To overcome
this limitation, recently, image data augmentation tech-
niques have been proposed to virtually increase the size of
training datasets and reduce the problem of overfitting [25].
Data augmentation can be achieved by linear transformation
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Figure 1: Female reproductive system. Initially, the cervical cancer
starts from the cervix, the lower end of uterus.
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of the data such as mirroring, scaling, translations, rotation,
and color shifting unless the information of the object in the
image is intact. Transfer learning [21, 22, 35–39] is another
solution to overcome data overfitting. In transfer learning, a
ConvNet is first trained on large-scale natural image datasets
and then can be fine-tuned to the desired dataset which is
limited in the size.

In this paper, an automatic screening system is proposed
to classify malignant and benign cell images without prior
segmentation using ConvNets. Due to limited size of Herlev
datasets, transfer learning is used to initialize the weights and
then fine tune on the dataset. )e feature vector at a fully
connected layer is extracted after fine-tuning and passed to
various classifiers. To show the efficacy of the proposed
approach, its performance is evaluated on the Herlev dataset
for 2-class and 7-class problems. Malignant and benign cells
are considered in the 2-class problem, while in the 7-class
problem, all seven categories of the cervical cells have been
explored. In short, the research contributions of the pre-
sented work are summarized as follows:

(1) Our work is aimed at developing tool for automatic
classification of cervical cells using the convolutional
neural network. Unlike previous methods, it does
not require prior segmentation and hand-crafted
features. )is method automatically extracts hier-
archical features embedded in the cell image for the
classification task.

(2) A data augmentation technique has been considered
to avoid overfitting. )e rate of overfitting has been
reduced as the data augmentation strategy is applied
to train our network.)is approach is fruitful for our
network to learn the most discriminative features of
cervical cells and thus achieve superior classification
results.

(3) Transfer learning is also explored for pretraining,
and initial weights are reassigned to another network
for fine-tuning on cervical cell images. Training from
scratch requires a large amount of labeled data which
is extremely difficult in medical diagnosis. Moreover,
the designing and adjustment of the hyper-
parameters are the challenging tasks with reference
to overfitting and other issues. Transfer learning is
the easiest way to overcome such problems.

(4) We also conduct extensive malignant and benign cell
assessment experiment on the Herlev dataset. Our
results clearly demonstrate the effectiveness of the
proposed convolutional neural architecture. )e
experimental results are compared with recently
proposed methods, and our approach provides su-
perior performance as compared with existing sys-
tems for cervical cells classification.

)e paper is organized as follows: the proposed meth-
odology is presented in Section 2; experiments and results
are given in Section 3; result-related discussion is presented
in Section 4; and conclusion and future work are summa-
rized in Section 5.

2. Proposed Methodology

)e proposed automatic mass screening system for cervical
cancer detection using ConvNets is shown in Figure 2.)ere
are four steps: (1) data collection, (2) preprocessing, (3)
feature learning, and (4) classification of cervical cells. )ese
steps are explained in the following sections.

2.1.DataCollection. )epublicly available Herlev Pap smear
dataset is used for the training and testing purpose. It
contains 917 single cervical cell images with ground truth
classification and segmentation. )e cells are categorized
into seven different classes.)ese seven classes are diagnosed
by doctors and cytologists to increase the reliability of the
diagnosis. Furthermore, these seven classes are broadly
categorized into two groups, i.e., malignant and benign. )e
first class to third class is normal or benign, while fourth to
seventh class is abnormal or malignant. )e class’s distri-
bution is shown in Table 1.

Normal and abnormal cell images are shown in Figure 3.
It can be seen that the size of the nucleus in malignant or
abnormal cells is larger than that of the normal cells. )e
difficult task from classification perspective is that the
normal columnar cells have nucleus size quite similar to that
of severe nucleus, and also chromatin distribution is same.

2.2. Preprocessing. Herlev dataset consists of images that
contain multiple cells in a single image. )e data pre-
processing phase includes image patch extraction from the
original cervical cell images and augmentation of data for
training ConvNet 2.

2.2.1. Image Patch Extraction. )e proposed approach, like
previous patch-based classification methods, does not di-
rectly operate on original images present in the Herlev
dataset that contains multiple cells at a time [40–43]. Image
patches, each containing single cell, are first extracted. In
order to extract the individual cell, presegmentation of
cytoplasm is required [44]. )e nuclei are first detected and
then image patches of size M × M, and each centered on a
nucleus is generated that embed not only the size and scale
information of the nucleus but also the textural information,
of the cytoplasm surrounding the nucleus. Scale and size of
the nucleus is a very important discriminative feature be-
tween malignant and benign cells.

2.2.2. Data Augmentation. An image data augmentation
technique is used to virtually increase the size of training
dataset and reduces overfitting [25]. As the cervical cells are
invariant to rotations, they can be rotated from 0 − 360
degree with a step angle θ. In the data augmentation process,
Nr � 10 rotations with θ � 36 degree, translations in the
horizontal direction, Nth � 15 translations up to 15 pixels
for each normal cells, while in vertical direction, Ntv � 8
translations up to 15 pixels for each abnormal cells are
performed. Hence, we generate 300 image patches from a
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single normal cell and 160 image patches from each ab-
normal cell. )is transformation yields relative normal
distribution, as the numbers of samples of abnormal cell
images are as large as compared to that of normal cell
images. )e size of the generated image patch is set to m �

128 pixels to cover the cytoplasm region. )ese patches are
then upsampled to a size 256 × 256 × 3 using bilinear in-
terpolation. )ese upsampled image patches, as shown in
Figure 4, are used in ConvNet 2 for initiating layer transfer
and training [28].

)e malignant cells in the Herlev dataset are 3 times
more than the benign cells. )erefore, it is natural that the
classifier tends to be more biased towards the majority
class, i.e., the malignant cells. )e unfair distribution of
data is commonly solved by normalization of data prior to
classification, whereby the ratio of positive and negative
samples of data is evenly distributed [45]. )is normali-
zation process improves not only the convergence rate of
training of the ConvNets but also the classification accu-
racy [25]. In the proposed approach, the training dataset is
made balanced by unequal augmentation of benign and
malignant cells, in which a higher proportion of benign
training samples are generated as compared to malignant
training samples.

2.3. Feature Learning. )e ConvNets can learn to dis-
criminate features automatically for an underlying task. In
this work, a typical deep model is used consisting of 2
ConvNets, named ConvNet 1 and ConvNet 2. At first, the
base network ConvNet 1 is pretrained on ImageNet database
that consists of over 15 million labeled high-resolution
images, belonging to roughly 22,000 categories [46]. )e
images were collected from the web and labeled through
human judgment using Amazon’s Mechanical Turk
crowdsourcing tool. In all, there are roughly 1.2 million
training images, 50,000 validation images, and 150,000
testing images [25]. ConvNet 1 contains five convolutional
(conv) layers denoted as conv1–conv5, followed by three
pooling (pool) layers denoted as (pool1), (pool2), and
(pool5), and there are three fully connected (fc) layers as
(fc6), (fc7), and (fc). All these layers are transferred to
ConvNet 2, which is the network used for feature extraction,
setting its initial parameters. )is new network is then fine-
tuned on the single cervical cell images of the Herlev da-
tabase. )is procedure is shown in Figure 5.

As described earlier, (conv) and (pool) layers are
transferred from ConvNet 1 at the same locations to
ConvNet 2. Both ConvNet 1 and ConvNet 2 share the same
structure from (conv1) to (pool5) layers. However, the fully
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Figure 2: )e process of cervical cancer detection system using ConvNets through transfer learning.

Table 1: Key statistics of Herlev dataset [36].

Type Class Cell description Numbers (cells)
Normal 1 Superficial squamous epithelial 74
Normal 2 Intermediate squamous epithelial 70
Normal 3 Columnar epithelial 98
Abnormal 4 Mild squamous nonkeratinizing dysplasia 182
Abnormal 5 Moderate squamous nonkeratinizing dysplasia 146
Abnormal 6 Serve squamous nonkeratinizing dysplasia 197
Abnormal 7 Squamous cell carcinoma in situ intermediate 150
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connected layers are modified in ConvNet 2 because the
number of output classes is different as compared to
ConvNet 1. Numbers of neurons in ConvNet 2 are 4096 −

4096 − 7 and 4096 − 4096 − 2 in the case of 7-class problem
and 2-class problem, respectively. Fully connected layers of
ConvNet 2 are initialized with values from randomGaussian
distributions. Local response normalization for (conv1) and
(conv2) is set according to the parameters in [25]. Hidden
layers are used with rectified linear units’ activation func-
tion. )ere are three fully connected layers in the proposed
network, i.e., (fc6), (fc7), and (fc). )e feature vector for the
final classification task is selected from the (fc7) layer which
is the last layer before the output layer. )e main reason to
select feature vector from (fc7) is that it contains more
specific and abstract details of the images. )e dimension of
feature vector extracted from (fc7) is the number of training
samples Xt × 4096. )e configuration of ConvNet 2 is listed
in Table 2.

2.4. Classification. Deep features are extracted from the
outer layer of ConvNet 2 for cervical cells classification task.

)e classification score is then calculated using three dif-
ferent classifiers including SR, SVM, and GEDT. )e details
of three classifiers are also presented as follows.

2.4.1. Softmax Regression (SR). For themulticlass dataset, SR
is used for classification of unknown samples that are first
preprocessed according to the described approach. Unlike
ConvNets, SR uses cross entropy function for the classifi-
cation. )e sigmoid function is replaced by softmax func-
tion. Mathematically, it is represented by the following
equation:

P y � jz
(i)

  � ϕsoftmax z
(i)

  �
e

z(i)


k
j�0 e

z
(i)

k

, (1)

where we define the network input z as

z � w0x0 + w1x1 + · · · + wnxn � 
n

i�0
wixi � w

T
x, (2)

where w is a weight vector, x is the feature vector of training
sample, and w0 is the bias. )is softmax function computes
the probability score that training sample xi belongs to class
j given the network z. )e probability score is generated at
the softmax layer of ConvNet 2, next to fully connected layer.
Cross entropy function is used for the classification at the
final layer of the ConvNet 2. Softmax layer of ConvNet is
shown in Figure 6.

2.4.2. Support Vector Machine (SVM). SVM is a supervised
learning model that uses an optimization method to identify
support vectors Si, weights αi, and bias b. )e classification is
being considered to classify vectors x, according to the
following equation:

Rotations Translations

Figure 4: Data augmentation process through rotations and
translations of a cervical cell.

(a) (b) (c) (d)

(e) (f ) (g)

Figure 3: Examples of (a–c) normal cells and (d–g) abnormal cells: (a) superficial; (b) intermediate; (c) columnar; (d) mild; (e) moderate; (f )
severe; (g) carcinoma.
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c � 
i

αik si, x(  + b, (3)

where k is the kernel function depending on the model
assumed for decision boundary. In case of a linear kernel, k is
a dot product. If c≥ 0, then x is classified as a member of the
first group and otherwise the second group. Error correcting
code classifier is trained using support vector machine. )e
batch size is set to 256. )e training set is applied to the

classifier along with deep hierarchical feature vector using
ConvNet 2. Validation data are used in SVM to calculate
validation accuracy.

2.4.3. GentleBoost Ensemble of Decision Tree (GEDT).
Regression trees or GEDTare used to predict the response of
the data. )e classification decisions are made when the
query sample follows the path from the initial or root node to
the end or leaf node.

In GEDT, an ensemble of trees is used that is based on
majority voting. It is trained on the training data, numbers of
trees are set to 100, and batch size is set to 256. Validation
accuracy of the Herlev dataset is evaluated using validation
data.

2.4.4. Aggregated Score. Evaluation of the cervical cell
classification task is done using 5-fold cross validation on the
Herlev dataset for both 2-class and 7-class problems. )e
performance metrics used for evaluation include accuracy,
F1 score, area under the curve, specificity, and sensitivity.
Finally, the count of correct classification score is obtained
for each cell from all the categories in the Herlev dataset.

3. Experiments and Results

3.1. Experimental Protocol. In the training stage, the conv
and pool layers of Alexnet, i.e., ConvNet 1, as shown in
Figure 5, are used as initial layers for the ConvNet 2.
Random weights are initialized to fc. In order to train
ConvNet 2, a patch of size 227 × 227 is cropped randomly
from each augmented image to make training/test images

Pretraining

Transfer learning

Conv 1
ImageNet dataset

Cervical cells
SR

SVM

GEDT

Output layer
fc

fc

pool 1
Conv 2 pool 2

Conv 3pool 3

Conv 1

Image patch extraction

Fine-tuning
Features extraction
and classificationpool 1

Conv 2 pool 2
Conv 3pool 3

Figure 5: Procedure of feature learning and classification using convolutional neural networks.

Table 2: Configuration of ConvNet 2.

Filter size Channel Stride Padding
Input — 3 — —
(conv1) 11× 11 96 4 —
(pool1) 3× 3 96 2 —
(conv2) 5× 5 256 1 2
(pool2) 3× 3 256 2 —
(conv3) 3× 3 384 1 1
(conv4) 3× 3 384 1 1
(pool5) 3× 3 256 2 —
(fc6) — 4096 — —
(fc7) — 4096 — —

(fc) — 7 (7 classes) — —2 (2 classes)

Fully connection
component

So�max activation
function

Cross-entropy
loss

So�max layer

Features
input

Figure 6: Softmax layer of ConvNet 2.
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compatible to the input nodes of the network. To achieve
zero-center normalization, a mean image over the dataset is
subtracted. Stochastic gradient descent (SGD) is used for
training ConvNet 2 using 30 epochs. Small batches of image
patches are fed to ConvNet 2, and validation accuracy of
batches is evaluated. )e size of mini batch is set to 256.
Initial learning rate for convolutional and pooling layers is
set to 0.0001, which is set to decrease with a factor of 10 after
every 10 epochs. L2 regularization and momentum can be
tuned to reduce overfitting and speed up learning process of
the ConvNet 2 [25]. L2 regularization or weight decay and
momentum are empirically set to 0.0005 and 0.9, respec-
tively. Finally, the network is trained using a randomly
selected subset of epochs and validated for its accuracy. )e
model having a minimum validation error is used for
classification application.

In order to test the system against an unseen image,
multiple cropped patches of test images, each having single
cell, are generated from the original images containing
multiple cells. Abnormal score of each crop is generated by
the classifier. )e abnormal scores of all (Ntest × Ncrop)

patches of the test image are aggregated to generate the final
score [47]. Patches of test image Ntest � 300 (10 rotations ×

30 translations) are generated same as for training images.
Furthermore, ten cropped images (Ntest) (four corner,
center of cell, i.e., nucleus portion, and their mirrored
images) are generated from each of test patch.)ese (Ntest ×

Ncrop) image patches are input to the classifier. )e pre-
diction score of the classifiers (SR, SVM, and GEDT) is then
aggregated to calculate the final score, as shown in Figure 7.

3.2. Experimental Results and Evaluation

3.2.1. ConvNet 2 Learning Results. ConvNet 2 is fine-tuned
on the Herlev dataset for 2-class and 7-class problems using
30 epochs. It is observed that, after 10 epochs, the validation
accuracy reaches its maximum value, i.e., 0.9935 for the 2-
class problem and 0.8745 for the 7-class problem. Figure 8
illustrates a fine-tuning process of ConvNet 2 during 30
training epochs.

)ese results are improved by considering various
classifiers. GEDT provides better performance with refer-
ence to both classes because it exploits the randomness of
data more efficiently as compared to other classifiers. Table 3
shows the comparison of SR, SVM, and GEDT.

)e structure of the layers of network is also being
observed after passing a test image to the fine-tuned net-
work. Features learned at the first layer, i.e., (conv1) are
more generic, as shown in Figure 9.

It can be seen that these learned filters contain gradients
of different frequencies, blobs, and orientations of colors. As
we go deeper in convolutional layers (conv1 − conv5), the
features become more prominent and provide more in-
formation. Figure 10 shows the feature learning results in
(conv2 − conv5) for a test cervical cell image.

)e strongest activation is also shown in Figure 11 at the
pool layer. )e white pixels show strong positive activation,
while black pixels provide strong negative activation and

gray does not activate strongly. It is also observed that the
strongest activation initiates negatively on right edges and
positively on left edges.

)e feature set at fully connected layer is also explored
and it is observed that features are more abstract as com-
pared to the previous layers, as shown in Figure 12. Fully
connected layer provides features learned for 7 classes.

3.2.2. ConvNet 2 Testing Results. It is a common knowledge
that a single evaluation metric is not appropriate to evaluate
the performance of a given algorithm due to the presence of
some imbalanced classes in the dataset or a large number of
training labels [48]. )erefore, the performance of the deep
model is reported in terms of four distinct metrics including
accuracy, sensitivity, specificity, and F1 score, as proposed in
the previous studies [49]. )ese performance parameters are
calculated using the following equations:

accuracy �
TP + TN

TP + FP + TN + FN
,

sensitivity �
TP

TP + FN
,

specificity �
TN

TN + FP
,

F1 � 2
precision.recall
precision + recall

,

(4)

where the precision and recall are expressed as

precision �
TP

TP + FP
,

recall �
TP

TP + FN
.

(5)

In the above equations, true positive (TP) is defined as the
number of malignant cell images classified as malignant and
true negative (TN) is the number of benign cell images
classified as benign. False positive (FP) is the number of
benign cell images identified as malignant cell images, and
false negative (FN) is the number of malignant cell images
classified as benign.

In ConvNet 2, a test set of cervical images using the
multiple crop testing scheme is considered with three
classifiers, i.e., SR, SVM, and GEDT. It can be seen that
GEDT again outperforms the classification accuracy of SR
and SVM in test results also. )e results are presented in
Table 4.

By analyzing the class-wise accuracy, one can observe
that the proposedmethod can predict the cervical cell images
well. )e classification accuracy of each of the seven cell
categories is calculated by feeding all the images as test to the
classifiers. It is observed that GEDT shows superior per-
formance on class 1, class 2, class 4, and class 5 because of its
ability to eliminate irrelevant features and to extract decision
rules from decision trees efficiently. )e performance
slightly deteriorates for class 3 and class 6 because their
features are very close to each other causing confusion. )e
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Figure 8: )e fine-tuning process of ConvNet 2 during 30 epochs for 2-class and 7-class.

Table 3: )e validation accuracy comparison of three classifiers.

Validation accuracy
Classes SR SVM GEDT
2-class problem 99.35 99.8 100
7-class problem 87.45 96.20 99.27

(a) (b)

Figure 9: (a) Test image; (b) feature learned at (conv1).
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Figure 7: Multiple crop testing scheme.
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classification accuracy of class 3 and class 6 is 97.50 % and
97.79 %, respectively. Classification accuracy for class 7 is
99.20 %. )e average accuracy achieved by GEDT for un-
derlying task is 99.21%. )ese results are illustrated in
Figure 13.

)e evaluation parameters of the classification perfor-
mance, i.e., accuracy, F1 score, area under the curve,
specificity, and sensitivity of the trained ConvNet 2 are
displayed in Tables 5 and 6, where the performance

comparison of proposed work with [13,39] and [50–56] is
presented. We have proposed two scenarios with different
classifiers, i.e., SVM and GEDT. )e mean values of accu-
racy, F1 score, area under the curve (AUC), sensitivity,
and specificity of fine-tuned ConvNet 2 with GEDT
classifier are 99.6%, 99.14%, 99.9%, 99.30%, and 99.35%,
respectively, for the 2-class problem. )ese are 98.85%,
98.77%, 99.8%, 98.8%, and 99.74%, respectively, for the 7-
class problem.

(a) (b)

(c) (d)

Figure 10: Features maps: (a)(conv2); (b)(conv3); (c)(conv4); (d) Conv5.

Figure 11: Strongest activation at the deepest (pool) layer. Figure 12: Fully connected layer feature maps for 7 classes.
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)e accuracy of our system, i.e., ConvNet with GEDT is
99.6% for 2-class and 98.85% for 7-class compared to 99.5%
and 91.2% for [39], respectively. )is indicates that the
prediction accuracy of our classification model is better than
the existing models. Similarly, the sensitivity of 99.38% and
99.30% implies better performance of the proposed method
compared to the existing methods in classifying the cervical
cell images. Likewise, the values of specificity and accuracy of
proposed system for the 2-class problem are better than
previous methods in [15, 16, 34, 36, 38, 41, 56].

)e images of cervical cells that are correctly classified or
misclassified are also analyzed. Figure 14 shows the correctly
classified malignant cell images; columns 1 to 4 are mild
dysplasia, moderate dysplasia, severe dysplasia, and carci-
noma, respectively.

Figure 15 shows the result for test cell images that are
misclassified (normal misclassified as abnormal and ab-
normal misclassified as normal).

3.2.3. Computational Complexity. In the training phase,
ConvNet 1 is trained on the Corei7 machine with clock
speed 2.8 GHz, NVidia 1080Ti GPU, and 8GB ofmemory on
MATLAB R2017b. )e average training time for ConvNet 2,
running for 30 epochs, is about 4 hours and 30minutes for
the 2-class and 8 hours and 20minutes for 7-class problem.
In the testing phase, the system takes 8 seconds to classify a
test image into normal and abnormal classes. Using multiple
crop testing, i.e., (Npatches × Ncrops � 3000) classifications
and score aggregation, the average time for the testing of one
cell image is around 8 seconds.

4. Results-Related Discussion

)e experimental results presented in this study suggest the
following key observations:

(1) Compared with the traditional prior feature ex-
traction schemes, the proposed cervical cell
screening system is more effective and robust. )is is
because ConvNets have been used to encode cervical
cancer specific features automatically. In the tradi-
tional methods such as [11, 12, 14, 15], cervical cells
extraction strategies are hand-crafted which limit the
success of overall system. Moreover, in the presence
of large irregular shapes, appearance dissimilarities
and cervical cell clusters between malignant and
benign cell nucleus are the major problems in ac-
curately segmenting the cytoplasm and nucleus. In
contrast, this method uses automatic cervical cell
features extraction to encode cancerous cell repre-
sentation and thus achieve superior classification
accuracy across a range of cells severity.

(2) In order to prevent overfitting, a data augmentation
technique, suitable for the underlying task of cervical
cell grading, has been proposed. )e training and
validation losses for 30 epochs have been evaluated
to analyze the impact of the proposed data aug-
mentation on classification accuracy. It is observed
that the rate of overfitting is greatly reduced when
the data augmentation strategy is applied to train our
classification model. )e smaller difference between
training and validation losses caused by data aug-
mentation is presented in Figure 16. It indicates that
how this approach is fruitful for the classification
model to learn the most discriminative features for
the desired task. Furthermore, the proposed model
works across a variety of cervical cells and preserves
the discriminative information during training.
While, in the testing stage, a cell image with arbitrary
level of severity can be easily classified into the true
grading level. Hence, this suggests the efficacy of our
method to avoid the classification model from
overfitting and shows robustness for classification
accuracy against varying nature of cervical cells.

(3) A multiple crop testing scheme is also used with
three classifiers to calculate the accuracy of all in-
dividual classes of cervical cell images. )e class-wise
accuracy displayed in Figure 13 shows, if the cervical
cells are more clear, the classification ability of our
system is more robust. For example, classification
accuracy for class 1, class 2, class 4, and class 5 is the
highest, i.e., 100% among all other classes. It is be-
cause this type of cells can be identified more ef-
fectively by the underlying model. )e classification
accuracy for class 7 is 99.20%. Conversely, the
classification performance slightly degrades for the
class 3 (97.50%) and class 6 (97.79%) because their
features are very close to each other owing to lesser
cervical cells specific discriminative information
presented to the model.

(4) In a general way, a single performance metric can
lead to inappropriate classification results due to
some imbalanced classes in the dataset or too small
or large number of training samples. )e literature

Table 4: Accuracy after classifier trained on deep features.

Accuracy
Classes SR SVM GEDT
2-class problem 99.80 99.50 99.60
7-class problem 97.21 98.12 98.85

100 100 100 100

97.79

99.2

97.5

1 2 3 4 5

Class-wise accuracy

6 7

Accuracy (%)

Figure 13: Accuracy distributions according to all 7 classes.
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review of the existingmethods on cervical cell images
such as [13, 39], and [50–56] shows classification
performance in terms of accuracy metric only. On
the contrary, we have considered four distinct

evaluation metrics including accuracy, sensitivity,
specificity, and area under the curve. )e experi-
mental results displayed in Tables 5 and 6 show the
consistent performance of our proposed models in

Table 6: Comparison of the proposed work with existing state-of-the-art using the Herlev dataset.

Systems Features Sensitivity (%) Specificity (%) Accuracy (%)
[34] Pap smear benchmarks 98.8 79.3 93.6
[56] Genetic algorithm-based feature 98.5 92.1 96.8
[16] PCA with SVM — — 96.9 (F1 score)
[41] Local binary pattern — — 96.4 (AUC)
[38] Ensemble classifier 99.0 89.7 96.5
[36] CNN 98.2 98.3 98.3
[15] Enhanced fuzzy C-means 99.28 97.47 98.88
Proposed ConvNet with SVM 99.38 99.20 99.5
Proposed ConvNet with GEDT 99.30 99.35 99.6
)e performance metrics are evaluated for the 2-class problem.

Figure 14: Correctly classified malignant cell images.

(a) (b)

Figure 15: Cervical cell images that are misclassified: (a) normal as abnormal; (b) abnormal as normal.

Table 5: Accuracy comparison of the systems for 2-class and 7-class problems.

Systems Features Dataset Accuracy%
[50] SVM 149 images of Herlev 98 (2-class)
[51] k-NNs and ANNs Herlev k-NNs: 88; ANNs: 54 (2-class)
[52] 20 features, fuzzy C-means, 2nd order NN Herlev 98.4 (2-class)
[53] Decision tree Local 67.5 (2-class)
[54] Backpropagation neural networks Local 95.6 (2-class), 78.06 (7-class)
[55] 20 features, C-means/fuzzy clustering Herlev 94–96 (2-class), 72–80 (7-class)
[13] Shape, texture, Gabor, SVM Local 96 (2-class)
[56] 20 features, GA Herlev 98 (2-class), 96.9 (7-class)
[39] CNN-ELM-based system Herlev 99.5 (2-class), 91.2 (7-class)
Proposed ConvNet with SVM Herlev 99.5 (2-class), 98.12 (7-class)
Proposed ConvNet with GEDT Herlev 99.6 (2-class), 98.85 (7-class)
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cervical cell images classification across different
evaluation metrics. We have proposed two scenarios
with different classifiers, i.e., SVM and GEDT. It is
noted that the proposed scheme outperforms all
previous approaches. )is is despite of the fact that
training and test images also contained images of
overlapping cells. )is exceptional performance is
mainly because of following reasons: (1) during the
training stage, transfer learning is used and the
network is finally, fine-tuned on the Herlev dataset;
(2) the trained network is used only for extraction of
deep features; and (3) the extracted features are then
fed to more robust classifiers like SVM and GEDT
which are used for final classification. )is suggests
the effectiveness of ourmethod for underlying task in
the presence of a wide variety of cervical cell images
ranging from class 1 to class 7.

(5) )e structure of different layers of fine-tuned net-
work is also explored. It is seen that the features
learned in the initial conv layers are more general-
ized, and as we move deeper into the network, the
extracted features tend to become more abstract. )e
features learned at fully connected layers are dis-
played in Figures 9–12.

(6) Despite higher performance of deep learning-based
cervical cell screening system, it has some limita-
tions. Classification time of testing a cropped single
cell image is 8 seconds for the system that is very slow
in clinical setting as there are large numbers of
samples from one PAP smear slide. )is limitation
can be addressed by neglecting the process of data
augmentation step for the test data, and only mul-
tiple crop testing can be used for classification
problem. )is increases the speed of the system as it
requires only 0.08 seconds for classification, but the
accuracy of the system is compromised by 1.5%.
Although classification accuracy of the system on the

Herlev dataset is high, there is room for further
improvement.

5. Conclusions and Future Work

)is paper proposes an automatic cervical cancer screening
system using convolutional neural network. Unlike previous
methods, which are based upon cytoplasm/nucleus seg-
mentation and hand-crafted features, our method auto-
matically extracts deep features embedded in the cell image
patch for classification. )is system requires cells with
coarsely centered nucleus as the network input. Transfer
learning is used for pretraining, and initial weights or feature
maps are transferred from a pretrained network to a new
convolutional neural network for fine-tuning on the cervical
cell dataset. )e features learned by the new fine-tuned
network are extracted and given as input to different clas-
sifiers, i.e., SR, SVM, and GEDT.)e validation results for 2-
class and 7-class problems are analyzed. To test a single cell
image, different test image patches are generated same as
training data, and the multiple crop testing scheme has been
carried out on all patches to achieve classifier score. It is
further aggregated for the final score. )e proposed method
yields the highest performance, as compared to previous
state-of-the-art approaches in terms of classification accu-
racy, sensitivity, specificity, F1 score, and area under the
curve on the Herlev Pap smear dataset. It is anticipated that a
segmentation free, highly accurate cervical cell classification
system of this type is a promising approach for the devel-
opment of auto-assisted cervical cancer screening system.

In future, the effect of system on field of view images
containing overlapping cells is to be analyzed. )e system
should avoid the misclassification of overlapping objects.
Specific classifiers relying on deep learning may be used to
cater these problems. Moreover, deep learning-based cer-
vical cell classification still needs to be explored for high-
precision diagnosis.
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Figure 16: Effect of data augmentation on training and validation loss for 2-class and 7-class.

12 Mathematical Problems in Engineering



Data Availability

)e data used to support the findings of this study will be
made available on request.

Conflicts of Interest

)e authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] C. Marth, F. Landoni, S. Mahner, M. McCormack,
A. Gonzalez-Martin, and N. Colombo, “Cervical cancer:
ESMO clinical practice guidelines for diagnosis, treatment
and follow-up,” Annals of Oncology, vol. 28, p. iv72, 2017.

[2] M. F. Janicek and H. E. Averette, “Cervical cancer: prevention,
diagnosis, and therapeutics,” CA: A Cancer Journal for Cli-
nicians, vol. 51, no. 2, p. 92, 2001.

[3] R. M. Demay, “Common problems in papanicolaou smear
interpretation,” Archives of Pathology and Laboratory Medi-
cine, vol. 121, no. 3, pp. 229–238, 1997.

[4] M. Arya, N. Mittal, and G. Singh, “Cervical cancer detection
using segmentation on pap smear images,” Proceedings of the
International Conference on Informatics and Analytics, vol. 16,
2016.

[5] F. Bray, B. Carstensen, H. Møller et al., “Incidence trends of
adenocarcinoma of the cervix in 13 European countries,”
Cancer Epidemiology Biomarkers & Prevention, vol. 14, no. 9,
pp. 2191–2199, 2005.

[6] D. Saslow, D. Solomon, H. W. Lawson et al., “American
Cancer Society, American Society for Colposcopy and Cer-
vical Pathology, and American Society for Clinical Pathology
screening guidelines for the prevention and early detection of
cervical cancer,” CA: A Cancer Journal for Clinicians, vol. 62,
no. 3, 2012.

[7] G. G. Birdsong, “Automated screening of cervical cytology
specimens,” Human Pathology, vol. 27, no. 5, pp. 468–481,
1996.

[8] H. C. Kitchener, R. Blanks, G. Dunn et al., “Automation-
assisted versus manual reading of cervical cytology
(MAVARIC): a randomised controlled trial,” Be Lancet
Oncology, vol. 12, no. 1, pp. 56–64, 2011.

[9] E. Bengtsson, P.Malm, E. Bengtsson, and P.Malm, “Screening
for cervical cancer using automated analysis of PAP-smears,”
Computational and Mathematical Methods in Medicine,
vol. 2014, p. 1, 2014.

[10] L. Zhang, H. Kong, C. Ting Chin et al., “Automation-assisted
cervical cancer screening in manual liquid-based cytology
with hematoxylin and eosin staining,” Cytometry Part A,
vol. 85, no. 3, p. 214, 2014.

[11] E. Bak, K. van Najarian, and J. P. Brockway, “Efficient seg-
mentation framework of cell images in noise environments,”
in Proceedings of Engineering in Medicine and Biology Society,
2004. IEMBS’04. 26th Annual International Conference of the
IEEE, National Center for Biotechnology Information,
Bethesda, MD, USA, July 2004.

[12] Rahmadwati, G. Naghdy, M. Ros, C. Todd, and
E. Norahmawati, “Cervical cancer classification using Gabor
filters,” in Proceedings of 2011 1st IEEE International Con-
ference on Healthcare Informatics, Imaging and Systems
Biology, July 2011.

[13] P. Wang, L. Wang, Y. Li, Q. Song, S. Lv, and X. Hu, “Au-
tomatic cell nuclei segmentation and classification of cervical

pap smear images,” Biomedical Signal Processing and Control,
vol. 48, pp. 93–103, 2019.

[14] T. Chankong, N. )eera-Umpon, and S. Auephanwiriyakul,
“Automatic cervical cell segmentation and classification in
Pap smears,” Computer Methods and Programs in Biomedi-
cine, vol. 113, no. 2, p. 539, 2014.

[15] W. William, A. Ware, A. H. Basaza-Ejiri, and J. Obungoloch,
“A pap-smear analysis tool (PAT) for detection of cervical
cancer from pap-smear images,” BioMedical Engineering
Online, vol. 18, no. 1, pp. 1–22, 2019.

[16] M. E. Plissiti, C. Nikou, and A. Charchanti, “Automated
detection of cell nuclei in pap smear images using morpho-
logical reconstruction and clustering,” IEEE Transactions on
Information Technology in Biomedicine, vol. 15, no. 2,
pp. 233–241, 2011.
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