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+is paper presents a controller designed via the backstepping technique, for the tracking of a reference trajectory obtained via the
photogrammetric technique. +e dynamic equations used to represent the motion of the quadrotor helicopter are based on the
Newton–Euler model. +e resulting quadrotor model has been divided into four subsystems for the altitude, longitudinal, lateral,
and yaw motions. A control input is designed for each subsystem. Furthermore, the photogrammetric technique has been used to
obtain the reference trajectory to be tracked. +e performance and effectiveness of the proposed nonlinear controllers have been
tested via numerical simulations using the Pixhawk Pilot Support Package developed for Matlab/Simulink.

1. Introduction

+e technology of unmanned aerial vehicles (UAVs) is
developing rapidly, based on the integration of many
technologies in the mechanical structure, energy
management, communication, control, etc, [1]. UAVs are
widely used in many applications in civilian as well as in
military contexts. For instance, UAVs provide great ad-
vantages in geographical information acquisition and safety
purposes, as well as significant benefits when used for in-
spection and detection purposes. Furthermore, UAVs are
becoming more and more accessible due to technological
developments that enable their increasing use in different
and broad application areas.

Different mathematical models can be used to design a
controller for UAVs. In [2–4], a Newton–Euler model was

presented. Furthermore, the studies in [5, 6] considered
quaternions to describe the angular kinematics, whilst the
study in [7] applied the Euler–Lagrange equations to obtain
the whole quadrotor mathematical model. Regarding the
control of quadrotors, many control techniques were
proposed. +e linear quadratic regulator control and
proportional integral derivative control were proposed in
[8, 9]. However, the stability of these methods cannot be
guaranteed when the quadrotor moves away from its
equilibrium configuration. Compared to linear control, the
nonlinear control can ensure global stable flight for a
quadrotor. Examples of nonlinear control techniques used to
design a controller for a quadrotor are the sliding mode and
the backstepping techniques [10–13]. +e backstepping and
adaptive control [14] were applied to the quadrotor flight
control. In [15, 16], an observer-based adaptive fuzzy
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backstepping controller was designed for trajectory tracking
of a quadrotor subject to wind gusts and parametric un-
certainties. In [17], a robust adaptive attitude tracking
control for a quadrotor was proposed. In [18], a control
trajectory tracking was designed via the sliding mode
technique and using neural networks to optimize the con-
troller parameters through a network learning process which
is based on the control process.

To design vision-based controllers, researchers used dif-
ferent methods for the recognition of objects, trajectories,
road lanes, etc. In [19], an INS/vision-based autonomous
landing system on stationary platforms was proposed,
whereas in [20], mobile platforms were used for the landing of
quadrotors. In [21], the position of a quadrotor was estimated
by the detection of a set of concentric circles. In [22], a
controller, based on computer vision techniques applied to
helipad recognition, was proposed, in which the visual rec-
ognition of a black and white pattern of the helipad was
exploited. In [23], a computer vision systemwas developed for
the automatic estimation of the position and attitude of a
helipad fixed on a mobile platform. In [24], a trajectory
tracking problem for a vision-based quadrotor control system
via super twisting slidingmode controller was proposed. Also,
the study in [25] proposed a neuroadaptive integral robust
controller for the tracking of ground moving targets in the
presence of various uncertainties, via an Image-Based Visual
Servo (IBVS) framework. +e authors of [26] presented a
predictive control algorithm for autonomous approaches of
quadrotor helicopters to a window using a reference image
captured with a photographic camera.+e target is selected by
an operator in a reference image which is sent to the vehicle.
Besides, the authors of [27] proposed an adaptive sliding
mode controller based on the backstepping technique for a
tracking problem using a monocular algorithm to obtain the
accurate location information of the quadrotor and its ref-
erence. In the same context, the work in [28, 29] developed a
vision-based attitude dynamic surface controller, construct-
ing an IBVS to ensure that the visual target remains in the
camera’s field of view all the time.

In this paper, a controller for the tracking of a reference
trajectory is designed via the backstepping technique. +e
quadrotor model is divided into four subsystems for the
altitude, longitudinal, lateral, and yaw motions, and a
control input is designed for each subsystem. Furthermore,
the photogrammetric technique is used to obtain the
reference trajectory to be tracked. +e performance and
effectiveness of the proposed nonlinear controllers are tested
via numerical simulations using the simulation software
called Pixhawk Pilot Support Package (PSP), which predicts
accurately the real dynamic quadrotor helicopter behavior.
+e main contributions of this article are as follows:

(i) +e backstepping technique is used to design a
controller capable of tracking a reference position
and yaw of a quadrotor

(ii) +e photogrammetric technique is used to obtain
the reference trajectory

(iii) +e performance and effectiveness of the proposed
controller have been tested in PSP

+e paper is organized as follows: Section 2 introduces
the description and the mathematical model of the quad-
rotor. In Section 3, the control problem is formulated, whilst
in Section 4, the nonlinear controller is designed. In Section
5, the reference trajectory is obtained via the photogram-
metric technique, and some numerical simulations imple-
mented in PSP are presented. Some comments conclude the
paper.

2. Mathematical Model of a Quadrotor

+e quadrotor considered in this work consists of a rigid
frame equipped with four rotors. +e rotors generate the
propeller force Fi � bω2

p,i, proportional to the propeller
angular velocity ωp,i, i � 1, 2, 3, 4. Propellers 1 and 3 rotate
counterclockwise, and propellers 2 and 4 rotate clockwise.

Let us indicate with RC(O, e1, e2, e3) and
RΓ(Ω, ϵ1, ϵ2, ϵ3) the frames fixed with the Earth and the
quadrotor, respectively, andΩ is coincident with the center
of mass of the quadrotor (see Figure 1). +e absolute
position of quadrotor in RC is described by p � (x, y, z)T,
whereas its attitude is described by the Euler angles
α � (ϕ, θ,ψ)T, with ϕ, θ,ψ ∈ (−π/2, π/2) being the pitch,
roll, and yaw angles, respectively. +e sequence 3–2–1 is
here considered [30]. Moreover, v � (vx, vy, vz)T and ω �

(ω1,ω2,ω3)
T are the linear and angular velocities of the

center of mass of the quadrotor, expressed in RC and in RΓ,
respectively.

+e translation dynamics, expressed in RC, and rotation
dynamics, expressed in RΓ, of the quadrotor are

_p � v,

_v �
1
m
R(α)Fprop +

1
m

Fgrav +
1
m

Fd,

_α � M(α)ω,

_ω � J
− 1

−ωJω + τprop − τgyro + Md ,

(1)

where m is the mass of the quadrotor, J � diag Jx, Jy, Jz 

(expressed in RΓ) is the inertia matrix of the quadrotor, and

ω �

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (2)

is the so-called dyadic representation of ω. Furthermore,
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Fprop �

0

0



4

i�1
Fi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Fgrav �

0

0

−mg

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

τprop �

τ1
τ3
τ2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

l F2 − F4( 

l F3 − F1( 

c F1 − F2 + F3 − F4( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

lu3

lu2

u4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(3)

are the input forces and moments produced by the pro-
pellers, where l is the distance between center of mass CG to
the rotor shaft and c is the drag factor. Moreover, Fgrav in (3)
is the force due to the gravity, expressed in RC.

+e vectors expressed in RΓ are transformed into vectors
in RC by the rotation matrix

R(α) �

cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ

cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ

−sθ sϕcθ cϕcθ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (4)

where c∗ � cos(∗ ), s∗ � sin(∗ ), and ∗ � ϕ, θ,ψ.
+e angular velocity dynamics are expressed using the

matrix

M(α) �

1 sϕtgθ cϕtgθ
0 cϕ −sϕ

0 sϕscθ cϕscθ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (5)

with tg∗ � tan(∗ ), sc◇ � sec(∗ ), and ∗ � ϕ, θ,ψ.
Considering small angles, matrix (5) can be approxi-

mated by the identity matrix, i.e., M(α) � I3x3. +is as-
sumption is justified by the fact that the movements of the
quadrotor are slow and soft [4].

+e rolling torque τ1 is produced by the forces F2 and
F4. Similarly, the pitching torque τ3 is produced by the
forces F1 and F3. Due to Newton’s third law, the propellers
produce a yawing torque τ2 on the body of the quadrotor,
in the opposite direction of the propeller rotation.
Moreover,

τgyro � 
4

i�1
(−1)

i+1
Jpωp ωϵ3, (6)

is the gyroscopic torque due to the propeller rotations, with
Jp being the propeller moment of inertia with respect to its
rotation axis, and ωp � ωp,1 − ωp,2 + ωp,3 − ωp,4 is the so-
called rotor relative speed. Finally, Fd and Md are the forces
and torques due to the external disturbances, here assumed
negligible.

Now, using (1) and (3) and under the small angle as-
sumption, the mathematical model of the quadrotor can be
expressed by

€x �
1
m

cϕsθcψ + sϕsψ u1,

€y �
1
m

cϕsθsψ − sϕcψ u1,

€z � −g +
1
m

cϕcθu1,

€ϕ �
Jy − Jz

Jx

θ
.

_ψ −
Jp

Jx

ωpθ
.

+
l

Jx

u3,

θ
..

�
Jz − Jx

Jy

_ϕ _ψ +
Jp

Jy

ωp
_ϕ +

l

Jy

u2,

€ψ �
Jx − Jy

Jz

_ϕθ
.

+
1
Jz

u4,

(7)

where the control variables uj, j � 1, 2, 3, 4, are defined as
(3). +e values of the parameters used in (7) are defined in
Table 1.

3. Formulation of the State Feedback
Control Problem

+e control problem is to ensure the asymptotic converge of
the variables χ � (x, y, z,ψ) to some reference trajectories
χref � (xref , yref , zref ,ψref ). In view of the control of the
quadrotor, the following coordinate change is considered:
_ϕ � ωϕ, θ

.

� ωθ, and _ψ � ωψ (ωϕ≃ω1, ωθ≃ω2, ωψ≃ω3), and the
system of equations (7) became

F3
F2

F1

ε2

ε3

ε1

ωp,3

ωp,4

ωp,1

ωp,2

F4

e3

e2

e1

RΓ
Ω

z
y

x

θ

ψ

mg

ϕ

RC

0

Figure 1: Quadrotor orientation using Euler angles.
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_x � vx,

_vx �
1
m

cϕsθcψ + sϕsψ u1,

_y � vy,

_vy �
1
m

cϕsθsψ − sϕcψ u1,

_z � vz,

_vz � −g +
1
m

cϕcθu1,

_ϕ � ωϕ,

_ωϕ �
Jy − Jz

Jx

ωθωψ −
Jp

Jx

ωpωθ +
l

Jx

u3,

θ
.

� ωθ,

_ωθ �
Jz − Jx

Jy

ωϕωψ +
Jp

Jy

ωpωϕ +
l

Jy

u2,

_ψ � ωψ ,

_ωψ �
Jx − Jy

Jz

ωϕωθ +
1
Jz

u4.

(8)

Clearly, model (8) is composed of rotational and
translational dynamics. Figure 2 shows that the input control
u1 does not influence the rotational dynamics but only the
translational ones and can be used to impose z⟶ zref .
Furthermore, in the spirit of the backstepping technique, the
(ϕ, θ,ψ) can be used to impose x⟶ xref , y⟶ yref . In

turn, (ϕ, θ,ψ) are influenced by the inputs u3, u2, and u4,
which can be used to impose ϕ⟶ ϕref , θ⟶ θref , and
ψ⟶ ψref . Hence, the following four subsystems will be
considered: the altitude subsystem S1, the latitudinal sub-
system S2, the longitudinal subsystem S3, and the yaw
subsystem S4:

S1 �

_z � vz

_vz � −g +
1
m

cϕcθu1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

S2 �

_x � vx

_vx �
1
m

cϕsθcψ + sϕsψ u1

θ
.

� ωθ

_ωθ �
Jz − Jx

Jy

ωϕωψ +
Jp

Jy

ωpωϕ +
l

Jy

u2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S3 �

_y � vy

_vy �
1
m

cϕsθsψ − sϕcψ u1

_ϕ � ωϕ

_ωϕ �
Jy − Jz

Jx

ωθωψ −
Jp

Jx

ωpωθ +
l

Jx

u3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S4 �

_ψ � ωψ

_ωψ �
Jx − Jy

Jz

ωϕωθ +
1
Jz

u4.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(9)

ϕ
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s

Figure 2: Connection between rotational and translational
dynamics.

Table 1: Quadrotor’s coefficients and variables.

Variable Value
m 1.1 kg
l 0.223m
Jx 6.825×10− 3 kgm2

Jy 6.825×10− 3 kgm2

Jz 12.39×10− 3 kgm2

Jp 6×10− 5 kgm2

g 9.81m/s2
c 1.1×10− 6 N s2 rad− 2

x m
y m
z m
vx m/s
vy m/s
vz m/s
ϕ deg
θ deg
ψ deg
ωϕ deg/s
ωθ deg/s
ωψ deg/s
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+e controller design for each subsystem will be carried
out in the following section.

4. Design of the Nonlinear Controller

+e translation dynamics in equation (7) are dependent on
the ϕ, θ, and ψ angles. In the next sections, a nonlinear
control is used for each subsystem to solve the control
problem.

4.1. Altitude Control. In this section are established the al-
titude control and its stability proof via Lyapunov function.
For this purpose, it is considered that the altitude control S1
subsystem is

_z � vz,

_vz � −g +
1
m

cϕcθu1.

(10)

+e control aim is to maintain the quadrotor at a desired
constant altitude zref , with vz,ref � _zref . To this aim, setting
the tracking error for the altitude control as

ez,1 � z − zref ,

ez,2 � vz − vz,ref + kz,1ez,1,
(11)

the dynamic errors are

_ez,1 � −kz,1ez,1 + ez,2,

_ez,2 � −g +
1
m

cϕcθu1 − _vz,ref

+ kz,1 ez,2 − kz,1ez,1 + vz,ref − _zref .

(12)

+e proposed altitude control u1 is

u1 �
m

cϕcθ
g + _vz,ref − kz,1 ez,2 − kz,1ez,1 + vz,ref − _zref 

− k3ez,1 − k4ez,2,

(13)

where cϕ ≠ 0 and cθ ≠ 0.+erefore, using altitude control (13)
in (12), the altitude error dynamics became

_ez,1

_ez,2
  � Az

ez,1

ez,2
 ,

Az �
−kz,1 1

−k3 −k4
 .

(14)

For the stability analysis of system (14), the following
Lyapunov function candidate is proposed:

Vz ez(  �
1
2
e

T
z Pzez,

ez �

ez,1

ez,2

⎛⎝ ⎞⎠,

Pz �

pz,11 pz,12

pz,12 pz,22

⎛⎝ ⎞⎠,

(15)

where Pz � PT
z > 0. Deriving Lyapunov function (15), one

obtains

_Vz ez(  � e
T
z A

T
z Pz + PzAz ez, (16)

where Pz is taken as solution of the Lyapunov equation

A
T
z Pz + PzAz � −Qz,

Qz �
q1,z 0

0 q1,z

 ,
(17)

with Qz � QT
z > 0 being fixed. Using (17) into (16), one finally

obtains

_Vz ez(  � −e
T
z Qzez ≤ λ

Qz

min ez

����
����
2 ≤ − αVz ez( , (18)

with α � 2λQz

min/λ
Pz
maz and Pz as solution of (17). +erefore, by

[31], Vz(ez)≤ e− αtV(ez(0)), so that the tracking errors
converge globally exponential to zero.

4.2. Longitudinal Motion Control. In this section, the lon-
gitudinal motion is studied making use of the subsystem S2
and using the backstepping technique. One considers the
tracking error ex,1 � x − xref , where vx,ref � _xref , and the
error dynamics

_ex,1 � vx − _xref , (19)

or, equivalently,

_ex,1 � −kx,1ex,1 + vx − _xref + kx,1ex,1 

� −kx,1ex,1 + ex,2, kx,1 > 0,
(20)

where

ex,2 � vx − vx,ref , (21)

is the velocity error and

vx,ref � _xref − kx,1ex,1, (22)

is the reference velocity. Successively, one works out the
velocity error dynamics as

Mathematical Problems in Engineering 5



_ex,2 �
1
m

cϕsθcψ + sϕsψ u1 − €xref + kx,1 _ex,1

� −kx,2ex,2 +
1
m

cϕsθcψu1 +
1
m

sϕsψu1 − €xref − k
2
x,1ex,1

+ kx,1 + kx,2 ex,2,

(23)

with kx,2 > 0, where u1 is given by (13). For the stabilization
of ex,2, the reference value for sθ can be fixed as follows:

sθ,ref �
m

cϕcψu1
€xref + k

2
x,1ex,1 − kx,1 + kx,2 ex,2  −

sϕsψ

cϕcψ
,

(24)

where cϕ ≠ 0 and cψ ≠ 0, so that

_ex,2 � −kx,2ex,2 +
1
m

cϕcψu1eθ,1,

eθ,1 � sθ − sθ,ref ,

θref � arcsinsθ,ref .

(25)

To impose such a reference for θ, one considers the tracking
error eθ,1 and its derivative:

_eθ,1 � −kθ,1eθ,1 + cθωθ − θ
.

refcθref + kθ,1eθ,1 � −kθ,1eθ,1 + cθeθ,2,

(26)

with kθ,1 > 0, where

ωθ,ref �
1
cθ

θ
.

refcθref − kθ,1eθ,1 , (27)

is the reference angular velocity and

eθ,2 � ωθ − ωθ,ref , (28)

is the angular velocity error. +erefore, one works out the
velocity error dynamics as

_eθ,2 �
Jz − Jx

Jy

ωϕωψ +
Jp

Jy

ωpωϕ +
l

Jy

u2 − _ωθ,ref . (29)

Finally, one determines the input control u2 as

u2 � −
Jz − Jx

l
ωϕωψ −

Jp

l
ωpωϕ +

Jy

l
_ωθ,ref − kθ,2

Jy

l
eθ,2, (30)

so that the velocity error dynamics become

_eθ,2 � −kθ,2eθ,2, (31)

with kθ,2 > 0.

4.3. Lateral Motion Control. In this section is designed the
controller for the lateral motion along the y-axis of the
quadrotor, using the same procedure followed in Section 4.2.
One starts with the tracking error

ey,1 � y − yref , (32)

and the dynamics

_ey,1 � vy − _yref � −ky,1ey,1 + vy − _yref + ky,1ey,1 , ky,1 > 0,

� −ky,1ey,1 + ey,2, ey,2 � vy − vy,ref ,

(33)

with vy,ref � _yref − ky,1ey,1. +e dynamics of ey,2 are

_ey,2 � _vy − _vy,ref � −ky,2ey,2 −
1
m

cψu1eϕ,1,

sϕref �
m

cψu1
− €yref − k

2
y,1ey,1 + ky,1 + ky,2 ey,2  +

sψ

cψ
cϕsθ,

eϕ,1 � sϕ − sϕref ,

ϕref � arcsinsϕref ,

(34)

with ky,2 > 0, cψ ≠ 0, and u1 given by (13). Furthermore, the
angular error dynamics are

_eϕ,1 � −kϕ,1eϕ,1 + cϕωϕ − _ϕrefcϕref + kϕ,1eϕ,1

� −kϕ,1eϕ,1 + cϕeϕ,2,
(35)

with kϕ,1 > 0 and

eϕ,2 � ωϕ − ωϕ,ref ,

ωϕ,ref �
1
cϕ

_ϕrefcϕref − kϕ,1eϕ,1 .
(36)

Finally, the angular velocity error dynamics are

_eϕ,2 �
Jy − Jz

Jx

ωθωψ −
Jp

Jx

ωpωθ +
l

Jx

u3 − _ωϕ,ref , (37)

so that the control input is

u3 � −
Jy − Jz

l
ωθωψ +

Jp

l
ωpωθ +

Jx

l
_ωϕ,ref − kϕ,2

Jx

l
eϕ,2, (38)

with kϕ,2 > 0.

4.4. YawMotionControl. Considering the subsystem S4, and
the errors

eψ,1 � ψ − ψref ,

eψ,2 � ωψ − ωψ,ref ,
(39)

one works out the error dynamics as

_eψ,1 � ωψ − _ψref � −kψ,1eψ,1 + eψ,2,

ωψ,ref � _ψref − kψ,1eψ,1,

_eψ,2 �
Jx − Jy

Jz

ωϕωθ +
1
Jz

u4 − _ωψ,ref ,

_ωψ,ref � €ψref + k
2
ψ,1eψ,1 − kψ,1eψ,2,

(40)
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with kψ,1 > 0. +erefore, with the control

u4 � − Jx − Jy ωϕωθ + Jz _ωψ,ref − kψ,2Jzeψ,2, kψ,2 > 0,

(41)

one finally obtains the yaw error dynamics as

_eψ,1

_eψ,2

⎛⎝ ⎞⎠ �
−kψ,1 1

0 −kψ,2

⎛⎝ ⎞⎠
eψ,1

eψ,2

⎛⎝ ⎞⎠. (42)

+e global exponential stability can be inferred analo-
gously to what is done in Section 4.1.

5. Simulation Results

+e photogrammetric technique has been used for mea-
suring the important physical quantities in both ground and
flight testing, including attitude, position, and shape of
objects. To generate the trajectory reference

pref(t) � xref(t)yref(t)zref(t)( , (43)

a photogrammetric technique was applied to analyze a
natural scenery, with

xref(t) � f1(x(t), y(t), z(t)),

yref(t) � f2(x(t), y(t), z(t)),

zref(t) � f3(x(t), y(t), z(t)),

(44)

and with fi, i � 1, 2, 3, functions of (x(t), y(t), z(t)). +e
selected scenario is a serial array of trees, where all trees have
approximately the same separation. Figures 3 and 4 show the
trees’ frontal and lateral views, respectively. Using the
photogrammetry, the following estimations were deter-
mined: Wf � 0.85m for the trees’ width, Tt � 2.72m for the
distance between the two trees, and Ws,1 � 0.75m and
Ws,2 � 0.522m for the widths of the two trees.

For this application, the reference trajectory has two
important characteristics:

(1) +e altitude is constant
(2) +e reference trajectory is periodic over the x–y

plane
(3) +e reference trajectory avoids the collision between

the quadrotor and the trees

+erefore, the reference position was set equal to

pref(t) �

xref(t)

yref(t)

zref(t)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

�

vx,ref t

Aref sin 2πfrefxref(t)( 

1

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

�

0.5t

4.25 sin 0.250πxref(t)( 

1

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

(45)

with vx,ref � 0.5m/s, Aref being the amplitude, andfref being
the frequency of the periodical function, such as

fref �
1

Tref
�

1
2 Ws,1 + Ws,2 + Tt 

� 0.125 cycles/m, (46)

where Tref is the period. Figure 5 shows the reference tra-
jectory for xref ∈ [0, 18]m.

+e behavior of the controllers designed in Section 4 has
been tested with numerical simulations on the quadrotor
described by equation (1). +e parameters used are given in
Table 1, whilst the variables and gains used in the controllers

Wf = 0.85m

Figure 3: Frontal view of the natural scene.

Figure 4: Lateral view of the natural scene.
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Figure 5: Reference trajectory pref(t).

Table 2: Controllers’ gains values.

kz,1 � 0.5 k3 � 120 k4 � 120 q1,z � 1
kx,1 � 5 kx,2 � 2 kθ,1 � 25 kθ,2 � 46
ky,1 � 5 ky,2 � 2 kϕ,1 � 25 kϕ,2 � 32
kψ,1 � 5 kψ,2 � 9
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are given in Table 2. In order to simulate the controller for
each subsystem, the software developed by the PSP for
Simulink was used.+e reason for choosing the PSP software
was due to the performance of this software in predicting the
dynamic quadcopter behavior, which is very close to the real
behavior. In fact, the PSP software is proven to represent
accurately the quadrotor dynamics. In order to appropriately
implement the controllers, the reference trajectory was
sampled as in Figure 6.

+e simulations results of the closed-loop system are
shown in Figures 7 and 8, where the quadrotor’s initial
conditions have been set equal to p(0) � (0, 0, 0)T,

v(0) � (0, 0, 0)T, α(0) � (0, 0, 0)T, and ω(0) � (0, 0, 0)T.
Figure 7 shows the quadrotor altitude and yaw, z(t) and
ψ(t), ensured by the controllers (13) and (18). Regarding the
latter, the most significative tracking error is 0.5 rad im-
mediately after the initial time.

Figure 8 shows the quadrotor x and y positions en-
sured by the controllers (30) and (38). +e x position
achieves its reference value in 3 s, and the y position
achieves its reference value in 6 s. +e overall controller
performance is accurate and fast. Moreover, this per-
formance could be improved using also integral terms in
the controllers.
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Figure 6: Sampled reference trajectory pref .
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Figure 7: (a) Quadrotor’s altitude z(t) (solid) and reference altitude zref(t) (dashed); (b) quadrotor’s yaw angle ψ(t) (solid) and yaw angle
reference ψref(t) (dashed).
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Figure 8: (a) Longitudinal motion of the UAV x (solid) and the reference x1,ref (dash); (b) latitudinal motion of the UAV y (solid) and the
reference y1,ref (dash).
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6. Conclusion

In this paper, a controller based on the backstepping
technique has been designed for the position and yaw
control of a quadrotor helicopter. +e quadrotor dynamics
have been divided into four subsystems, each with a control
input and an output variable. +e overall controller leads to
satisfactory results. +e photogrammetric technique on a
scenario with fixed obstacles, due to some trees, has been
used to determine the scene geometry and to fix the position
reference trajectory. +e numerical simulations of the
proposed controllers have been implemented using the PSP,
ensuring an accurate approximation of the real quadrotor
dynamics, and the results show a good performance and
effectiveness of the proposed control law. Future work will
regard the real implementation of the proposed controller.
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