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With the global outbreak of new coronavirus pneumonia, more and more countries have entered the state of sealing off cities.
After the epidemic, with the shortage of some materials, the economy is very likely to enter the state of inflation. 'ereby, it is
necessary and urgent for us to reconsider investment problems involving inflation risk. In this paper, we mainly study the optimal
investment strategy of two defined contribution (DC) pension managers with strategy interaction under inflation risk. 'e
traditional portfolio literatures mainly focus on DC pension plan and try to maximize the expected utility of terminal nominal
wealth. In this paper, we consider the more complicated situation that pension managers have, both concerns on relative wealth
and relative risk aversion. 'en, the objective function is constructed to satisfy these two concerns. 'e dynamic programming
principle method is employed to solve the above problems, and a series of analytical solutions to this problem are obtained. Finally,
some numerical examples are discussed for the economic implications to support our theoretical results.

1. Introduction

As a continuous increase in the average life expectancy of
human beings, the optimal portfolio strategies of pension
funds have been continuously studied in the literature.
Generally speaking, there are two types of pension plans.
One is the defined benefit (DB) pension plan, in which
people do not need to consider the pension’s investment
portfolio and longevity risks and enjoy a fixed benefit after
retirement.'e other one is the defined contribution (DC)
pension plan, in which workers pay their pensions at a
certain rate of their salary before retirement. Compared
with the DB pension plan, DC pension plan relieves the
pressure on the social security system by shifting in-
vestment risk and longevity risk from sponsors to pension
plan members. As a result, more and more countries have
transferred partially or even completely from the DB
pension plan to the DC pension plan. 'e purpose of this
paper is to discuss the asset allocation of the DC pension
plan.

In past decades, many literature studies have studied the
optimal investment strategy of DC pension funds. Some
researchers start with different utility functions and consider
the issue of maximizing the expected utility of the terminal
wealth. For instances, Gao [1] studies the optimal investment
strategy of DC pension under CRRA and CARA utility
function. Guan and Liang [2] discuss the maximization of
expected utility of the terminal wealth under loss aversion
utility function, which is an S-shaped curve. Vigna [3] uses
the embedding technique to solve the mean variance
portfolio selection problem in the accumulation phase of a
DC pension plan. Moreover, lots of research studies have
been carried out based on the characteristics of the pension
plan itself. For example, Boulier et al. [4] focus on DC
pension plan for a guarantee expressed by the benefits, and
the guarantee depends on the level of the stochastic interest
rate. Zeng et al. [5] provide an optimal investment strategy
for an ambiguity aversion investor, who faces uncertain
economic conditions over a long time horizon. Han and
Hung [6] use the stochastic dynamic programming principle
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(DPP) to investigate the optimal asset allocation for a DC
pension plan with downside protection under stochastic
inflation. Guan and Liang [7] find the optimal investment
strategy in a stochastic interest rate and stochastic volatility
framework.

'e works above mainly focus on maximizing the ex-
pected utility of terminal wealth. However, in real markets,
pension managers not only focus on such an objective but
also are very concerned about the relative performance of
other pension managers. In fact, economic and sociological
studies have emphasized the importance of relative concerns
in human behaviors, and they have a very vivid title for this
phenomenon with “catching up with the Joneses” (see
Veblen [8]; Abel [9]; Gali [10]; Gomez [11]). Later, some
literature discusses the relative wealth concern of asset
portfolios. In [12], it is the first time to discuss the optimal
investment strategy under the wealth correlation between
two investors in the framework of stochastic dynamic in-
vestment games in continuous time. Espinosa and Touzi [13]
consider a continuous time stochastic dynamic model and
the optimal investment strategy of two investors with rel-
ative wealth concern. For terminal wealth, the author does
not just consider the investors’ own wealth, but cover the
convex combination with respect to the wealth of the in-
vestors and their competitors. 'e optimal portfolio prob-
lem is solved by using the DPP method. Basak and Makarov
[14] consider a dynamic model in incomplete market for two
managers with CARA utility function. 'ey obtain a unique
Nash equilibrium strategy and provide the equilibrium
portfolio policies explicitly. Guan and Liang [15] study a
portfolio game with stochastic Nash equilibrium between
two risk aversion managers under inflation risk.

'e literature above only assume that the investors are
only concerned about the relative wealth about their com-
petitors, but in real investment, markets investors not only
care about this point but also are affected by the risk aversion
of competitors. 'is consideration is especially necessary
when we consider the competitors as the representative
manager in the market. 'erefore, in this paper, we in-
corporate the relative risk aversion concern into the model.
'at is, the relative performance concern (RPC) covers both
relative wealth concern (RWC) and relative risk aversion
concern (RRAC). In this paper, the previous works would be
a special case of our model. As far as we known, there are no
case of incorporating risk aversion into the utility function
yet.

We verify that the model established in this paper can be
analyzed as a model between two ordinary managers of
pension funds or an ordinary pension fund manager and a
representative manager in the pension funds market. Since
the investment on pension funds generally takes a long time,
inflation risk as an important long-term risk cannot avoid
such an investment. So, we incorporate inflation risk in our
model. In this paper managers can invest on an inflation-
linked index bond (IIB) to reduce the inflation risk of
pension funds. We also assume that stocks follow the Heston
process. By the DPP method and the corresponding HJB
equation, we obtain the explicit solution of the optimal
portfolio strategies of RPCmanager and the specific solution

for the cases of RWC and RRAC, respectively. Comparing
with Merton manager, we find that RWC manager always
tends to invest more shares on stocks. Moreover, we
compare the optimal strategy of RPC, RWC manager with
Merton manager and find that both RPC and RWC are
essentially a distortion of the managers’ risk aversion co-
efficient with Merton optimization strategy. 'ese findings,
to the best of our knowledge, have not been reported or
identified in the previous literature.

'e rest of this paper is arranged as follows. Section 2
introduces the financial markets, which include a risk free
asset, stock, and IIB. Section 3 makes the main result of our
article; we use the DPP and stochastic optimal control
method to solve the optimal portfolio and discus several
special cases. In Section 4, we gave a numerical analysis
based on the main conclusions of this paper, combined with
market data, and we have analyzed its economic significance.
In Section 5, we summarized the main points and conclu-
sions of the article.

2. Mathematical Models

Let (Ω,F,Ft, P) be a complete filtering probability space.
Assume that all random variables and stochastic processes
are well defined and adapted to Ft, t ∈ [0, T]􏼈 􏼉 in this article.

2.1. Financial Models. Broadly speaking, DC pension funds
have a long investment cycle. Inflation risk has a great
impact on the real value of DC pension funds. In this paper,
we incorporate the inflation risk into our model. In econ-
omy, the consumer price index (CPI) is often regarded as an
important indicator of inflation. Following Brennan and Xia
[16] and Kwak and Lim [17], we assume that the consumer
price process satisfies the following diffusion process:

dP(t)

P(t)
� μpdt + σpdWp(t),

P(0) � P0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where P(t) is the price index, and it refers to the purchase
power per unit of money, μp and σp > 0 are the instantaneous
expectation and volatility of inflation rate, and Wp(t) is a
standard Brownian motion, which represents the risk
sources of inflation.

In this paper, in financial market, we invest three types of
assets, cash, inflation-linked index bond (IIB), and stock.
'e price of the risk-free (i.e., cash) asset S0(t) follows the
process as

dB(t)

B(t)
� rndt, (2)

where rn denotes the nominal interest rate.
As described in Sun et al. [18], the process of IIB is

supposed to follow

dI(t)

I(t)
� rdt +

dP(t)

P(t)
� r + μp􏼐 􏼑dt + σpdWp(t), (3)

where r is the real interest rate and r + μp represents the
expected yield of inflation bonds.
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In addition, because the inflation rate usually has a direct
or indirect impact on the price of stocks (see Lee [19]), in this
paper we assume that the price of stock is affected not only

by its own risk source Ws(t) but also by inflation risk Wp(t).
'e stock prices S(t) are supposed to follow the Heston
model with the inflation risk as follows:

dS(t)

S(t)
� rndt +

����
V(t)

􏽰
λs

����
V(t)

􏽰
dt + dWs(t)􏼐 􏼑 + σs λpdt + dWp(t)􏼐 􏼑 � rn + λsV(t) + σsλp􏽨 􏽩dt +

����
V(t)

􏽰
dWs(t) + σsdWp(t),

dV(t) � κ[δ − V(t)]dt + σv

����
V(t)

􏽰
dWv(t),

V(0) � v,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where κ, δ, σv, λs, and σs are all positive constants,
σs and

����
V(t)

􏽰
represent the volatilities generated by the

movements of inflations and stock prices, and λp and
λs

����
V(t)

􏽰
represent the corresponding market prices of risk,

and Ws(t) and Wv(t) are two standard Brownian motions.
We further assume that Ws(t) and Wv(t) are independent
with Wp(t), respectively, while Ws(t) and Wv(t) are de-
pendent with E[Ws(t)Wv(t)] � ρt. Here, ρ ∈ [− 1, 1].
Moreover, we need a condition 2κδ > σ2v to ensure V(t)> 0.

Remark 1. Define Q as a risk neutral measure. From no
arbitrage theory, then the drift term of stochastic differential
equation 3 can be rearranged as follows:

r + μp − σpλp � rn. (5)

In Section 3.1, we will use this conclusion to get the
compact form of real wealth process.

2.2. ,e Pension Management. Suppose that, in the pension
market, there are two pension managers. 'ey can invest
three assets: IIB, stock, and cash. Assume that the proportion
of investment on these three assets is πIi(t), πSi(t), and
1 − πIi(t) − πSi(t)(i � 1, 2), respectively. On the contrary,
pension funds also receive regular contributions. To be more
realistic, we assume that contributions increase as the price
index grows. 'at is, contributions follow ciP(t), where
ci > 0(i � 1, 2) is a parameter. Suppose that there is no
transaction cost and taxes in financial market and short sell
is allowed. Under these assumptions, the wealth process can
be expressed as

dXi(t) � ciP(t)dt + Xi(t) 1 − πIi(t) − πSi(t)( 􏼁
dB(t)

B(t)
+ πIi(t)

dI(t)

I(t)
+ πSi(t)

dS(t)

S(t)
􏼢 􏼣, (6)

where Xi(0) � xi, xi ≥ 0(i � 1, 2) represents the initial
wealth of pension manager i. Substituting (2)–(4) into

equation (6), we can obtain the following wealth process for
pension manager i:

dXi(t) � ciP(t)dt + rnXi(t)dt + πIi(t)Xi(t) r + μp − rn􏼐 􏼑dt + σpdWp(t)􏽨 􏽩

+πSi(t)Xi(t)
����
V(t)

􏽰
λs

����
V(t)

􏽰
dt + dWs(t)􏽨 􏽩 + πSi(t)Xi(t)σs λpdt + dWp(t)􏽨 􏽩,

Xi(0) � xi.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

Let πi(t) � (πIi, πSi)
⊤ denote the investment strategy of

pension manager i. In the following, firstly, we present the
definition of admissible strategy.

Definition 1. Let O ≔ R × R+ and G ≔ [0, T] × O. An in-
vestment strategy is called an admissible strategy if it meets
the following conditions:

(1) πi(t) is Ft-predictable
(2) For any (x, v) ∈ O, the stochastic differential equa-

tion (7) has a unique solution with
Xi(t) � xi, V(t) � v

(3) E 􏽒
T

0 [π2
Ii(t)σ2p + π2Si(t) + π2

Si(t)σ2s ]dt􏼚 􏼛<∞

We denote the set of all admissible strategy byAi. In this
paper, we are trying to find the optimal investment strategy
for two DC pension plan managers under admissible
strategy Ai.

3. The Competition Model

3.1. Nonzero-Sum Stochastic Differential Game. In this sec-
tion, we consider a random differential game model with
nonzero sum for two managers. 'e differential game
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problem is constructed based on two relative performance
processes and the utility maximization problem at the fixed
terminal time. We use Yi(T) � (Xi(T)/P(T))(i � 1, 2) to

represent the real wealth process of manager i, which can be
expressed as follows according to (7):

dYi(t) � cidt + rYi(t)dt + πIi − 1( 􏼁(t)Yi(t)σp λp − σp􏼐 􏼑dt + dWp(t)􏽨 􏽩

+ πSi(t)Yi(t)σs λp − σp􏼐 􏼑dt + dWp(t)􏽨 􏽩 + πSi(t)Yi(t)
��
V

√
λs

��
V

√
dt + dWs(t)􏽨 􏽩.

(8)

Let 􏽥πi(t) � (πIi(t) and πSi(t))⊤ − (1, 0)⊤. We call 􏽥πi(t)

an admissible strategy if (πIi(t), πSi(t)) ∈ Ai. For simplicity,
we denote 􏽦Ai � 􏽥πi(t)|(πIi(t), πSi(t)) ∈ Ai􏼈 􏼉. 'en, by using
the result of Remark 1, we can rewrite the evolution of real
wealth process Yi(t) as follows:

dYi(t) � cidt + r(t)Yi(t)dt + Yi(t)􏽥πi(t)
⊤Σ[Λdt + dW(t)],

(9)

where

Σ �
σp 0

σs

��
V

√⎡⎣ ⎤⎦,

Λ �
λp − σp

λs

��
V

√⎡⎣ ⎤⎦,

W(t) �
Wp(t)

Ws(t)
􏼢 􏼣.

(10)

Generally, the managers care about two factors: the
amount of money for investment and the relative perfor-
mance of another manager. Here, the relative performance
concerns two aspects. One is that pension manager always
care about their competitor’s wealth in the financial market
because this will lead to a relative ranking in the pension
market. 'e higher the ranking is, usually, the higher the
amount of pension contributor will choose his/her pension
funds, which will provide the pension manager higher
management fee. Another aspect is that managers always
concern about the risk aversion horizon of their competitor,
as they are inevitably infected by their competitor’s risk
aversion, especially when the competitor manager is the
representative manager of the pension market.

In order to more intuitively study the impact of RPC on
the manager’s optimal investment strategy, we start with the
simplest linear relationship and establish a manager’s model
of RWC and RRAC. Take manager 1 as an example, we can
let (1 − K1)Y1(t) stand for the benefit from his/her real
wealth and K1[Y1(t) − Y2(t)] stand for benefit from relative
wealth concern. Similarly, the risk aversion of manager 1
comes from two aspects. We let (1 − k1)c1 stand for the risk
aversion from manager 1, where c1 means the relative risk
aversion of manager 1 before the competition. Let k1c2 stand
for the weight of risk aversion of manager 2.'us, during the
competition, the risk aversion of manager 1 is
(1 − k1)c1 + k1c2. Using the same method, we can get the
RWC form and RRAC form of manager 2. In the following,

we just consider manager 1 only, manager 2 can be dealt in
the similar way.

Let

Z1(t) ≔ 1 − K1( 􏼁Y1(t) + K1 Y1(t) − Y2(t)( 􏼁

� Y1(t) − K1Y2(t).
(11)

'en, it follows that

dZ1(t) � dY1(t) − K1dY2(t)

� c1 − K1c2( 􏼁dt + r(t)Z1(t)dt

+ Y1(t)􏽥π1(t) − K1Y2(t)􏽥π2(t)􏼂 􏼃
⊤Σ[Λdt + dW(t)].

(12)

'e parameter Ki ∈ [0, 1] is a weight that describes the
degree to which managers value the relevant rankings with
competitors. Meanwhile, we need to pay attention to two
special cases. At Ki � 0, the differential game model de-
generates to the optimal investment problem for manager
with his/her own terminal real wealth. For Ki � 1, it cor-
responds to the effect that managers only consider the
relative wealth.

Let U: R+⟶ R represent the utility preferences of
managers. 'e optimal goal of the pension manager is to
maximize U(Z(T)). Assume that the utility functions are
strictly concave functions. 'at is, U′ > 0 and U″ < 0. Fur-
thermore, the utility function satisfies the following Inada
conditions:

U′(− ∞) ≔ lim
Z⟶− ∞

U′(Z) � +∞,

U′(+∞) ≔ lim
Z⟶+∞

U′(Z) � 0.
(13)

We can use constant absolute risk aversion (CARA)
function to define the utility function U(·) as

U(z) � −
1
c

e
− cz

, c> 0. (14)

3.2. ,e Nash Equilibrium Strategy. In this section, we use
the DPP method to solve this competition problem. If the
admissible strategy of manager 2 is given, manager 1 chooses
his admissible strategy 􏽥π1 ∈ 􏽦A1 to maximize his value
function H

(􏽥π1 ,􏽥π2)
1 (t, z1, v), and vice versa. 'e game between

two managers will finish at terminal time T. 'e nonzero-
sum stochastic differential portfolio game can be con-
structed to maximize the utility of two best investment
combinations by
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H1 t, z1, v( 􏼁 � sup
􏽥π1∈ 􏽥A1

H
􏽥π1 ,􏽥π∗2( )

1 t, z1, v( 􏼁,

H2 t, z2, v( 􏼁 � sup
􏽥π2∈ 􏽥A2

H
􏽥π∗1 ,􏽥π2( )

2 t, z2, v( 􏼁.

(15)

In a dynamic noncooperative problem, the relevant
solution concept is relative to Markov perfect Nash equi-
librium (MPNE). Here, we present the conception of two
player games under MPNE.

Definition 2. 'e MPNE of two player game is a pair of
admissible strategies (􏽥π∗1 , 􏽥π∗2 ) ∈ 􏽦A1 × 􏽦A2, z1, z2 > 0, such
that, for all 􏽥π1 ∈ 􏽦A1 and 􏽥π2 ∈ 􏽦A2, the following inequalities
hold:

H
􏽥π∗1 ,􏽥π∗2( )

1 t, z1, v( 􏼁≥H
􏽥π1 ,􏽥π∗2( )

1 t, z1, v( 􏼁,

H
􏽥π∗1 ,􏽥π∗2( )

2 t, z2, v( 􏼁≥H
􏽥π∗1 ,􏽥π2( )

2 t, z2, v( 􏼁.

(16)

In the following, we will derive the form of the MPNE of
this pension game. 'e target function of manager 1 is given
by

H1 t, z1, v( 􏼁 � sup
􏽥π1(t)

E U1 Z1(T)( 􏼁 ∣ Z1(t)􏼂

� z1, V(t) � v􏼃.

(17)

'en, using the DPP method and It 􏽢o formula, we can
derive the HJB equation in the following theorem.

Theorem 1. Assume that H1 ∈ C1,2,2[[0, T] × R+ × R+]

satisfies (17), then the associated HJB equation of H1 can be
given by

sup
􏽥π1(t)

H1t + H1z1
c1 − K1c2( 􏼁 + rz1 + Y1􏽥π1 − K1Y2􏽥π2( 􏼁

⊤ΣΛ􏽨 􏽩􏽮

+
1
2
H1z1z1

Y1􏽥π1 − K1Y2􏽥π2( 􏼁
⊤ΣΣ⊤ Y1􏽥π1 − K1Y2􏽥π2( 􏼁􏽨 􏽩 + H1v[κ(δ − v)]

+
1
2
H1vvσ

2
vv + H1z1v Y1􏽥π1 − K1Y2􏽥π2( 􏼁

⊤Γ􏽨 􏽩􏽯 � 0,

(18)

with terminal condition

H1 T, z1, v( 􏼁 � sup
􏽥π1(t)

E U1 Z1(T)( 􏼁 ∣ Z1(T)􏼂

� z1, V(T) � v􏼃 � U1 z1( 􏼁,

(19)

where Γ � (0, σvρv)⊤.

Proof. On [t, t + h], we choose any control process 􏽥π1(t)

and (Z1, V) evolves from (t, Z1(t), V(t)) to
(t + h, Z

t,z1 ,v
1 (t + h, 􏽥π1(t)), V(t + h)). According to It 􏽢o for-

mula, we have

H1 t + h, Z1(t + h), V(t + h)( 􏼁

� H1 t, z1, v( 􏼁 + 􏽚
t+h

t

zH1 u, Z1(u), V(u)( 􏼁

zu
􏼠 􏼡du +

zH1 u, Z1(u), V(u)( 􏼁

zZ1
dZ1

+
1
2

z
2
H1 u, Z1(u), V(u)( 􏼁

z
2
Z1

d Z1, Z1􏼂 􏼃u +
zH1 u, Z1(u), V(u)( 􏼁

zV
dV

+
1
2

z
2
V1 u, Z1(u), V(u)( 􏼁

z
2
V

d[V, V]u +
z
2
H1 u, Z1(u), V(u)( 􏼁

zZ1zV
d Z1, V􏼂 􏼃u􏼁

� H1 t, z1, v( 􏼁 + 􏽚
t+h

t
H1u􏼂 􏼃 + H1z1

c1 − K1c2( 􏼁 + rZ1(u) + Y1􏽥πi − K1Y2􏽥π2􏼂 􏼃
⊤ΣΛ􏽨 􏽩

+
1
2
H1z1z1

Y1􏽥π1 − K1Y2􏽥π2( 􏼁
⊤ΣΣ⊤ Y1􏽥π1 − K1Y2􏽥π2( 􏼁􏼐 􏼑 + H1v(κ(δ − v))

+
1
2
H1vvσ

2
vρv + H1z1v Y1􏽥π1 − K1Y2􏽥π2( 􏼁

⊤Γ􏼐 􏼑􏽩du

+ 􏽚
t+h

t
H1z1

Y1􏽥πi − K1Y2􏽥π2􏼂 􏼃
⊤ΣdW(u).

(20)
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By dynamic programming principle, it follows that

H1 t, z1, v( 􏼁 � sup
􏽥π1(t)

E H1 t + h, Z1(t + h), V(t + h)( 􏼁 ∣ Z1(t) � z1, V(t) � v􏼂 􏼃.
(21)

'en, inputting (20) into (21), we can obtain

0 � sup
􏽥π1(t)

E 􏽚
t+h

t
H1u + H1z1

c1 − K1c2( 􏼁􏼂 + rZ1(u) + Y1􏽥πi − K1Y2􏽥π2􏼂 􏼃
⊤ΣΛ􏽨 􏽩􏼢

+
1
2
H1z1z1

Y1􏽥π1 − K1Y2􏽥π2( 􏼁
⊤ΣΣ⊤ Y1􏽥π1 − K1Y2􏽥π2( 􏼁􏼐 􏼑 + H1v(κ(δ − v))

+
1
2
H1vvσ

2
vρv + H1z1v Y1􏽥π1 − K1Y2􏽥π2( 􏼁

⊤Γ􏼐 􏼑􏽩 Z1(t) � z1, V(t) � v
􏼌􏼌􏼌􏼌 􏼃.

(22)

Note 􏽥π1(t) in (22) is a process on [t, t + h], as
h⟶ 0, 􏽥π1(u)⟶ 􏽥π1(t). For equation (22), dividing by
h> 0 on its both sides and letting h⟶ 0, by mean value

theorem, as u⟶ t, we have that Z1(u)⟶ Z1(t) � z1 and
V(u)⟶ V(t) � v. 'us, the following equality holds:

0 � sup
􏽥π1(t)

H1t􏼈 + H1z1
c1 − K1c2( 􏼁 + rz1 + Y1􏽥π1 − K1Y2􏽥π2( 􏼁

⊤ΣΛ􏽨 􏽩

+
1
2
H1z1z1

Y1􏽥π1 − K1Y2􏽥π2( 􏼁
⊤ΣΣ⊤ Y1􏽥π1 − K1Y2􏽥π2( 􏼁􏽨 􏽩 + H1v[κ(δ − v)]

+
1
2
H1vvσ

2
vρv + H1z1v Y1􏽥π1 − K1Y2􏽥π2( 􏼁

⊤Γ􏽨 􏽩􏽯 � 0.

(23)

'en, this theorem is proved. Similar to 'eorem 1, the HJB equation for Manager 2
can be presented by the following equality:

sup
􏽥π2(t)

H2t􏼈 + H2z2
c2 − K2c1( 􏼁 + r(t)Z2 + Y2􏽥π2 − K2Y1􏽥π1( 􏼁

⊤ΣΛ􏽨 􏽩

+
1
2
H2z2z2

Y2􏽥π2 − K2Y1􏽥π1( 􏼁
⊤ΣΣ⊤ Y2􏽥π2 − K2Y1􏽥π1( 􏼁􏽨 􏽩 + H2v[κ(δ − v)]

+
1
2
H2vvσ

2
vρv + H2z2v Y2􏽥π2 − K2Y1􏽥π1( 􏼁

⊤Γ􏽨 􏽩􏽯 � 0,

(24)

with terminal condition

H2 T, z2, v( 􏼁 � sup
􏽥π2(t)

E U2 Z2(T)( 􏼁 ∣ Z2(T) � z2, V(T) � v􏼂 􏼃 � U2 z2( 􏼁,
(25)
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where Γ � (0, σvρv)⊤.
Based on the HJB equations (18) and (24) above, the

optimal investment strategy of the two managers can be
achieved.

Theorem 2. ,e Nash equilibrium strategies (π∗1 , π∗2 ) for the
relative performance concerning DC pension managers are as
follows:

π∗1(t) �
K1/ c2 + k2 c1 − c2( 􏼁( 􏼁 + 1/ c1 + k1 c2 − c1( 􏼁( 􏼁( 􏼁 Σ⊤( 􏼁

− 1Λ − g(t) Σ⊤( 􏼁
− 1Σ− 1Γ􏼔 􏼕

1 − K1K2( 􏼁Y1a(t)
+(1, 0)

⊤
,

π∗2(t) �
K2/ c1 + k1 c2 − c1( 􏼁( 􏼁 + 1/ c2 + k2 c1 − c2( 􏼁( 􏼁( 􏼁 Σ⊤( 􏼁

− 1Λ − g(t) Σ⊤( 􏼁
− 1Σ− 1Γ􏼔 􏼕

1 − K1K2( 􏼁Y2a(t)
+(1, 0)

⊤
,

(26)

where

a(t) � e
r(T− t)

,

g(t) �
λ1λ2 e

A λ1− λ2( )(T− t)
− 1􏼔 􏼕

λ1e
A λ1− λ2( )(T− t)

− λ2
,

(27)

and λ1,2 � (− (k + λsσvρ) ±
����������������

κ2 + 2κλsσvρ + σ2vλ
2
s

􏽱

)/(σ2v(1−

ρ2)), A � (1/2)σ2v(1 − ρ2).

Proof. According to the HJB equation (18), using the first
order condition, we have that

􏽥π∗1 �
K1Y2􏽥π2

Y1
−

H1z1

H1z1z1
Y1
Σ⊤( 􏼁

− 1Λ −
H1z1v

H1z1z1
Y1
Σ⊤( 􏼁

− 1Σ− 1Γ.

(28)

Similarly, according to the HJB equation (24), the form
of 􏽥π∗2 has the form as

􏽥π∗2 �
K2Y1􏽥π1

Y2
−

H2z2

H2z2z2
Y2
Σ⊤( 􏼁

− 1Λ −
H2z2v

H2z2z2
Y2
Σ⊤( 􏼁

− 1Σ− 1Γ.

(29)

Substitute 􏽥π∗2 into (28) and 􏽥π∗1 into (29), respectively;
then, (28) and (29) are reduced to be

􏽥π∗1 � −
1

1 − K1K2( 􏼁Y1

K1H2z2

H2z2z2

+
H1z1

H1z1z1

􏼢 􏼣 Σ⊤( 􏼁
− 1Λ +

K1H2z2v

H2z2z2

+
H1z1v

H1z1z1

􏼢 􏼣 Σ⊤( 􏼁
− 1Σ− 1Γ􏼨 􏼩, (30)

􏽥π∗2 � −
1

1 − K1K2( 􏼁Y2

K2H1z1

H1z1z1

+
H2z2

H2z2z2

􏼢 􏼣 Σ⊤( 􏼁
− 1Λ +

K2H1z1v

H1z1z1

+
H2z2v

H2z2z2

􏼢 􏼣 Σ⊤( 􏼁
− 1Σ− 1Γ􏼨 􏼩. (31)

We conjecture that the optimal utility function for
manager i is as follows:

Hi t, zi, v( 􏼁 � −
1
􏽥ci

e
− 􏽥ci ai(t) zi − bi(t)( )+gi(t)v[ ], (32)

where 􏽥c1 � c1 + k1(c2 − c1) and 􏽥c2 � c2 + k2(c1 − c2). For
the boundary condition, we have ai(T) � 1, bi(T) � 0, and
gi(T) � 0.

Substitute H1, H2, 􏽥π∗1 , and 􏽥π∗2 into HJB equations (18)
and (24), and for simplicity, let Δ1 � c1 − K1c2 and
Δ2 � c2 − K2c1; then, the following equality holds:

ai
′(t) zi(t) − bi(t)( 􏼁 − bi

′(t)ai(t) + gi
′(t)v + ai(t) Δi + rzi −

gi(t)

ai(t)
Γ⊤ Σ− 1

􏼐 􏼑
⊤
Λ􏼢

+
Λ⊤Λ

􏽥ciai(t)
􏼣 −

􏽥cia
2
i (t)

2
g
2
i (t)

a
2
i (t)
Γ⊤ Σ− 1

􏼐 􏼑
⊤
Σ− 1Γ −

gi(t)

􏽥cia
2
i (t)
Γ⊤ Σ− 1

􏼐 􏼑
⊤
Λ −

gi(t)

􏽥cia
2
i (t)
Λ⊤Σ− 1Γ􏼢

+
1

􏽥c
2
i a

2
i (t)
Λ⊤Λ] + κ(δ − v)gi(t) −

1
2
􏽥ciσ

2
vvg

2
i (t) + 􏽥ciai(t)gi(t)

gi(t)

ai(t)
Γ⊤ Σ− 1

􏼐 􏼑
⊤
Σ− 1Γ􏼢

−
1

􏽥ciai(t)
Λ⊤Σ− 1Γ] � 0.

(33)
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After some reductions for (33), we obtain that

ai
′(t) + rai(t)( 􏼁zi + − ai

′(t)bi(t) − ai(t)b1′(t) + ai(t)Δi + gi(t)κδ􏼂 􏼃

+ gi
′(t)v − gi(t)Γ⊤ Σ− 1

􏼐 􏼑
⊤
Λ +

1
􏽥ci

Λ⊤Λ −
1
2
􏽥cig

2
i (t)Γ⊤ Σ− 1

􏼐 􏼑
⊤
Σ− 1Γ

+
1
2
gi(t)Γ⊤ Σ− 1

􏼐 􏼑
⊤
Λ +

1
2
gi(t)Λ⊤Σ− 1Γ −

1
2􏽥ci

Λ⊤Λ − gi(t)κv −
1
2
􏽥cig

2
i (t)σ2vV

+ 􏽥cig
2
i (t)Γ⊤ Σ− 1

􏼐 􏼑
⊤
Σ− 1Γ − gi(t)Λ⊤Σ− 1Γ � 0.

(34)

Comparing the coefficient of zi and v, we can get three
ordinary differential equations as follows:

ai
′(t) + rai(t) � 0,

ai(T) � 1,

⎧⎪⎨

⎪⎩
(35)

− ai
′(t)bi(t) − ai(t)bi

′(t) + ai(t)Δi + gi(t)κδ +
λp − σp􏼐 􏼑

2

2􏽥ci

� 0,

bi(T) � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(36)

gi
′(t) − gi(t)σvλsρ +

1
2􏽥ci

λ2s −
1
2
􏽥cig

2
i (t)σ2v 1 − ρ2􏼐 􏼑 − gi(t)κ � 0,

gi(T) � 0.

⎧⎪⎪⎨

⎪⎪⎩
(37)

Solving these three equations in (35)–(37), we can get the
solutions of ai(t), bi(t), and gi(t) as

ai(t) � e
r(T− t)

,

bi(t) �
Δi

r
e

− r(T− t)
− 1􏽨 􏽩 −

λp − σp􏼐 􏼑
2

2􏽥ci

(T − t)e
− r(T− t)

−
κδλ2(T − t)

􏽥ci

e
− r(T− t)

+
κδ
A􏽥ci

e
− r(T− t) ln 1 −

λ2
λ1

􏼠 􏼡 − ln 1 −
λ2
λ1

e
− A λ1− λ2( )(T− t)

􏼠 􏼡􏼢 􏼣,

gi(t) �
1
􏽥ci

λ1λ2 e
A λ1− λ2( )(T− t)

− 1􏼔 􏼕

λ1e
A λ1− λ2( )(T− t)

− λ2
,

(38)

where A � (1/2)σ2v(1 − ρ2) and

λ1,2 � (− (k + λsσvρ) ±
����������������

κ2 + 2κλsσvρ + σ2vλ
2
s

􏽱

)/(σ2v(1 − ρ2)).

Let a(t) � a1(t) � a2(t) and
g(t) � (λ1λ2[eA(λ1− λ2)(T− t) − 1])/(λ1eA(λ1− λ2)(T− t) − λ2).
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'us, we can get Hi(t, zi, v). Putting Hi(t, zi, v) in (30) and
(31), respectively, we have that

􏽥π∗1(t) �
K1/ c2 + k2 c1 − c2( 􏼁( 􏼁 + 1/ c1 + k1 c2 − c1( 􏼁( 􏼁( 􏼁 Σ⊤( 􏼁

− 1Λ − g(t) Σ⊤( 􏼁
− 1Σ− 1Γ􏼔 􏼕

1 − K1K2( 􏼁Y1a(t)
,

􏽥π∗2(t) �
K2/ c1 + k1 c2 − c1( 􏼁( 􏼁 + 1/ c2 + k2 c1 − c2( 􏼁( 􏼁( 􏼁 Σ⊤( 􏼁

− 1Λ − g(t) Σ⊤( 􏼁
− 1Σ− 1Γ􏼔 􏼕

1 − K1K2( 􏼁Y2a(t)
.

(39)

Since we have 􏽥πi(t) � (πpi(t), πsi(t))⊤ − (1, 0)⊤, then we
get the conclusion, which proved the theorem.

Remark 2. After some simple calculation, we can get that
a(t)≥ 0, g(t)≤ 0 and a(t), g(t) have no relationship with ci,
Ki, ki(i � 1, 2).

Remark 3. More specifically, we have the optimal strategies
of IIB and stock as follows:

π∗1I(t) �
K1

c2 + k2 c1 − c2( 􏼁
+

1
c1 + k1 c2 − c1( 􏼁

􏼢 􏼣
λp − σp − σsλs + σsσvρg(t)

σp 1 − K1K2( 􏼁Y1a(t)
+ 1,

π∗1S(t) �
K1

c2 + k2 c1 − c2( 􏼁
+

1
c1 + k1 c2 − c1( 􏼁

􏼢 􏼣
λs − σvρg(t)

1 − K1K2( 􏼁Y1a(t)
,

π∗2I(t) �
K2

c1 + k1 c2 − c1( 􏼁
+

1
c2 + k2 c1 − c2( 􏼁

􏼢 􏼣
λp − σp − σsλs + σsσvρg(t)

σp 1 − K1K2( 􏼁Y2a(t)
+ 1,

π∗2S(t) �
K2

c1 + k1 c2 − c1( 􏼁
+

1
c2 + k2 c1 − c2( 􏼁

􏼢 􏼣
λs − σvρg(t)

1 − K1K2( 􏼁Y2a(t)
.

(40)

In the following, we try to compare the optimal in-
vestment strategy of RPC manager with traditional Merton
manager (here, we mean managers who have no relative
performance concern with other managers, i.e., we consider
the optimal strategy with one manager only). Moreover, we
compared the optimal strategy between RRAC manager and
RWC manager and obtained some interesting results.

Corollary 1. ,e traditional Merton optimal investment
strategy is as follows:

π∗M(t) �
1

cYa(t)
Σ⊤( 􏼁

− 1Λ − g(t) Σ⊤( 􏼁
− 1Σ− 1Γ􏼔 􏼕 +(1, 0)

⊤
,

(41)

where a(t) and g(t) are as the ones in (27).

Proof. Let Ki � 0 and ki � 0 (i � 1, 2) in 'eorem 2; then,
we can obtain the conclusion.

Remark 4. More specifically, we can get the optimal in-
vestment strategy of Merton manager on IIB and stock as
follows:

π∗MI(t) �
1

cYa(t)

λp − σp − σsλs + σsσvρg(t)

σp

+ 1, (42)

π∗MS(t) �
1

cYa(t)
λs − σvρg(t)( 􏼁. (43)

We consider the situation that the manager has only
relative wealth concern, which means that the manager is
only concerned about another manager’s wealth. As men-
tioned before, the existing literature mainly focuses on the
optimal strategies of managers with relative wealth concern.
Using 'eorem 2, we get the optimal strategy of relative
wealth concern manager under inflation risk. Meanwhile, we
compare the difference between traditional Merton optimal
strategy with the case of RWC. 'en, we have the following
results.
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Corollary 2. ,e optimal portfolio strategy of the pension
manager who has relative wealth concern only is as follows:

π∗1(t) �
K1/c2( 􏼁 + 1/c1( 􏼁( 􏼁 Σ⊤( 􏼁

− 1Λ − g(t) Σ⊤( 􏼁
− 1Σ− 1Γ􏼔 􏼕

1 − K1K2( 􏼁Y1a(t)
+(1, 0)

⊤
,

π∗2(t) �
K2/c1( 􏼁 + 1/c2( 􏼁( 􏼁 Σ⊤( 􏼁

− 1Λ − g(t) Σ⊤( 􏼁
− 1Σ− 1Γ􏼔 􏼕

1 − K1K2( 􏼁Y2a(t)
+(1, 0)

⊤
.

(44)

Proof. Let ki � 0, i � 1, 2, in'eorem 2; then, we can get the
conclusion.

Remark 5. 'e optimal strategy with the RWCmanagers on
IIB and stock is as follows:

π∗1I(t) �
K1

c2
+

1
c1

􏼠 􏼡
λp − σp − σsλs + σsσvρg(t)

σp 1 − K1K2( 􏼁Y1a(t)
+ 1, (45)

π∗1S(t) �
K1

c2
+

1
c1

􏼠 􏼡
λs − σvρg(t)( 􏼁

1 − K1K2( 􏼁Y1a(t)
,

(46)

π∗2I(t) �
K2

c1
+

1
c2

􏼠 􏼡
λp − σp − σsλs + σsσvρg(t)􏼐 􏼑

σp 1 − K1K2( 􏼁Y2a(t)
+ 1,

(47)

π∗2S(t) �
K2

c1
+

1
c2

􏼠 􏼡
λs − σvρg(t)( 􏼁

1 − K1K2( 􏼁Y2a(t)
.

(48)

Comparing (46) and (48) with (43), we can find that
being relative wealth concern, both manager 1 and manager
2 will put more proportion of wealth on stock (long/short
position) than that of traditional Merton optimal strategy,
but the proportion on IIB is not clear. Moreover, as in
Corollary 1, relative wealth concern is also in some way
equivalent to changing Merton managers’ risk aversion
coefficient.

We further consider another special situation. 'at is,
the manager only cares about the risk attitude of the other
manager. In fact, through the comparison of the optimal
investment strategies of RPC, RWC manager with Merton
manager, we find that the optimal strategy between two
competing managers can be explained only as a change in
the risk aversion coefficient. In other words, relative per-
formance concern or relative wealth concern has distorted
the risk aversion coefficient of the Merton manager.
'erefore, we further consider the optimal investment
strategy for managers who simply consider the risk aversion
coefficient of the other manager, and we get the conclusion
as follows.

Corollary 3. ,e optimal strategy when the managers only
have risk aversion concern is given as follows:

π∗1(t) �
Σ⊤( 􏼁

− 1Λ − g(t) Σ⊤( 􏼁
− 1Σ− 1Γ]

c1 + k1 c2 − c1( 􏼁Y1a(t)( 􏼁
+(1, 0)

⊤
,

π∗2(t) �
Σ⊤( 􏼁

− 1Λ − g(t) Σ⊤( 􏼁
− 1Σ− 1Γ􏼔 􏼕

c2 + k2 c1 − c2( 􏼁( 􏼁Y2a(t)
+(1, 0)

⊤
.

(49)

Proof. Let Ki � 0, i � 1, 2, in'eorem 2, then we can get the
conclusion.

Remark 6. 'e optimal strategy with the RRAC managers
on IIB and stock is as follows:

π∗I1(t) �
λp − σp − σsλs + σsσvρg(t)

c1 + k1 c2 − c1( 􏼁( 􏼁Y1a(t)σp

+ 1,

π∗S1(t) �
λs − σvρg(t)

c1 + k1 c2 − c1( 􏼁( 􏼁Y1a(t)
,

π∗I2(t) �
λp − σp − σsλs + σsσvρg(t)

c2 + k2 c1 − c2( 􏼁( 􏼁Y2a(t)σp

+ 1,

π∗S2(t) �
λs − σvρg(t)

c2 + k2 c1 − c2( 􏼁( 􏼁Y2a(t)
.

(50)

3.3. A Special Case. In the rest of this section, we will
consider a special case that manager 1 is a normal pension
manager in the pension market, which means that he/she
cannot influence the market. 'e other manager (manager
2) is a representative pension manager, who has average risk
aversion and average wealth. Under this assumption, it
follows that K2 � k2 � 0(i.e., manager 2 will not compete
with manager 1, but manager 1 will try to compete with
manager 2). 'en, according to Corollary 2, the optimal
strategy of manager 1 while he/she is a RWC manager is as
follows:

π∗1(t) �
K1/c2( 􏼁 + 1/c1( 􏼁( 􏼁 Σ⊤( 􏼁

− 1Λ − g(t) Σ⊤( 􏼁
− 1Σ− 1Γ􏼔 􏼕

Y1a(t)
+(1, 0)

⊤
.

(51)

We compare this formula with the situation, in which
manager 1 is a RRACmanager.'en, according to Corollary
3, the optimal strategy is as follows:

π∗1(t) �
Σ⊤( 􏼁

− 1Λ − g(t) Σ⊤( 􏼁
− 1Σ− 1Γ]

c1 + k1 c2 − c1( 􏼁Y1a(t)( 􏼁
+(1, 0)

⊤
. (52)

Comparing (51) with (52), we can find they have similar
forms. Especially, if we let K1 � k1, which means that
manager 1 will take the same weight of RWC and RRAC in
optimal strategy. As previously analyzed, both relative risk
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aversion concern and relative wealth concern are essentially
a distortion of the manager’s risk aversion coefficient in
Merton’s optimization strategy. Comparing (51) and (52)
with traditional Merton optimal strategy (41), when man-
ager 1 is a RWC manager, then the optimal investment
strategy in (51) can be regarded as a Merton manager’s
optimal strategy with risk aversion coefficient
1/((K1/c2) + (1/c1)). Similarly, the optimal investment
strategy of manager 1 when he/she is a RRAC manager in
(52) can be regarded as a Merton manager’s optimal strategy
with risk aversion coefficient c1 + k1(c2 − c1). 'en, after
some simple calculations, we have the following inequalities:

1
K1/c2( 􏼁 + 1/c1( 􏼁

≤ c1 + k1 c2 − c1( 􏼁,

1
K1/c2( 􏼁 + 1/c1( 􏼁

≤ c1,

(53)

which means RRAC and Merton manager in fact have a
higher risk aversion coefficient than that of RWC manger,
but the relationship between the RRAC manager and
Merton manager depends on the relationship between c1
and c2.

4. Numerical Analysis

'is section illustrates several numerical examples to sup-
port our optimal investment strategy. To better understand
the influence of the parameters on the optimal investment
strategy of pension managers, we observe the ratio changes
in investment strategies for stocks and IIB as pension
managers become more competitive. Meanwhile, we also
compare and analyze the optimal strategies of different type
(RPC, RWC, RRAC, and Merton) manager in stock and IIB.
'e employed parameters of the model are based on the
following annualized benchmark parameter values pre-
sented in Table 1, which exactly is the same as in [18].

Figure 1 compares and analyzes optimal investment
strategies of manager 1 on stock as a RPC, RWC, RRAC, and
Merton manager. In the parameter setting, we assume that
manager 1 is more risk preference than manager 2. Under
this assumption, from the graph, we can see that when
manager 1 is an RRAC manager, his/her investment pro-
portion on stock is the lowest. 'is is mainly because
manager 1 is affected by manager 2 in risk appetite, in-
creasing his/her risk aversion coefficient, which leads to
reduce the investment proportion on stock. When manager
1 is a RWC manager, his/her relative investment share on
stock is the highest, which is in line with our previous
conclusion: the manager of RWC type is always more in-
clined to invest more shares on the stock than those of the
Merton type. 'e proportion of RPC-type is lower than that
of RWC-type, which is mainly affected by the risk aversion of
investor 2. Compared with the RWC manager, the

proportion of stock on RPCmanager is reduced, but it is still
larger than the Merton manager.

Figure 2 discusses the optimal investment strategy for
stock when manager 2 is a RPC, RWC, RRAC, and Merton
manager.We find that because manager 2 is more risk averse
than manager 1, it shows a somewhat opposite investment
tendency on the stock optimal investment strategy. 'e
classic Merton optimal investment strategy shows that
manager 2 will invest a lower proportion in stock assets,
while RRAC will make manager 2 invest a higher proportion
than Merton optimal strategy in stock because manager 2 is
subject to the lower risk aversion preference of manager 1,
which reduces his/her level of risk aversion. At the same
time, according to our previous conclusions, RWC investors
tend to invest in a higher proportion of assets in stocks than
the Merton manager. 'e RPC investor can be regarded as
an investment strategy that further reduces the risk aversion
based on the RWC manager.

Figures 3 and 4 describe the changes in the proportion of
RPC, RWC, RRAC, and Merton manager investing on IIB
over time. We find that different types of manager perform
the opposite on IIB as they do on stock. For example, in
Figure 3, the RWC manager has the lowest investment
proportion on IIB. Correspondingly, among the several types
of investors in Figure 1, he/she has adopted the highest
proportion of investment on stock. At the same time, contrary
to Figure 1, the investment proportion of several types of
managers on IIB is decreasing with respect to time horizon.

Figure 5 shows the influence of the preference of
manager 1 on relative wealth concern. From this figure, we
find that if a manager pays more attention on his relative
wealth than his own wealth, which means the greater the
value of K1 is, the easier the pension manager has a more
increasing tendency to invest stock. In Figure 5, for
K1 � 0.75, the investment strategy of manager 1 on stock is
far more aggressive than that K1 � 0.25. 'is shows that, in
order to exceed the competitor with the relative wealth, the
manager can easily adopt a more aggressive investment
strategy and increase the proportion of stock as time passes
by.

In Figure 6, we consider the impact of the emphasis for
RWC of manager 2 on his stock investment strategy. It
reflects that pension manager 2 has a similar strategy as
manager 1. 'at is, the higher the weight on relative wealth
is, easier it will be for pension managers to adopt aggressive
investment strategies on stock. However, comparing with
pension manager 1, pension manager 2 is more risk averse.
Although manager 2 also increases the position of stock with
the increase of the relative wealth weight, we can see that
manager 2 is much more moderate compared with Figure 5.
It means that the position of stock is much lower than that of
manager 1.

From Figures 5 and 6, the evolution of the Nash
equilibrium strategy over time can be seen clearly. As long
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as the original equilibrium of one party breaks and they
increase the proportion of their asset on stock, the other
manager will also follow-up to increase the proportion of
stock in order to achieve a new balance. Furthermore, we
see that manager 1 and manager 2 increasingly invest their
assets on stock during the entire investment period in order

to obtain better relative wealth. We can also find that the
magnitude of the increase for manager 2 is lower than that
of manager 1. It may be because manager 2 is more risk
averse than manager 1.

Figure 7 studies the situation of the optimal strategy of
manager 1 on stocks with respect to the RRAC coefficient k1.

Table 1: Model parameters.

c1 c2 K1 K2 k1 k2 r λP λS σP σS κ σV t T

2 3 0.25 0.25 0.25 0.25 0.02 0.015 0.6 0.2 0.5 0.2 0.1 0 10

t

RPC: K1 = K2 = k1 = k2 = 0.25
RWC: K1 = K2 = 0.25, k1 = k2 = 0
RRAC: K1 = K2 = 0, k1 = k2 = 0.25
Merton: K1 = K2 = k1 = k2 = 0

0.4

0.35

0.3

0.25

0.2

0.15

π s
1

0 1 2 3 4 5 6 7 8 9 10

Figure 1: Optimal investment strategy on stocks for manager 1 under
RPC, RRAC, RWC, and Merton optimal strategy versus time t.
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Figure 2: Optimal investment strategy on stocks for manager 2 under
RPC, RRAC, RWC, and Merton optimal strategy versus time t.
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Figure 3: Optimal investment strategy on IIB for manager 1 under
RPC, RRAC, RWC, and Merton optimal strategy versus time t.
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Figure 4: Optimal investment strategy on IIB for manager 2 under
RPC, RRAC, RWC, and Merton optimal strategy versus time t.
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Unlike the case of RWC, in the case of RRAC, the optimal
investment ratio of manager 1 on the stock decreases as
increasing k1. 'e main reason for this phenomenon is that
our manager 1, as a RRAC investor, is affected by the risk
aversion of manager 2 and raises his risk aversion level,
which leads to a reduction in the proportion of investment
on stock assets. However, the proportion of his investment
on stock is constantly raising under different RRAC coef-
ficient. For the same reason, Figure 8 shows that manager 2
gradually increases the proportion of investment on stock
assets as the RRAC coefficient increases.

5. Conclusion

'is article discusses the optimal investment strategy
adopted by a relative performance concern manager to
maximize the expected terminal utility under the risk of
inflation background. At the same time, the manager utility
function is assumed to be CARA utility, and the stock
process is following the Heston model. 'e opponent that
the RRAC manager compares with can be an ordinary
pension manager, or a “representative manager” in the
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K1 = 0.5
K1 = 0.75
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Figure 5: Optimal investment strategy on stocks for manager 1
under RWC versus time t.
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Figure 6: Optimal investment strategy on stocks for manager 2
under RWC versus time t.
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Figure 7: Optimal investment strategy on stocks for manager 1
under RRAC versus time t.
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Figure 8: Optimal investment strategy on stocks for manager 2
under RRAC versus time t.
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pension market. Unlike the previous literature, which only
focused on the manager’s relative wealth concern, we
further considered relative risk aversion concern and
reached a series of conclusions. Finally, numerical simu-
lation results are given based on the obtained conclusions.
Later, we can further focus on the situation where two
managers can invest in different stock assets (there is a
correlation, or further, a fuzzy correlation between the two
stocks). We can even consider the optimal investment
portfolio with other background risks, such as interest rate
risk and wage risk. In this case, we can draw more general
conclusions.
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