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-is manuscript studies the computational solutions of the highly dimensional elastic and nonelastic interaction between internal
waves through the fractional nonlinear (4 + 1)-dimensional Fokas equation.-is equation is considered as the extension model of
the two-dimensional Davey–Stewartson (DS) and Kadomtsev–Petviashvili (KP) equations to a four spatial dimensions equation
with time domain. -e modified Khater method is employed along the Atangana–Baleanu (AB) derivative operator to construct
many novel explicit wave solutions. -ese solutions explain more physical and dynamical behavior of that kind of the interaction.
Moreover, 2D, 3D, contour, and stream plots are demonstrated to explain the detailed dynamical characteristics of these solutions.
-e novelty of our paper is shown by comparing our results with those obtained in previous published research papers.

1. Introduction

Internal waves are waves that spread inside a stream, with
gradients of intensity [1–3]. -e surface gravity waves pass
along the broad pressure boundary between air and water,
while internal waves migrate inside the ocean over gradients
of intensity [4–7]. Perturbations of these gradients of in-
tensity are preserved by momentum, which creates a
propagating motion [8–11].

Globally, internal waves play a significant role in the
ocean, providing nutrients to surface waters that facilitate
the growth of phytoplankton, the foundation of the ocean
food chain [12–15]. Created primarily by the tide’s inter-
action with ocean floor and water topography, internal
waves may bring the energy from these forces through the
entire ocean basins [16, 17]. As internal waves pass through
the continental shelf, they interact with the topography, and

as the gravity of the surface steepens and splits on the sea,
internal waves steep their energy in the shelf and dissipate it
[18, 19]. When the internal waves rise, they turn into
nonlinear waves of fluid that may assume several forms (e.g.,
solitons, bores, and boluses), all of which have the potential
to bring deep water that has different properties (probably
colder, higher in nutrients, lower in oxygen, lower in pH)
across the shelf and into shallower waters [20–22].

Depending on the potential of the nonlinear partial
differential equation to describe several complicated pro-
cesses in diverse fields such as physiology, plasma physics,
hydrodynamics, fluid mechanics, and optics, numerous
precise and computational schemes such as in [23–26] have
been developed. Using inspired schemes, computational and
technical advances are seen as the basic usefulness of solving
these phenomena [27–31]. Such schemes have recently been
regarded as simple methods for discovering the different
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formulas of moving wave solutions to these dynamic phe-
nomena [32–34]. However, in the nonlinear partial differ-
ential equation (NLPDE), with an integer instruction,
several researchers have struggled to extract and formulate
certain complex phenomena [35, 36]. -e fractional equa-
tion is then deemed an appropriate solution to this issue
because it includes a nonlocal property that is not NLPDE-
based with an integer [37–40].

In this research, we study the nonlinear fractional
(4 + 1)-dimensional Fokas model that is mathematically
given by [41–43]

4Dα
t Ux − Uxxxy + Uxyyy + 12UyUx

+ 12UUxy − 6Uwz � 0, (0< α< 1),
(1)

where U is the function of the elastic and nonelastic in-
teraction between internal waves in straight and varying
cross-section channels. Implementation of the following
AB-derivative definitions on equation (1) with the following
wave transformation U(x, y, z, w, t) � ψ(ζ), ζ � (((α − 1)

λt− αn) /B(α) 
∞
n�0 (− (α/1 − α))nΓ(1 − αn)) +k4w + k1x + k2

y + k3z, where ki and λ (i � 1, 2, 3, 4) are arbitrary constants
[37–40], while B(α) is a normalized function, converts the
fractional PDE into the next integer order ODE:

α1ψ″ + α2ψ″″ + α3ψ′
2

+ α4ψψ″ � 0, (2)

where α1 � (4k1λ − 6k3k4), α2 � (k1k
3
2− k3

1k2), α3 � 12k1
k2, and α4 � − 6k3k4.

-e remaining parts of our research paper are organized
as follows: Section 2 employs the modified Khater system
[44–49] to provide the nonlinear fractional Fokas model
with novel solitary solutions. Section 3 describes the out-
comes and provides the physical description of the sketches
seen. -is work is concluded in Section 4.

2. Applications

Usage of the modified Khater technique via the concepts of
homogeneous equilibrium on equation (2) provides general
solutions:

ψ(ζ) � 
m

i�1
aiK

iφ(ζ)
+ 

m

i�1
biK

− iφ(ζ)
+ a0 � a1K

φ(ζ)

+ a2K
2φ(ζ)

+ a0 + b2K
− 2φ(ζ)

+ b1K
− φ(ζ)

,

(3)

where ai, bj(i, j � 0, 1, 2, . . . , ), am ≠ 0, or bm ≠ 0. Addi-
tionally, φ(ζ) is the solution function of
φ′(ζ) � (1/ln(K))[δ + ρKf(ζ) + ϰK− f(ζ)] where δ, ρ, and ϰ
are arbitrary constants. Using equation (3) through its
auxiliary equation in the modified Khater technique’s
framework gives the following families for the above-
mentioned arbitrary constants.

Family I:

a1⟶ 0,

a2⟶ 0,

b1⟶
b2δ
ϰ

,

α1⟶ −
α4 12a0ϰ

2
− b2δ

2
− 8b2ρϰ 

12ϰ2
,

α2⟶ −
α4b2
12ϰ2

,

α3⟶ α4.

(4)

Family II:

a1⟶
a2δ
ρ

,

b1⟶ 0,

b2⟶ 0,

α1⟶ −
α4 − a2δ

2
+ 12a0ρ

2
− 8a2ρϰ 

12ρ2
,

α2⟶ −
a2α4
12ρ2

,

α3⟶ α4.

(5)

Consequently, the explicit solutions of equation (1) are
given in the following forms.

In case of δ2 − 4ρϰ< 0, ρ≠ 0, we obtain

U(ξ)I,1 � a0 +
2b2ρ δ

�������

4ρϰ − δ2


tan (1/2)ξ
�������

4ρϰ − δ2


  − δ2 + 2ρϰ 

ϰ δ −

��������

4ρϰ − δ2


tan (1/2)ξ
��������

4ρϰ − δ2


  
2 ,

U(ξ)I,2 � a0 +
2b2ρ δ

�������

4ρϰ − δ2


cot (1/2)ξ
�������

4ρϰ − δ2


  − δ2 + 2ρϰ 

ϰ δ −

��������

4ρϰ − δ2


cot (1/2)ξ
��������

4ρϰ − δ2


  
2 ,

U(ξ)II,1 �
a2 − δ2 − 4ρϰ sec2 (1/2)ξ

�������

4ρϰ − δ2


  − 4ρϰ 

4ρ2
+ a0,

U(ξ)II,2 �
a2 − δ2 − 4ρϰ csc2 (1/2)ξ

�������

4ρϰ − δ2


  − 4ρϰ 

4ρ2
+ a0.

(6)

In case of δ2 − 4ρϰ> 0, ρ≠ 0, we obtain
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U(ξ)I,3 � a0 −
2b2ρ δ

�������

δ2 − 4ρϰ


tanh (1/2)ξ
�������

δ2 − 4ρϰ


  + δ2 − 2ρϰ 

ϰ
��������

δ2 − 4ρϰ


tanh (1/2)ξ
��������

δ2 − 4ρϰ


  + δ 
2 , (7)

U(ξ)I,4 � a0 −
2b2ρ δ

�������

δ2 − 4ρϰ


coth (1/2)ξ
�������

δ2 − 4ρϰ


  + δ2 − 2ρϰ 

ϰ
��������

δ2 − 4ρϰ


coth (1/2)ξ
��������

δ2 − 4ρϰ


  + δ 
2 , (8)

U(ξ)II,3 �
a2 − δ2 − 4ρϰ sech2 (1/2)ξ

�������

δ2 − 4ρϰ


  − 4ρϰ 

4ρ2
+ a0,

(9)

U(ξ)II,4 �
a2 δ2 − 4ρϰ csch2 (1/2)ξ

�������

δ2 − 4ρϰ


  − 4ρϰ 

4ρ2
+ a0.

(10)

In case of ρϰ> 0, ϰ≠ 0, ρ≠ 0, andδ � 0, we obtain

U(ξ)I,5 � a0 +
b2ρ cot2(ξ

���
ρϰ√

)

ϰ
,

U(ξ)I,6 � a0 +
b2ρ tan2(ξ

���
ρϰ√

)

ϰ
,

U(ξ)II,5 �
a2ϰ tan

2
(ξ

���
ρϰ√

)

ρ
+ a0,

U(ξ)II,6 �
a2ϰ cot

2
(ξ

���
ρϰ√

)

ρ
+ a0.

(11)

In case of ρϰ< 0, ϰ≠ 0, ρ≠ 0, and δ � 0, we obtain

U(ξ)I,7 � a0 +
b2ρ cot2(ξ

�
ρ

√ ��
ϰ

√
)

ϰ
,

U(ξ)I,8 � a0 +
b2ρ tan2(ξ

�
ρ

√ ��
ϰ

√
)

ϰ
,

U(ξ)II,7 �
a2ϰ tan

2
(ξ

�
ρ

√ ��
ϰ

√
)

ρ
+ a0,

U(ξ)II,8 �
a2ϰ cot

2
(ξ

�
ρ

√ ��
ϰ

√
)

ρ
+ a0.

(12)

In case of δ � 0 and ϰ � − ρ, we obtain

U(ξ)I,9 � a0 + b2tanh
2
(ξϰ), (13)

U(ξ)II,9 � a2coth
2
(ξϰ) + a0. (14)

In case of δ � (ϰ/2) � κ and ρ � 0, we obtain

U(ξ)I,10 � a0 +
b2e

κξ

2 e
κξ

− 2 
2. (15)

In case of δ � ρ � κ and ϰ � 0, we obtain

U(ξ)II,10 �
1
4
a2csch

2 κξ
2

  + a0. (16)

In case of ϰ � 0, δ ≠ 0, and ρ≠ 0, we obtain

U(ξ)II,11 �
2a2δ

2
e
δξ

ρ ρe
δξ

− 2 
2 + a0. (17)

In case of δ � ρ � 0 and ϰ≠ 0, we obtain

U(ξ)I,11 � a0 +
b2

ξ2ϰ2
. (18)

In case of δ � ϰ � 0 and ρ≠ 0, we obtain

U(ξ)II,12 �
a2

ξ2ρ2
+ a0. (19)

In case of δ � 0 and ϰ � ρ, we obtain

U(ξ)I,12 � a0 + b2cot
2
(C + ξϰ),

U(ξ)II,13 � a2tan
2
(C + ξϰ) + a0.

(20)

In case of ρ � 0, δ ≠ 0, and ϰ≠ 0, we obtain

U(ξ)I,13 �
a0ϰ ϰ − δe

δξ
 

2
+ b2δ

3
e
δξ

ϰ ϰ − δe
δξ

 
2 . (21)

In case of δ2 − 4ρϰ � 0, we obtain

U(ξ)I,14 � a0 −
b2δ

3ξ(δξ + 4)

4ϰ2(δξ + 2)
2 ,

U(ξ)II,14 �
2a2ϰ(δξ + 2) 2ρϰ(δξ + 2) − δ3ξ 

δ4ξ2ρ
+ a0.

(22)

3. Results and Discussion

-is section shows our obtained solutions and their novelty.
Also, we compare our obtained solutions with those of
previously published articles to show the similarity and

Mathematical Problems in Engineering 3



difference between our and their solutions. Our discussion is
divided into three main parts, which are the used analytical
method, obtained solutions, and figure interpretation:

(1) -e used computational scheme:
-e modified Khater method have been used for the
first time for applying to the fractional nonlinear
(4 + 1)-dimensional Fokas equation. -is modified
method is considered as one of the most general
analytical schemes in this field; especially, it covers
more than twelve recent analytical schemes [50].

(2) -e obtained solutions:
-is part gives a comparison between our ob-
tained solutions and those obtained in previously
accepted papers. In [41–43] by Wan-Jun Zhang
and Tie-Cheng Xia, Ruoxia Yao, Yali Shen, and
Zhibin Li, and Wei Li and Yinping Liu,

respectively, who applied the Hirota bilinear
method, the bilinear form, and Hirota method,
receptively to a fractional nonlinear (4 + 1)-
dimensional Fokas equation, many distinct types
of solutions for these fractional nonlinear models
were obtained. All our obtained solutions of the
investigated model are new and different from
those obtained in [41–43].

(3) -e figures interpretation:
We have represented some of our obtained so-
lutions in three distinct types of figures (3D, 2D,
and contour plots) to explain kink, antikink,
periodic, and singular shapes to illustrate the
perspective view of the solution, the wave prop-
agation pattern of the wave along x-axis, and the
overhead view of the solution for the following
values of the parameters:
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Figure 1: Solitary wave solutions equation (7) in three, two, and contour plots.
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Figure 2: Solitary wave solutions equation (9) in three, two, and contour plots.
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Figure 3: Continued.
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Figure 3: Solitary wave solutions equation (13) in three, two, and contour plots.
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Figure 4: Solitary wave solutions equation (16) in three, two, and contour plots.
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a0 � − 2, b2 � 1, δ � 5, k1 � − 1, k2 � 3, k3 � 4, k4 �
33
2

, λ � − 6, ρ � 2, w � −
2
3
, y � 1, z � 2, ϰ � 3a2 � 7,

& a0 � 6, δ � 3, k1 � 5, k2 � 3, k3 � 4, k4 �
33
2

, λ � 9, ρ � 1, w � −
2
3
, y � 1, z � 2, ϰ � 2& a0 � − 2, b2 � 1,

δ � 0, k1 � − 1, k2 � 3, k3 � 4, k4 �
33
2

, λ � − 6, ρ � − 3, w � −
2
3
, y � 1, z � 2, ϰ � 3& a2 � 1, a0 � − 2, δ � 0,

κ � 2, k1 � − 1, k2 � 3, k3 � 4, k4 �
33
2

, λ � − 6, w � −
2
3
, y � 1, z � 2.

(23)

4. Conclusion

-is research paper has successfully investigated the nonlinear
fractional nonlinear (4+ 1)-dimensional Fokas model via the
modified Khater method that has used the Atangana–Baleanu
derivative operator to convert the fractional form of the studied
model to a nonlinear ordinary differential equation with an
integer order. Many distinct exact traveling and solitary wave
solutions have been obtained. -ese solutions have been il-
lustrated via various sketches (Figures 1–4) that explain more
novel properties of the considered fractional models. -e ac-
curacy and novelty of our obtained solutions have been
explained. -e powerfulness and effectiveness of the used
techniques are also explained and verified.
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