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As the emissions regulations have become more stringent, reducing NOX emissions is of great importance to the shipping
industry. Due to the price and emissions advantages of natural gas, the diesel-natural gas engines have become an attractive
solution for engine manufacturers. Firstly, in this paper, the NOX emissions prediction model of a large marine four-stroke dual-
fuel engine is built by using AVL-BOOST. In addition, the model is further calibrated to calculate the performance and emissions
of the engine. +en, the influences of boost pressure, compression ratio, and the timing of intake valve closing on engine
performance and emissions are analyzed. Finally, the response surface methodology is used to optimize the emissions and
performance to obtain the optimal setting parameters of the engine. +e results indicate that the response surface method is a
highly desirable optimization method, which can save a lot of repeated research. Compared with the results from manufactured
data, the power is increased by 0.55% and the BSFC, the NOX emissions, and the peak combustion pressure are decreased by
0.60%, 13.21%, and 1.51%, respectively, at low load.

1. Introduction

In the past few years, the increasing emissions of the marine
engine including CO2, NOX, and SOX account for 2-3% of
global emissions. In order to reduce the shipbuilding
industry’s impact on the environment, IMO built a lot of
laws and regulations to protect the environment. IMO
advocates EEDI (Energy Efficiency Design Index) and EEOI
(Energy Efficiency Operation Index) for improving the
energy efficiency of ships and reducing greenhouse gas
emissions from ships. In addition, DNV GL classification
society [1] demonstrates various implementation schemes to
meet Tier III requirements such as the EGR (Exhaust Gas
Recirculation) [2], SCR (Selective Catalytic Reduction), al-
ternative fuels [3], engine inner reconstruction, cylinder
direct injection [4], FEW (fuel water emulsion) [5], and
HAM (humid air Motor) [6]. +e EGR method can reduce
cylinder combustion temperatures and reduce NOX emis-
sions. +e SCR method is efficient but it is expensive. +e
FEW and HAM methods are difficult in business [7]. As an
alternative, fuel natural gas has the superiority of emissions

reduction [8]. Besides taking the market fluctuations and
fuel prices into account, natural gas has a more attractive
price advantage [9]. In order to meet the strict scheme,
international engine manufacturers, including MAN and
Wartsila, have turned their research focus on reducing gas
emissions. +e PFI (port fuel injection) method is mainly
used in the four-stroke dual engine such as Wartsila DF
(dual-fuel) andMANDiesel & Turbo DF series engines.+is
operation mode approaches to the Otto cycle and fewer
emissions due to the lower maximum combustion tem-
perature. +is method is simple and easy to implement and
can be used for the retrofitting of old diesel engines. In
another way, both the gas fuel injection and liquid fuel
injection are directly injected into a cylinder with different
injection timing which is similar to the diesel cycle. In the
early research, there were many methods to optimize the
engine performance such as the fuel injection timing [10],
the Miller cycle [11], and RCCI (reactivity controlled
compression ignition) [12]. However, due to the expensive
experiment of large marine engines, many optimizations
focused on the cylinder part such as the fuel injection, Miller
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cycle [13], and EGR [14] by CFD (Computational Fluid
Dynamics) tools. In the previous research work, Mavrelos
and +eotokatos [15] built a large marine two-stroke dual-
fuel engine model to optimize the engine performance via
parametric runs. Stoumpos et al. [16] optimized a four-
stroke dual fuel engine through a similar method. It is not a
better optimization method because it does not have the
combined effect of the parameters. +e RSM (Response
Surface Methodology) method is a collection of mathe-
matical and statistical methods, which can be used to model
and analyze problems to optimize the response affected by
multiple factors [17–19]. In this paper, the model of a marine
dual-fuel engine is built to calculate and predict the per-
formance and emissions. +e model combines the two-zone
model and predict model and has the ability to calculate and
predict emissions. According to references [13–16], the ef-
fects of three parameters of boost pressure, compression
ratio, and intake valve closing on performance and emis-
sions are considered. +e RSM method is used to optimize
the influence factors to the emissions and performance.

2. Dual-Fuel Engine Modelling and Calibration

2.1. Dual-Fuel Engine. In this paper, the type of the
researched engine is MAN 51/60 DF dual-fuel engine. +e
structure and principle of dual-fuel engine are similar to the
diesel engines, while fuel type is the variable and the control
system is complicated. In the gas mode, diesel is used as the
pilot fuel to ignite the natural gas, and the gas mode can be
smoothly switched to the diesel mode. When running in the
gas mode, the engine can fulfil the strict IMO Tier III NOX
limitations prescribed for Emissions Control Zones [20].+e
main parameters of the engine are reported in Table 1.

2.2. Modelling and Calibration. In this paper, the AVL-
BOOST software [21] is used to build the model and in-
vestigate the performance and emissions of the dual-fuel
engine. All measurements of this engine are from the official
workshop test report certified by CCS (China Classification
Society) and LR (Lloyd’s Register of Shipping). +e per-
formance and emissions experimental data and the MAP of
the turbocharger required for building and calibrating are
acquired from the test report and the project guide [20]. +e
steps to build the model are as follows. Initially, the modules
are selected from the model tree and arranged in a regular
location. +en, the pipe is used to connect the modules.
Next, the required data are needed to input into the models.
For example, the general engine structural data, the intake
and exhaust valve lift curve, the parameter of the heat
transfer model, and the heat release model are required in
the cylinder module. In order to simplify the modelling
process, in the first calibration, only the intake manifold and
the exhaust manifold are required to the bounder condition.
In addition, a turbocharger and an intercooler are added for
the second calibration. Finally, the parameters of the model
are fine-tuned to obtain higher accuracy. Figure 1 displays
the engine model in AVL-BOOST environment.

For the cylinder part, the Vibe heat release model is used
to calculate the heat release rate. +e Vibe heat release law is
simple and practical and has a wide range of applications
[21]. +e model is described as follows:
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+eWoschni heat transfer model is used to calculate the
heat loss from the cylinder wall. +e model converts
complex heat transfer processes into heat transfer coeffi-
cients, which makes calculations simply and accurate [22].
+e model is described as follows:
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+e calibration results show that the shape parameters of
combustion heat release are the same in the gas mode, the
combustion duration and ignition delay also change, and in
the fuel mode, and the shape parameters of heat release
change. Due to the small proportion of pilot diesel in the gas
mode (only 1% to 3%), the Hires et al. model is used to
predict the heat release [23]. +e model is described as
follows:
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+e two-zone combustion model is used to calculate the
burned zone (b) and unburned zone (u) temperature [24]
(see equation (4)). +e data of burned zone temperature is
used to calculate the NOX emissions. +e extended Zeldo-
vich mechanism is used to calculate NOX emissions, which
are calibrated for the 100%, 75%, 50%, and 25% Load. +e
temperature distribution in the cylinder cannot be calculated
by the two-zone model, and the NOX emissions only rep-
resent the trends for different simulation [16]. However, in
this study, the parameter adjustments are limited in the same
load, so the two-zone model can fulfil the research.

Table 1: Specification of dual-fuel engine (100% load).

Engine parameters Specifications
Cylinder number (-) 8
Cylinder diameter (mm) 510
Stroke (mm) 600
Compression ratio (-) 13.3
Power (kW) 8000
Speed (r·min− 1) 514
Fire order (-) 1-4-7-6-8-5-2-3
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Table 2 shows the errors between calculated and mea-
sured under different loads with all of the errors less than 3%.
Figure 2 displays the simulated and measured cylinder
pressure. According to the results of the errors, the accuracy
of the simulation model can be demonstrated, which can
meet the next research requirements.

3. RSM for Optimization

3.1. Analysis of Influencing Factors of Engine Performance and
Emissions. +is section focuses on the effects of engine
parameters on the performance and emissions. As shown in
Table 2, NOX emissions of 50% load is higher than other
loads. As a generator power engine, it is hard to work under
25% loads, so the 50% load is chosen for optimization. +e
engine parameters including boost pressure, compression
ratio, and intake valve closing timing changed from − 10% to
+10% of base parameters. In order to get the objective re-
sults, the same intake air temperature is maintained in all
simulations. Figure 3 displays the performance and emis-
sions based on the originated operation. As it shows, the
Power and BSFC are more affected by compression ratio, the
NOX emissions is more influenced by the boost pressure and
intake valve closing, and the peak combustion pressure
(Pmax) is more affected by compression ratio and intake valve
closing.

3.2. RSM Model. RSM is a collection of mathematical and
statistical methods, which is used to modelling, prediction,
and optimization. +e general expression of the mathe-
matical model is as follows [25]:

y � β0 + 􏽘
k

i�1
βixi + 􏽘 􏽘

i<j
βijxixj + 􏽘

k

i�1
βiix

2
i + ε, (5)

where y is the response, xi are numeric values of the factors,
terms β0, βi, βii, and βij are regression coefficients, and the ε
is error [26]. +e quadratic model is used to approximate
most engine systems [18]. +e difference between the pre-
dicted and actual values is called residuals. Figure 4 shows
the predicted and actual values plot for Power, BSFC, NOX,
and Pmax. +e predicted and the actual data are approxi-
mately acceptable, and there is no large deviation between
them.

+e significant test is used to ensure the adaptability and
accuracy of the model. +e evaluation parameters are shown
as follows.

R
2

� 1 −
SSresidual

SSresidual + SSmodel
􏼢 􏼣. (6)

R2: a fully fitted measure that reflects how well the re-
sponse surface meets the given data which is required greater
than 0.9.

R
2
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􏼢 􏼣.

(7)

Adjusted-R2: representing the degree of correlation
between all independent variables and dependent variables,
the regression effect is better when close to 1.
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Figure 1: 8L51/60DF engine model in the AVL-BOOST environment.
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PRESS
SSresidual + SSmodel

􏼢 􏼣. (8)

Predicted-R2: a measurement of the amount of variation
in new data explained by the model which is usually required
greater than 0.8, and the difference value with Adjusted R2

should be within 0.20. In the abovementioned equations, the
SS, PRESS, and df represent the sum of squares, sum of

squares of prediction errors, and degree of freedom, re-
spectively. +e ANOVA data of the Power, BSFC, NOX, and
Pmax are listed in Table 3. It is shown that the R2, Adjusted-
R2, and Predicted-R2 of all responses are greater than 0.85,
and the difference value of Adjusted-R2 and Predicted -R2

are less than 0.2. It indicates the response surface models
have good consistency and predictability for the test results.
+e p value of the quadratic model is less than 0.05, which
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Figure 3: Effects of the boost pressure, compression ratio, and intake valve closing on power, BSFC, NOX emissions, and peak combustion
pressure.

Table 2: Calculation error of the gas mode.

Engine load (%) 100 75 50 25
Mode Gas mode error (%)
Power (kW) 0.12 0.14 − 0.09 0.38
BSFC (g·k− 1W− 1h− 1) − 0.09 − 0.11 0.13 − 0.34
Peak comb. press. (bar) − 1.81 − 1.72 0.44 0.51
Intake manifold temp. (K) − 0.99 − 0.64 0.34 − 2.00
Intake manifold press. (bar) − 0.04 − 0.24 − 0.12 − 0.11
Intake manifold mass flow (kg·s− 1) − 0.12 − 0.22 0.16 0.67
Exhaust manifold temp. (K) − 1.98 0.27 0.10 2.79
Exhaust manifold press. (bar) 1.28 2.59 2.23 − 0.62
Exhaust manifold mass flow (kg s− 1) − 0.16 0.14 − 0.09 0.38
NOX emissions (g·k− 1W− 1h− 1) 1.59 − 2.43 − 1.96 1.98
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Figure 2: Comparison of simulation and experiment pressure.
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indicates that the model terms are significant. +e weight
value of boost pressure (x), compression ratio (y), and intake
valve closing (z) of all response models correspond to the
analysis results of Figure 3.

4. Results and Discussion

4.1. Evaluation of Power. +e developed quadratic model of
Power as fitted based on RSM in terms of the simulated
factors corresponded to

Power � 4011.94

+ 30.47 × x + 93.74 × y + 35.82 × z

− 2.10xy − 14.15 × xz − 0.1312 × yz

− 8.18x
2

− 10.01 × y
2

− 21.90 × z
2
,

(9)

where Power is the engine output power (kW), x is the boost
pressure (bar), y is the compression ratio (-), and the z is the
intake valve closing (degC). +e predicted values of Power
calculated by equation (9) are satisfactorily close to the
simulation values.

+e effects of linear factors boost pressure, compression
ratio, and intake valve closing are found to be highly sig-
nificant (all p value <0.0001) on the Power. All of the square

terms are also found to be significant with p value: x2 (0.0071),
y2 (0.0034), and z2 (0.0002) whichmeans there is a curved line
relationship between the variables and Power. x and z are also
found to have an interaction effect on Power with the p value:
xz (<0.0001). A negative sign means an antagonistic effect,
while a positive sign of the coefficient represents a synergistic
effect. +e regression statistics goodness of fit (R2), the
goodness of adjustment (Adjusted-R2), and the goodness of
prediction (Predicted-R2) for the response of Power are
99.98%, 99.93%, and 99.78%, respectively. All of the three
values indicate that the model fits the data very well.

+e effect of boost pressure, compression ratio, and
intake valve closing on the Power is depicted in Figure 5.+e
higher boost pressure and compression ratio and the later
intake valve closing could improve the Power [16]. Among
the abovementioned factors, compression ratio has the
greatest influence on the Power. +is is because higher
compression ratios make the higher temperatures and
pressures in the cylinder at the end of compression and
increase the charge energy in the cylinder [27].

4.2. Evaluation of BSFC. +e developed quadratic model of
BSFC as fitted based on RSM in terms of the simulated
factors corresponded to
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Figure 4: Comparison of predicted and actual parameters.

Table 3: ANOVA table for power, BSFC, NOX, and Pmax.

Source Power (kW) BSFC (g/kWh) NOX (g/kWh) Pmax (bar)

Type
Quadratic Quadratic Quadratic Quadratic

p value % p value % p value % p value %
Model <0.0001 <0.0001 0.0018 <0.0001
x <0.0001 19.04 <0.0001 19.43 0.0006 43.56 <0.0001 15.41
y <0.0001 58.58 <0.0001 58.61 0.1995 6.72 <0.0001 41.23
z <0.0001 22.39 <0.0001 21.96 0.0003 49.72 <0.0001 43.36
xy 0.0779 0.0211 0.6097 0.0004
xz <0.0001 0.0001 0.0012 0.0002
yz 0.8902 0.1534 0.3448 <0.0001
x2 0.0071 0.0099 0.1262 0.217
y2 0.0034 0.002 0.826 0.9557
z2 0.0002 0.0002 0.0261 0.0001
R2 0.9998 0.9997 0.9877 1.0000
Adj.-R2 0.9993 0.9992 0.9599 0.9999
Pred.-R2 0.9978 0.9972 0.8755 0.9995
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BSFC � 172.16

− 1.37 × x − 4.13 × y − 1.55 × z

+ 0.1548xy + 0.6334 × xz + 0.0739 × yz

+ 0.3494x
2

+ 0.5402 × y
2

+ 0.9777 × z
2
,

(10)

where BSFC is the brake-specific fuel consumption (g/kWh),
x is the boost pressure (bar), y is the compression ratio (-),
and z is the intake valve closing (degC).+e predicted values
of BSFC calculated by (10) are satisfactorily close to the
simulation values.

+e effects of linear factors boost pressure, compression
ratio, and intake valve closing are found to be highly sig-
nificant (all p value <0.0001) on the BSFC. All of the square
terms are also found to be significant with p value: x2
(0.0099), y2 (0.0020), and z2 (0.0002) which means there is a
curved-line relationship between the variables and BSFC.
+e xy and xz are also found to have an interaction effect on
BSFC with the p value: xy (0.0211) and xz (0.0001). A
negative sign means an antagonistic effect, while a positive
sign of the coefficient represents a synergistic effect. +e
regression statistics goodness of fit (R2), the goodness of
adjustment (Adjusted-R2), and the goodness of prediction
(Predicted-R2) for the response of BSFC are 99.97%, 99.92%,
and 99.72%, respectively. All of the three values indicate that
the model fits the data very well. +e effect of boost pressure,
compression ratio, and intake valve closing on the BSFC is
depicted in Figure 6. Similar to the Power, the compression
ratio has the greatest influence on BSFC [28].

4.3. Evaluation of NOX. +e developed quadratic model of
NOX emissions as fitted based on RSM in terms of the
simulated factors corresponded to

NOX � 5.23

+ 5.23 × x − 15.59 × y + 2.41 × z

− 17.80xy − 0.9689 × xz + 14.29 × yz

− 1.87x
2

− 0.7412 × y
2

+ 10.89 × z
2
,

(11)

where NOX is the engine NOX emissions (g/kWh), x is the
boost pressure (bar), y is the compression ratio (-), and the z

is the intake valve closing (degC). +e predicted values of
NOX calculated by (11) are satisfactorily close to the sim-
ulation values. +e effects of linear factors boost pressure
and intake valve closing are found to be highly significant (p
value� 0.0006 and 0.0003) on the NOX. +e z square terms
are also found to be significant with p value: z2 (0.0261),
which means there is a curved line relationship between the
variables and NOX. x and z are also found to have an in-
teraction effect on NOX with the p value: xz (0.0012). A
negative sign means an antagonistic effect, while a positive
sign of the coefficient represents a synergistic effect. +e
regression statistics goodness of fit (R2), the goodness of
adjustment (Adjusted-R2), and the goodness of prediction
(Predicted-R2) for the response of NOX are 98.77%, 95.99%,
and 87.55%, respectively. Compared with other response,
the regression effect of NOX is not good, which is also related
to the limitation of the two-zone model [29]. +e effect of
boost pressure, compression ratio, and intake valve closing
on the NOX are depicted in Figure 7.

4.4. Evaluation of Pmax. +e developed quadratic model of
Pmax, as fitted based on RSM in terms of the simulated
factors corresponded to

Pmax � 91.01

+ 3.74 × x + 10.00 × y + 10.52 × z

+ 0.6096xy + 0.7907 × xz + 1.32 × yz

− 0.1503x
2

− 0.0061 × y
2

− 1.54 × z
2
,

(12)

where Pmax is the engine peak combustion pressure (bar), x
is the boost pressure (bar), y is the compression ratio (-), and
the z is the intake valve closing (degC). +e predicted values
of Power calculated by (12) are satisfactorily close to the
simulation values.

+e effects of linear factors boost pressure and com-
pression ratio and intake valve closing are found to be highly
significant (all p value <0.0001) on the Pmax. +e z square
terms are also found to be significant with p value: z2
(0.0001), which means there is a curved line relationship
between the variables and Pmax. +e terms xy, xz, and yz are
also found to have an interaction effect on Pmax with the p
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Figure 5: Surface plot of power with input variables.
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value: xy (0.0004), xz (0.0002), and yz (<0.0001). A negative
sign means an antagonistic effect, while a positive sign of the
coefficient represents a synergistic effect. +e regression
statistics goodness of fit (R2), the goodness of adjustment
(Adjusted-R2), and the goodness of prediction (Predicted-
R2) for the response of Pmax are 1.0000%, 99.99%, and
99.95%, respectively. All of the three values indicate that the
model fits the data very well.

+e effect of boost pressure, compression ratio, and
intake valve closing on the Pmax is depicted in Figure 8. +e
higher boost pressure and compression ratio and the later

intake valve closing could improve the Pmax. Among the
abovementioned factors, compression ratio and intake valve
closing both have the greatest influence on the Pmax.

4.5. Comparison between RSM and Simulation Results. In
order to obtain the best parameter setting of low emissions
without sacrificing performance, the responses Power is
limited to not less than the original level. +e BSFC, NOX,
and Pmax are limited to not more than the original level. +e
best parameter settings boost pressure (+9.83%),
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Figure 6: Surface plot of BSFC with input variables.
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Figure 7: Surface plot of NOX with input variables.

11.97
12.35

12.73
13.11

13.49
13.87

14.25
14.63

1.88
1.962

2.044
2.126

2.208
2.29

60

70

80

90

100

110

120

P m
ax

 (b
ar

)

A: boostpress (b
ar)B: compratio (–)

(a)

P m
ax

 (b
ar

)

532
545

558
571

584

1.88
1.962

2.044
2.126

2.208
2.29

60

70

80

90

100

110

120

A: boostpress (b
ar)C: IVC (degC)

(b)

P m
ax

 (b
ar

)

B: compratio (–)C: IVC (degC) 532
545

558
571

584

11.97
12.35

12.73
13.11

13.49
13.87

14.25
14.63

60

70

80

90

100

110

120

(c)

Figure 8: Surface plot of Pmax with input variables.
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compression ratio (+2.42%), and intake valve closing
(− 6.04%), leading to the Power, BSFC, NOX, and Pmax
change separately 0.54%,− 0.59%, − 17.18%, and − 1.55% with
the RSM method. Due to the early timing of intake valve
closing and the charge of cylinder expansion and cooling, the
in-cylinder temperature is lower than the original cycle. +e
early intake valve closing timing needs the higher boost
pressure, so that there is enough air for combustion. +e
higher boost pressure causes more air to enter the cylinder,
which makes the fuel burn more thoroughly. +e higher
compression ratio causes higher in-cylinder temperature
during the compression phase which makes the combustion
temperature high. It has an opposite effect when the intake
valve closing advanced, so the optimized result shows that
the compression ratio increases less. Table 4 displays the
same parameter settings on the simulation results. +e
Power, BSFC, and Pmax simulated values are in good
agreement with the predicted values. Because the two-zone
model cannot well calculate the temperature distribution in
the cylinder, the calculated RSM value is different from the
simulated value when calculating NOX emissions [30]. Al-
though the model has deviations, it does not affect the trend
judgment of the influence of different parameters on NOX.
RSM optimization results are still convincing, which can
optimize different parameters at the same time. +e RSM
method transforms time-consuming model calculation into
mathematical calculation, which has certain advantages in
speed and accuracy. +e model based on the RSM method
can predict with adequate accuracy the engine performance
and emissions for the gas mode operation, which can be used
in the engine design process for optimizing the engine
settings.

5. Conclusion

+is study investigated the effects of boost pressure, com-
pression ratio, and intake valve closing on the performance
and emissions characteristics of the marine dual-fuel engine.
+e research is conducted by using a full-factorial experi-
mental design matrix. +e response surface method is used
to model, predict, and optimize the measured response
variables. +e conclusions of the analysis are as follows:

(1) +e results of ANOVA indicated that all the models
for Power, BSFC, NOX, and Pmax are found to be
significant under 99% confidence level. For the
power and BSFC, the compression ratio is the major
influence (about 58.58% and 58.61%). For the NOX,
the boost pressure and intake valve closing are the
major influence (about 43.56% and 49.72%). For the
Pmax, the compression ratio and intake valve closing
are the major influence (about 41.23% and 43.36%).

+e results of ANOVA are consistent with the single
change parameter analysis result.

(2) From the response surface plots, it can be concluded
that the effects of all factors on the responses are very
straightforward, and it is easy to find a single re-
sponse optimal value and limit the range of different
responses and perform multiobjective optimization.

(3) +e optimization results are very close to simulation
results which indicate the accuracy of the RSM
model from another perspective. +e Power, BSFC,
NOX, and Pmax change by 0.55%, − 0.60%, − 13.21%,
and − 1.5% separately when the parametric settings
with boost pressure, compression ratio, and intake
valve closing change by +9.83%, +2.42%, and
− 6.04%, separately.
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