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,is research endeavors the rheological features of Oldroyd-B fluid configured by infinite stretching disks in presence of velocity
and thermal slip features. Additionally, the effects of homogeneous and heterogeneous chemical features are also considered. ,e
transmuted flow equations are analytically solved with help of the homotopy analysis method (HAM). It is observed that the
homogeneous chemical reaction parameter enhances the concentration distribution, while the heterogeneous reaction reduces the
concentration profile.With implementations of temperature jump conditions, the heat transfer from the surfaces of both disks can
be effectively controlled. ,e impacts of various dimensionless parameters are elaborated through graphs and tables.

1. Introduction

,e fluid flow between stretching disks is the main moti-
vation of investigators in recent years due to its leading
applications in turbine engines, compression, mechanical
components transient loading, semiconductor
manufacturing, rotating wafers, injection modeling, power
transmission, viscometer, lubrications, radial diffusers,
geophysics, biomechanics, geothermal, oceanography,
thrust bearings, etc. ,e usage of microdevices has many
practical applications in different scientific areas such as
surgery, biotechnology, electronic cooling, microchannels,
heat pipes, and pumps. ,e heat and fluid flow character-
istics are different for both microdevices and macroscale
counterparts. ,is difference is constituted by velocity slip
and temperature jump. ,e velocity slip is an important

feature to analyze the behavior of microflows because no-slip
boundary conditions are not applicable to the fluid flow in
microelectro-mechanical-systems (MEMS). Also, no-slip
boundary conditions show the impractical behavior for the
cases such as corner flow, spreading of liquid on a solid
substrate, and extrusion of polymer melts from a capillary
tube. ,erefore, no-slip boundary condition is replaced by
slip boundary condition. Further, in the slip flow regime,
temperature jump is significantly used to determine the heat
transfer. Because of such applications of slip flow, many
interesting contributions have been made by investigators in
recent years. For instance, Zheng et al. [1] investigated the
stretched flow of viscous fluid in presence of velocity as well
as thermal slip features. ,e peristaltic transport of Carreau
fluid through a channel with various flow features with
application of velocity slip, temperature, and concentration
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jump has been inspected by Vajravelu et al. [2]. Khan et al.
[3] discussed the double diffusion slip flow of viscous fluid
over a vertical plate. Xiao et al. [4] presented a mathematical
model for fully developed slip flow in a microtube gas
problem. ,is interesting continuation contains the velocity
slip of order two and the assumptions of temperature jump
constraints. ,ey claimed an effective change up to 15% in
the local Nusselt number at room temperature. Similar slip
effects have been performed by Rooholghdos and Roohi [5]
for a nanoscale flat plate and a microscale cylinder. Another
useful contribution regarding the gas flow associated with
thermal slip conditions was examined by Le and Roohi [6].
,e peristaltic transport of viscous fluid in an asymmetric
channel in presence of velocity and temperature boundary
conditions has been discussed by Sinha et al. [7]. El-Aziz and
Afify [8] examined the heat transfer characteristics for slip
flow of Casson fluid subjected to the induced magnetic field.
Khan et al. [9] determined the analytical solution based on
the Galerkin technique for an upper convected flow of
Maxwell fluid in presence of slip features. Muhammad et al.
[10] examined the entropy generation aspects in the flow of
nanofluid under the action of the second-order slip. ,e
investigation for fractional Maxwell fluid in presence of slip
effects and porous medium was performed by Aman et al.
[11].

,e fluid flow encountered the heat transportation
process conveying a diverse engineering and industrial
significance in the metal cooling, petroleum engineering,
chemical processing, food industries, thermophysical sys-
tems, fiber spinning, manufacturing of metallic sheets, and
various nuclear processes. Besides this, the thermal per-
formance of disc-shaped bodies had engaged many scholars
because of its practical applications in the era of aeronautical
sciences. Many engineering and mechanical processes like
thermal power generation and heat transfer to automatic
control systems encountered the applications of these
phenomena. Due to such recurrent applications, several
researchers investigate the flow over or flow between two
disks. ,e initial contribution on this topic was led by
Kármán and Uber [12] by considering viscous fluid flow
between two infinite disks. ,is study was further extended
by many researchers with different flow features. Hayat et al.
[13] studied the heat transfer characteristics based on the
Fourier law of conduction in third-grade liquid configured
by two porous disks. Turkyilmazoglu [14] simulated the
numerical solution of hydromagnetic fluid flow near the
stagnation point subject to disk rotation. Heat transfer
analysis in the hydromagnetic fluid flow caused by a rotating
shrinking disk was also performed numerically by Tur-
kyilmazoglu [15]. Soid et al. [16] applied the numerical
technique to observe heat transfer phenomenon in viscous
fluid for a radially stretching disk. Yin et al. [17] examined
the flow thermal characteristics of nanofluid flow due to a
rotating disk. Turkyilmazoglu [18] numerically examined
the flow of Newtonian fluid through a vertically moving disk.
Hashmi et al. [19] analytically explored the mixed convec-
tion flow of Oldroyd-B fluid placed between isothermal
stretching disks. ,e idea of flow over stretching surfaces is
extremely useful and involved a large number of practical

applications in manufacturing processes [20–23]. ,e
spontaneous idea of flow due to a moving surface was
originally advised by Sakiadis [24, 25] which encouraged the
investigators to pay attention in this direction. ,e exact
solution for a stretching flow problem was successfully
provided by Wang [26]. Another investigation in this di-
rection has been suggested by Fang [27] which conferred the
viscous fluid flow induced due to a stretched disk. In another
attempt, Fang and Zhang [28] derived an exact solution
based on the mathematical formulation of Navier Stokes
equations modeled in cylindrical coordinates. In fact, such
type of flow between two infinite stretching disks arises due
to accelerated stretching velocity. Gorder et al. [29] dis-
cussed the axisymmetric flow between two infinite stretching
disks. Mohyud-Din and Khan [30] implemented effects of
nonlinear thermal radiation in flow of Casson fluid concedes
between two stretching disks. Slip flow in presence of
thermo-diffusion effects in flow of viscous fluid between
stretching disks was suggested by Rashidi and his coworkers
[31]. Analytical solution based on the homotopy analysis
method for flow of viscous fluid through a stretchable disk
has been depicted by Khan et al. [32]. In another investi-
gation, Khan et al. [33] examined the viscous dissipation and
joule heating effects on the axisymmetric flow of viscous
fluid between stretching disks. Khan et al. [34] studied the
entropy generation effects on flow of carbon nanotubes
between two rotating and stretching disks. ,e heat transfer
analysis based on Cattaneo–Christov heat flux expressions
for the flow of micropolar fluid induced by a nonlinear
stretching disk was focused by Doh et al. [35]. Renuka et al.
[36] computed an analysis solution for the flow of nanofluid,
additionally featuring entropy generation features induced
by a stretchable spinning disk.

In the recent decade, the study of combined heat and
mass transportation has inspired the scientists to examine
various aspects of the simultaneous phenomenon due to its
arising applications in the real-world problems like reacting
systems, cooling towers, marine engineering, distillation
columns, hydrometallurgical industry, crop damage via
freezing, and copse of trees. ,e collaboration amongst
homogeneous and heterogeneous responses happening on
some catalytic surfaces is correlated with the production and
employment of chemical species at diverse rates within the
fluid and on the catalytic surfaces. Merkin [37] developed a
very useful mathematical model to explore the relationship
between a surface-based reaction and homogeneous and
heterogeneous reactions. Another useful contribution is
from Kameswaran et al. [38] where flow of nanoparticles is
immersed in a porous medium with additional features of
binary chemical reactions. Rashidi et al. [31] address the
effects of homogeneous/heterogeneous on a peristaltic
transport in a channel. Hayat et al. [39] implemented the
effects of second-order velocity slip to examine the flow of
chemical reactive viscous nanofluid induced by a permeable
stretching surface.

In this present analysis, our focus is to evaluate the
driven transport of Oldroyd-B fluid considered within two
infinite stretching disks in presence of homogeneous and
heterogeneous reactions. Unlike typical studies, here the
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idea of second-order velocity slip and temperature jump
boundary conditions has been implemented. According to
the literature survey, no attempt has been made by re-
searchers for such analysis and is presented for the first time.
,e present flow problem is utilized in presence of applied
magnetic field effects which are useful in the industry of
metal-working, chemical reactors, plasmamaterials, modern
metallurgical, oil exploration, and extraction of geothermal
energy. ,e analytical solutions of such transmuted flow
equations are determined by employing the homotopy
analysis method [40–45]. ,e accuracy of this method is
successfully obtained and expressed in a tabular form. Fi-
nally, the important feature effective parameters are
graphically underlined and discussed for some velocity,
temperature, and concentration profiles with technical
relevance.

2. Mathematical Modeling

We consider a two-dimensional flow of Oldroyd-B due to
infinite stretching disks. Let flow be axisymmetric and
considered fluid be incompressible. ,e velocity slip and
temperature jump are also considered at the walls of

stretchable disks. A magnetic field with strength B0 is im-
posed in z-direction. ,e effects of electric and induced
magnetic fields are neglected. It is assumed that both lower
and upper disks are maintained at temperature T1 and T2,
respectively. Following Merkin and Chaudhary [46], the
mathematical expressions repressing the homogeneous-
heterogeneous reactions are expressed as

A + 2B⟶ 3B, rate � kcαβ
2
. (1)

,e isothermal, first-order reaction associated with a
catalyst surface is represented as

A⟶ B, rate � ksα, (2)

where α and β stand for concentrations of chemical species
and A, B, kc, and ks denote the rate constants. In the present
analysis, both reactions are treated as processes which are
isothermal. ,e analysis is performed by opting a cylindrical
coordinate (r, θ, z). All the involved expressions are inde-
pendent of θ due to axisymmetry. ,e constitutive partial
differential equations for Oldroyd-B fluid in presence of
chemical reactions are expressed as
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where u and w are the radial and axial components of
velocities, respectively, p is the pressure, ρ is the fluid
density, μ stands for dynamic viscosity of fluid, ] � (μ/ρ)

represents the kinematic viscosity, a and c are the
stretching constants, λ1′ is the constant of relaxation, λ2′ is
the retardation time, T is the temperature, K is the thermal
diffusivity, and DA, DB are the diffusion species coefficient
of A and B.

2.1. Slip Boundary Conditions. As it has been mentioned
earlier that the present flow problem is assisted with slip

boundary conditions. For the velocity profile, the derivation
of second-order velocity slip is based on the expansion of
Taylor series from the first-order Maxwell conditions which
are generally expressed as
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For the present analysis, we propose the following
second-order boundary conditions:
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where a and b represent the stretching rates, σu is the
tangential momentum accommodation coefficient, and τ1
denotes the molecular mean-free path. It is a well-estab-
lished fact that the molecular mean-free path is assumed
positive, i.e., ϵ1 > 0 and. ϵ2 < 0.

2.2. Temperature Jump Boundary Conditions. By using
Taylor series second-order expansion for Kn from the first

order, Smoluchowski jump condition second-order jump
conditions are proposed in [6] as follows:
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,e second-order temperature jump boundary condi-
tions associated with the governing equations are
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where σT is the thermal accommodation coefficient and ξ is
the specific heat ratio.,e other boundary conditions for the
flow problem are prescribed by

α � α0 at z � 0, DA

zα
zz

� ksα at z � d,

β � 0 at z � 0, DB

zβ
zz

� − ksα at z � d.

(13)

Introducing the similarity variables,
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(14)
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In view of the above similarity variables, equations
(4)–(10) yield

R
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where c is the wall stretching parameter, R stands for the
Reynolds number, Pr is the Prandtl number, ϵ1 is the
first-order velocity slip parameter, M is the Hartmann
number, ϵ2 is the second-order velocity slip parameter, ϵ3
is the first-order temperature jump parameter, ϵ4 stands
for temperature jump parameter of the second order, Sc
represents the Schmidt number, δ is the ratio of the
diffusion coefficient, Kn denotes the Knudsen number,
K1 is the strength of the homogeneous reaction, and K2 is
the strength of the heterogeneous reaction and is
defined as
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,e constant β1 has been eliminated from equation (15)
as the following procedure:
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in which λ1 � λ1′a is the Deborah number for relaxation time
and λ2 � λ2′a for the retardation time. It is pointed out here
that the diffusion coefficients of chemical species A and B are
not equal in general. So, we remarked that constants A and B

are of comparable size as a special case and subsequently DA

and DB are equal, i.e., δ � 1. Equations (16) and (17) lead to
the following relation:

φ + g � 1,
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2

+ Hφ′􏼐 􏼑 � 0,

φ(0) � 1,

φ′(1) � K2φ(1).

(26)

Following mathematical expressions are suggested for
the wall skin friction coefficient, local Nusselt number, and
local Sherwood number at both surfaces of disks:
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3. Solution Methodology

To start our simulations, first we introduce the following
initial guesses for velocity, temperature, and concentration
profiles:
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with auxiliary linear operators:
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,e mathematical expressions associated with the ze-
roth-order deformation problem are defined as
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z2θ(η, q)

zη2
− RPrH(η, q)

zθ(η, q)

zη
,

Nφ[φ(η; q)] �
z2φ(η, q)

zη2
− RSc K1φ(η, q)(1 − φ(η, q))

2
+ H(η, q)

zφ(η, q)

zη
􏼠 􏼡.

(31)
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,e equations for the m-th deformations of the problem
are

LH Hm(η) − χmHm− 1(η)􏼂 􏼃 � ZHR1m(η),

Lθ θm(η) − χmθm− 1(η)􏼂 􏼃 � ZθR2m(η),

Lφ φm(η) − χmφm− 1(η)􏼂 􏼃 � ZφR3m(η),

Hm(0) � Hm(1) � 0,

Hm
′ (0) � ϵ1Hm

″(0) + ϵ2H
′′′
m(0)􏼒 􏼓, Hm

′ (1) � − ϵ1Hm
″(1) + ϵ2H

′′′
m(1)􏼒 􏼓,

θm(0) � ϵ3θm
′ (0) + ϵ4θm

″ (0)( 􏼁,

θ(1) � − ϵ3θm
′ (1) + ϵ4θm

″ (1)( 􏼁,

φm(0) � 0,

φm
′ (1) � K2φm(1),

χm �
0, m≤ 1,

1, m> 0.
􏼨

(32)

,e series solution is computed iteratively for
m � 1, 2, 3, . . . using MATHEMATICA software.

4. Convergence of Solution

In order to obtain the comfortable accuracy of the homo-
topic solution, the significance of auxiliary parameters
cannot be denied.,is task has been completed by preparing
three h-curves, organized for velocity, temperature, and
concentration profiles for some dignified values of emerging
parameters. ,e admissible values of such parameter
guaranteed the convergence of the solution. ,e conver-
gence of the derived series solution is controlled by auxiliary
parameters ZH, Zθ, and Zφ. ,erefore, we have sketched the
Z-curves in Figure 1 to determine the admissible values of
ZH, Zθ, and Zφ. ,ese figures reveal that the convergence
region lies within the domain
− 0.8≤ ZH ≤ − 0.2, − 1.5≤ Zθ ≤ − 0.4, and − 1.4≤ Zφ ≤ − 0.7.

In Table 1, the computations have been performed to
illustrate the convergence of the obtained solution for
H″(0), θ′(0), and φ′(0) at various approximations. Close
observations to the table suggest that accuracy of the so-
lution has been obtained at the 15th order of approximations.

5. Physical Interpretations of Results

In this section, the effects of various arising parameters on
radial and vertical velocity components, pressure, temper-
ature, and concentration fields are discussed with relevant
physical significances.

5.1. Dimensionless Velocity and Pressure Profiles.
Figure 2(a) shows the impact of the Hartmann numberM on
the velocity vertical component by keeping other parameters
fixed. ,e interface of stronger magnetic force is more
valuable to decay the motion of fluid particles. A small
increment in velocity was observed first which decreases up
to a certain height. Physically, as M increases, the Lorentz

force boosts up which resists the flow of liquid due to which
velocity decay occurs. ,erefore, the presence of magnetic
field combats the transport phenomena and subsequently
diminishes the vertical velocity. ,e effects of wall stretching
parameter c on the velocity profile are shown in Figure 2(b).
,e vertical velocity component rises up with a variation of
c. However, a change in the radial component is not similar
to vertical components. Here, velocity increases at a specific
range and then gradually decreases. Figure 2(c) delineates
the significance of the Deborah number in terms of relax-
ation time λ1 on vertical and radial component of velocities.
A rise in the vertical component of velocity is observed for
larger values of the Deborah number; however, the radial
component of velocity decreases smoothly after a small
increment. ,e variation of material parameter λ2 on both
vertical and radial velocity components is illustrated in
Figure 2(d). ,e reverse trend is observed as compared to λ1
for both components. We observe from Figures 2(e) and 2(f )
that when we increase of first- and second-order velocity slip
constants (ϵ1, ϵ2), the vertical velocity component also in-
creases. Physically, with increase of velocity slip parameters,
the stretching velocity affects the movement of fluid so
velocity profiles get maximum values. Moreover, the am-
plitude of radial velocity increases up to a specific range due
to the difference of the stretching rate. Figures 2(g) and 2(h)
show that the skin friction coefficient increases with increase
of both slip parameters. It is scrutinized from Figure 2(i) that
pressure decreases in the whole domain by increasing values
of the Hartmann number M. It is found from Figure 2(j) that
decay in pressure is observed by increasing the velocity slip
parameter.

5.2. Dimensionless Temperature Profile. In Figures 3(a) and
3(b), the dimensionless temperature θ(η) is plotted to study
the impact of the velocity slip parameter. ,e temperature
decreases by increasing both velocity slip parameters. It is
elucidated from Figures 3(c) and 3(d) that the distribution of
temperature θ boosts up due to alteration of the first- and
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second-order temperature jump parameters. Physically, due
to slip effect, more flow penetrates through the thermal
boundary with an increase in temperature jump parameters.
Figure 3(e) accomplishes the significance of the Prandtl
number Pr on the temperature profile. ,e impression Pr
declined the temperature of the fluid effectively. ,e di-
mensionless number Pr depends upon thermal diffusivity
which decreases by increasing Pr. ,erefore, a decline in the
temperature field is observed. ,us, higher values of Pr
correspond to lower thermal diffusivity and subsequently
declining temperature distribution. Figure 3(f) exhibits the
dominant effect of the Hartmann number M on the tem-
perature profile. As expected, the temperature of fluid in-
creases by increasing M. Physically, the applied magnetic
field produces the Lorentz force, which creates a drag force
which has a tendency to enhance the temperature of the fluid
between both disks.

5.3. Dimensionless Concentration Profile. Taking into ac-
count of the concentration profile φ, the effects for various
parameters are encountered. First, we consider the variation
of the homogeneous reaction K1 on φ. An increase in K1
results in diminishing of the concentration profile
(Figure 4(a)). Figure 4(b) shows the consequence of het-
erogeneous reaction parameter K2 on the concentration
profile. ,e rate of mass transfer is enhanced by increasing
K2. Figure 4(c) shows that the rate of mass transfer solely
decreases by varying Schmidt number Sc. Sc has an inverse
relation with molecular diffusivity which decreases by in-
creasing Sc. ,e variation of different values of the strengths
of the homogeneous parameter K1 and heterogeneous re-
action parameter K2 on wall concentration on both disks is
shown in Figures 5 and 6, respectively. ,ese figures indicate
that values of φ′(0) and φ′(1) increase by increasing K1
while contradictory behavior is noted for K2.
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Figure 1: Z-curves for (a) ZH, (b) Zθ, and (c) Zφ with R � 2, c � 0.5, M � 0.3, K2 � 0.2,Pr � 0.5, λ1 � λ2 � 0.2, K1 � 0.5, Sc � 0.2, ϵ1 �

0.2, ϵ2 � 0.3, ϵ3 � 0.3, and ϵ4 � 0.5..

Table 1: ,e HAM convergence at different order of approximations.

Approximation H″(0) θ′(0) φ′(0)

07 6.89132 0.499908 0.214794
10 6.89123 0.499907 0.215223
13 6.89122 0.499906 0.215228
14 6.89121 0.499905 0.215215
15 6.89120 0.499905 0.215215
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Figure 2: (a)–(f) Graphs of vertical and radial components of velocity, (g)-(h) graphs of for skin friction, and (i)-(j) graphs of pressure for
different values of c � 0.5, ZH � − 0.5, Zθ � − 1.2, Zφ � − 1.0, M � 0.3, R � 5, ϵ1 � 0.5, ϵ2 � 0.2, λ1 � 0.2, and λ2 � 0.5. (a) Effects of the
Hartmann number, (b) effects of the stretching parameter, (c) effects of the Deborah number of relaxation, (d) effects of the Deborah
number of retardation, (e) effects of the first-order velocity slip parameter, (f ) effects of the second-order velocity slip parameter, (g)
influence of the first-order velocity slip parameter on the skin friction coefficient, (h) influence of the second-order velocity slip parameter
on the skin friction coefficient, (i) Influence of Hartmann number on pressure (j) Influence of first-order velocity slip parameter on pressure.
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Figure 3: Temperature profile with c � 0.5, ZH � − 0.5, Zθ � − 1.2, Zφ � − 1.0, M � 0.3, R � 5, ϵ1 � ϵ2 � 0.2, ϵ3 � 0.3, ϵ4 � 0.5, λ1 �

0.2, and λ2 � 0.5. (a) Influence of the first-order velocity slip parameter, (b) influence of the second-order velocity slip parameter, (c)
variation of the first-order temperature jump parameter, (d) variation of the second-order temperature jump parameter, (e) variation of the
Hartmann number, and (f) variation of the Prandtl number.
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Figure 4: Continued.
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5.4. Local Nusselt Number. Table 2 aims to elaborate the
iterative numerical variation in the local Nusselt number
against involved fluid parameters. We found that with the
increase in the velocity slip parameter, the temperature
profile at the lower disk increases. ,e heat transfer rate
decreases by increasing the Hartmann number M at the
lower disk. However, opposite values forM are observed for
the upper disk. Such observations are made as both disks are
stretched with different velocities.

6. Conclusions

In this work, a chemically reactive flow of Oldroyd-B fluid
subject to stretchable disks is considered in presence of
homogeneous and heterogeneous chemical reactions. ,e
homogeneous-heterogeneous reactions are considered in
the concentration equation. ,e physical features are vi-
sualized for various involved parameters graphically. ,e
important observations are summarized as follows:
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Figure 5: Influence of strength of the homogeneous reaction.
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Figure 4: Concentration distribution for c � 0.5, ZH � − 0.5, Zθ � − 1.2, Zφ � − 1.0, M � 0.3, R � 2, ϵ1 � ϵ2 � 0.2, ϵ3 � 0.3, ϵ4 � 0.5, λ1 � 0.2,

and λ2 � 0.2. (a) Influence of strength of the homogeneous reaction, (b) influence of strength of the heterogeneous reaction, and (c)
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(i) ,e velocity distribution increases with variation of
slip parameters while it decreases with the Deborah
number for retardation time.

(ii) ,e concentration distribution declines with in-
crement of the Schmidt number and the homoge-
neous reaction while effects of the heterogeneous
reaction parameter are quite reverse.

(iii) ,e temperature distribution increases by increas-
ing the Hartmann number while lower temperature
distribution is observed for larger values of the
Prandtl number.

(iv) ,e presence of first- and second-order velocity slip
results in an increment in the wall shear stress.
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