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With a view to realizing the fault diagnosis of rotatingmachinery effectively, an integrated health condition detection approach for
rotating machinery based on refined composite multivariate multiscale amplitude-aware permutation entropy (RCmvMAAPE),
max-relevance andmin-redundancy (mRmR), and whale optimization algorithm-based kernel extreme learningmachine (WOA-
KELM) is presented in this paper. 1e approach contains two crucial parts: health detection and fault recognition. In health
detection stage, multivariate amplitude-aware permutation entropy (mvAAPE) is proposed to detect whether there is a fault in
rotating machinery. Afterward, if it is detected that there is a fault, RCmvMAAPE is employed to extract the initial fault features
that represent the fault states from the multivariate vibration signals. Based on the multivariate expansion and multiscale
expansion of amplitude-aware permutation entropy, RCmvMAAPE enjoys the ability to effectively extract state information on
multiple scales from multichannel series, thereby overcoming the defect of information loss in traditional methods. 1en, mRmR
is adopted to screen the sensitive features so as to form sensitive feature vectors, which are input into the WOA-KELM classifier
for fault classification. Two typical rotating machinery cases are conducted to prove the effectiveness of the raised approach. 1e
experimental results demonstrate that mvAAPE shows excellent performance in fault detection and can effectively detect the fault
of rotating machinery. Meanwhile, the feature extraction method based on RCmvMAAPE and mRmR, as well as the classifier
based on WOA-KELM, shows superior performance in feature extraction and fault recognition, respectively. Compared with
other fault identification methods, the raised method enjoys better performance and the average fault recognition accuracy of the
two typical cases in this paper can all reach above 98%.

1. Introduction

As one of the widely applied mechanical equipment, rotating
machinery plays a vital role in industrial production.
Nevertheless, it usually operates in harsh environments such
as heavy load and high speed, which greatly increases the risk
of faults.1ese faults may result in equipment shutdown and
even casualties cause if they are not dealt with in time [1, 2].
Due to the particularity of industrial machinery, direct
disassembly overhaul will affect normal production. Hence,
research on nondisassembly health condition detection
technology of rotating machinery has always been a hotspot.
When encountering faults, some changes will occur in the

internal structure of rotating machinery, which affects the
frequency and amplitude of vibration signals. It indicates
that the vibration signals contain a wealth of information
related to the operating states of rotating machinery [3, 4].
Consequently, analyzing vibration signals is a feasible
method for fault diagnosis [5].

1e essences of vibration signals-based fault diagnosis
are the fault feature extraction and pattern recognition is-
sues. Among which, how to extract the features which can
represent the working states from the vibration signals is the
key in fault diagnosis. In the past decades, time-frequency
analysis is widely applied in feature extraction of vibration
signals. Many time-frequency analysis methods such as
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empirical mode decomposition (EMD) [6], local mean
decomposition (LMD) [7], wavelet packet transform (WPT)
[8], and variational mode decomposition (VMD) [9] are
applied to fault diagnosis of rotating machinery. Unfortu-
nately, the vibration signals of rotating machinery usually
exhibit nonlinear and nonstationary characteristics, which
cause the above methods to have some defects in practical
applications. For instance, WPTneeds to choose the suitable
wavelet kernel function [8] and VMD need to set the penalty
factor α and the number of intrinsic mode functions (IMFs)
K before processing the vibration signals [10], thereby the
self-adaptive capacity of them is poor. EMD enjoys good
adaptability, but it has defects such as mode mixing and end
effect. In addition, the application of time-frequency analysis
methods alone requires the operators to have a certain
knowledge reserve, which limits the efficiency and appli-
cation scope of these methods. 1erefore, developing an
efficient and accurate fault feature extraction tool is urgent
and necessary.

Recently, the entropy-based theory has been widely
adopted as feature extraction tool in the field of fault di-
agnosis due to its excellent performance in measuring the
nonlinear complexity of time series [11]. Entropy methods
that are commonly applied include approximate entropy
(AE) [12], sample entropy (SE) [13], fuzzy entropy (FE) [14],
and permutation entropy (PE) [15]. Among them, AE is
highly dependent on the data length and is prone to un-
defined entropy value. SE and FE are time-consuming, so
they are not suitable for processing signals with a large
amount of data, while PE is favored by many scholars be-
cause of its high computational efficiency and strong anti-
noise ability. Zhang et al. [16] adopted PE to detect bearing
faults and proposed a bearing fault diagnosis model based on
PE, ensemble empirical mode decomposition, and opti-
mized SVM. Kuai et al. [17] proposed a fault diagnosis
method for planetary gears based on PE, CEEMDAN, and
ANFIS.CEEMDAN is applied to decompose the vibration
signal of planetary gears, and PE is used to extract the
characteristics of the obtained IMFs. Finally, ANFIS is used
as a classifier to complete fault identification. Nevertheless,
PE also exists some inherent defects. For example, it loses
sight of the influence of amplitude information of signals on
the entropy value, which may lose the crucial information.
To address this problem, Azami et al. [18] presented the
amplitude-aware permutation entropy (AAPE), which is not
only sensitive to the frequency but also sensitive to the
amplitude of signals. 1e excellent performance of AAPE
has been verified through the simulation and biological
signals experiments.

However, AAPE also possesses some shortcomings that
cannot be ignored. Firstly, AAPE only measures the com-
plexity of themeasured signal on one temporal scale, thereby
cannot capture the long correlation of the signal [19]. To
address this question, based on multiscale entropy theory
[19], multiscale amplitude-aware permutation entropy
(MAAPE) was proposed to extract the fault information of
rolling bearings [20]. Unfortunately, MAAPE enjoys poor
stability, especially for short-time series. 1e defect will
cause MAPPE to produce unreliable entropy values on high

scales. Secondly, AAPE cannot extract fault features from
multichannel vibration signals, which limits its ability to
extract fault information for large equipment. For large
equipment, the long transmission path will reduce the vi-
bration impulse to a certain extent. In other words, the fault
information will be lost. 1erefore, the vibration signal
collected by single channel is usually not enough to provide
enough fault information to identify the fault type [21]. It is
necessary to improve AAPE so that it can extract fault
features from multichannel vibration signals synchronously.

With a view to solving the aforementioned defects, re-
fined composite multivariate multiscale amplitude-aware
permutation entropy (RCmvMAAPE) is presented in this
paper. Compared with the existing AAPE methods, the
proposed RCmvMAAPE possesses two main improvements.
Firstly, refined composite multiscale method is employed to
substitute the traditional multiscale method in MAAPE to
overcome the entropy instability problem [22]. In addition,
on the basis of multidimensional embedding reconstruction
theory [23], AAPE is expanded to multivariate AAPE
(mvAAPE) to measure the complexity of multichannel vi-
bration signals. Based on the above improvements,
RCmvMAAPE overcomes the abovementioned defects and
can stably measure the complexity of multichannel signals
on multiple scales. 1e performance of RCmvMAAPE is
comprehensively tested utilizing a variety of synthetic signals
in this paper, and the results indicate that RCmvMAAPE can
availably measure the complexity of multivariate signals. In
view of the advantages of RCmvMAAPE, this paper employs
it to extract the fault features of multichannel vibration
signals of rotating machinery.

As we know, the fault features distributed on multiple
scales extracted by RCmvMAAPE are a high-dimensional
feature vector. Among which, some sensitive features can
effectively represent the fault information, but some re-
dundant features not only affect the accuracy of subsequent
fault classification but also reduce the diagnosis efficiency.
For this reason, it is necessary to compress the high-di-
mensional fault features to improve the fault recognition
rate. 1e max-relevance and min-redundancy (mRmR) is a
typical features selection method based on spatial search,
which usesmutual information tomeasure the relevance and
redundancy of features [24]. 1e maximum correlation
indicates that the feature has a large correlation with the
sample category, that is, it can reflect the sample category
information to the greatest extent. Minimal redundancy
means that the correlation between features is the smallest,
that is, the redundancy of features is the smallest. 1is paper
adopts mRmR to select the sensitive features to form sen-
sitive features vectors that represent the fault state of rotating
machinery.

Afterward, different fault states of rotating machinery
will be identified according to the sensitive feature vectors,
namely, pattern recognition. At this stage, a classifier with
high computational efficiency and good generalization
performance is needed. Kernel extreme learning machine
(KELM) [25] is a machine learning method that combines
ELM and kernel function. While retaining the high calcu-
lation efficiency of ELM, the introduction of kernel function
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enables KELM to enjoy stronger generalization ability
compared with commonly used classifiers such as BP neural
network (BP) [26], support vector machine (SVM) [27], and
extreme learning machine (ELM) [28] when dealing with
linear inseparable problems; meanwhile, KELM is sensitive
to parameter setting due to the existence of kernel function.
To choose the best parameters, we need to employ a suitable
optimization algorithm to determine the best parameters of
KELM. Commonly used optimization algorithms consist of
particle swarm optimization (PSO) [29], ant colony opti-
mization (ACO) [30], and whale optimization algorithm
(WOA) [31]. Among which, WOA has attracted more and
more attention due to its uncomplicated operation, less
adjustment parameters, and strong capability to jump out of
local optimum. 1erefore, WOA is utilized to iteratively
select the optimal parameter of KELM to build a classifier
based on WOA-KELM. 1e low-dimensional sensitive
feature vectors are input intoWOA-KELM so as to judge the
fault type of the rotating machinery.

Consequently, a new integrated health detection method
for rotating machinery is proposed, which includes two
parts: fault detection and fault identification. In the fault
detection stage, mvAAPE is employed to extract the features
of the vibration signals to determine whether the rotating
machinery is malfunctioning. By introducing the key link of
fault detection, the unnecessary disassembly and mainte-
nance of the equipment can be avoided, and the damage to
the equipment can be reduced. In the fault identification
stage, the presented method based on RCmvMAAPE,
mRmR, and WOA-KELM is applied to diagnose different
fault types and fault severity of rotating machinery. Two
examples are conducted to prove the performance of the
proposed method and its superiority compared to other
existing methods.

1e rest of the paper is arranged as follows: in Sections 2
and 3, the basic theory of RCmvMAAPE and WOA-KELM
is introduced in detail; Section 4 displays the steps of the
proposed approach; two typical cases are adopted for ex-
periments to verify the excellent performance of the pro-
posed approach in Section 5; finally, this paper is
summarized in Section 6.

2. The Basic Theory of RCmvMAAPE

2.1. Multivariate Amplitude-Aware Permutation Entropy

2.1.1. AAPE. AAPE is a method based on PE, which is a
powerful tool for analyzing nonlinear time series. 1erefore,
it is necessary to introduce the concept of PE firstly. 1e
original theory of PE is reviewed in [15].

For a given time series X � xi , i � 1, 2, . . . , N, at any
time point t, them dimensional reconstruction vector can be
obtained as

X
m,d
t � xt, xt+d, . . . , xt+(m− 2)d, xt+(m− 1)d , t � 1, 2, . . . , N − (m − 1)d,

(1)

where m denotes the embedding dimension and d denotes
the time delay.

For each reconstruction vector, in accordance with the
size of the elements in ascending order, the permutation
πr0 ,r1 ,...,rm− 1

can be acquired, which fulfills that

xt+ j1− 1( )d, xt+ j2− 1( )d, . . . , xt+ jm− 1− 2( )d, xt+ jm − 1( )d , (2)

where j∗ represents the index of the column of each element
in the reconstructed component. Accordingly, there are m!
possible permutation patterns, of which the i-th permutation
is marked as πi.

1e relative frequency of πi can be expressed as

p πi(  �
g πi( 

N − (m − 1)d
, (3)

where g(πi) represents the function that counts the number
of πi in Xm,d

t . 1e value of g(πi) will increase by 1 if the
permutation order of the internal elements of Xm,d

t is πi.
Consequently, based on the calculation theorem of

Shannon entropy, PE can be defined as

PE(X, m, d) � − 
m!

i�1
p πi( lnp πi( . (4)

Nevertheless, PE enjoys some nonnegligible deficiencies,
which led to its inability in describing the irregularity of the
series. Firstly, from the theoretical point of view, the original
PE algorithm only considers the effect of the ordinal
structure of the time series on the entropy value, but the
amplitude information of each mapped element in the series
is ignored. Secondly, when there are elements with equal
amplitude, their influence on the entropy value cannot be
accurately estimated. In view of the aforementioned defects
of PE, Azami proposed AAPE to significantly enhance the
performance of PE [18]. 1e basic principle of the AAPE
algorithm is as follows:

Supposing that the starting value of p(πi) is 0, for the
reconstruction vector Xm,d

t , when the time t adds from 1 to
N − m+ 1, the value of p(πi) is updated whenever the
permutation is πi.

p
update πi(  � p πi(  +

α
m



m

k�1
xt+(k− 1)d


 +

1 − α
m − 1



d

k�2
xt+(k− 1)d − xt+(k− 2)d


⎛⎝ ⎞⎠, (5)

where α ∈ [0, 1] denotes the adjustment coefficient which is
utilized to adjust the weight of the time series amplitude

average and the deviation between the amplitudes. 1us, the
probability of p(πi) is
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p πi(  �
p
update πi( 


N− m+1
t�1 (α/m) 

m
k�1 xt+(k− 1)d


 +(1 − α/m − 1) 

m
k�2 xt+(k− 1)d − xt+(k− 2)d


 

. (6)

1e AAPE of time series x can be defined as

AAPE(X, m, d, α) � − 
m!

i�1
p πi( lnp πi( . (7)

2.1.2. mvAAPE. To describe the complexity of multichannel
time series, it is necessary to extend the AAPE to

multivariate analysis so as to put forward multivariate
amplitude-aware permutation entropy (mvAAPE). 1e
definition of mvAAPE is described as follows:

(1) Given a p-channel series X � xc,1, xc,2, . . . , xc,i,

. . . , xc,N}, c � 1, 2, . . . , p, phase space reconstruction is
performed as follows:

Z
m,d
t � xc,t, xc,t+d, . . . , xc,t+(m− 2)d, xc,t+(m− 1)d , t � 1, 2, . . . , N − (m − 1)d. (8)

(2) Arrange the reconstruction time series Zm,d
i in as-

cending order as [xc,i+(j1− 1)d≤xc,i+(j2− 1)d≤ · · · ≤
xc,i+(j m− 1 − 1)d≤xc,i+(jm − 1)d]. At the same time,
there are m! potential permutations πi, 1≤ i≤m!.

(3) For c-th channel, supposing that the starting value of
p(πc,i) is 0, for the reconstruction series Zm,d

i , when t

gradually increases from 1 to N − m+ 1, the value of
p(πc,i) will be renewed as πc,i appears.

p
update πc,i  � p πc,i  +

α
m



m

k�1
xc,t+(k− 1)d


⎛⎝

+
1 − α
m − 1



d

k�2
xc,t+(k− 1)d − xc,t+(k− 2)d


⎞⎠.

(9)

(4) Calculate the relative frequency of i-th permutation
in c-th channel πc,i as follows:

p πc,i  �
p
update πc,i 


p
c�1 

N− m+1
t�1 (α/m) 

m
k�1 xc,t+(k− 1)d


 +(1 − α/m − 1) 

m
k�2 xc,t+(k− 1)d − xc,t+(k− 2)d


 

. (10)

For p-channel time series, p(πc,i) satisfies


p
c�1 

m!
j�1p(πc,i) � 1.

(5) 1e probability of the i-th pattern πi in p-channel
time series X can be calculated as follows:

p πi(  � 

p

c�1
p πc,i . (11)

(6) Based on the definition of Shannon entropy,
mvAAPE is expressed as

mvAAPE(X, m, α, d) � − 
m!

i�1
p πi( lnp πi( , (12)

where mvAAPE actually extends the application of AAPE
from univariate analysis to multivariate analysis. However,
mvAAPE only analyzes the multichannel time series on one
temporal scale, while the measured time series often con-
tains information on multiple scales. 1erefore, the key
information will lose if only a single scale analysis is con-
ducted. In response to this problem, mvMAAPE that is able
to analyze time series on multiple scales is proposed.

2.2. mvMAAPE. 1e principle of mvMAAPE is as follows:

(1) For p-channel series U � uk,1, uk,2, . . . , uk,i, . . . ,

uk,L}, k � 1, 2, . . . , p, the multivariate coarse-grained
time series at scale factor τ is defined as follows:

y
τ
k,j �

1
τ



jτ

b�(j− 1)τ+1
uk,i, 1≤ j≤

L

τ
, 1≤ k≤p. (13)

When τ > 1, the multivariate series is divided into
coarse-grained time series of length [L/τ].

(2) Calculate the mvAAPE of τ multivariate coarse-
grained time series and the result is as follows:

mvMAAPE(U, m, α, d, τ) � mvAAPE y
τ
k,j, m, α, d ,

(14)

where mvMAAPE overcomes the shortcomings that PE does
not consider the amplitude information; meanwhile, the
combination with multivariate analysis improves the utili-
zation of multichannel information, which is essentially an
assessment of the irregularity of multichannel data. 1e
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evaluation principle can be summarized into two aspects: (1)
if the entropy value of the multivariate series X is greater
than that of series Y on most scale factors, it can be shown
that X is more random than Y and more prone to dynamic
mutations. (2) If the entropy value of X decreases signifi-
cantly with the increase of the scale factor, it indicates that
the information included in X mainly appears on a smaller
scale factor, such as a randomwhite noise signal. mvMAAPE
considers the interrelationship of each time series in mul-
tichannel data and comprehensively evaluates each di-
mension of multichannel series. 1erefore, mvMAAPE can
effectively detect the mutation change of multichannel
series.

2.3. Refined Composite Multivariate Multiscale Amplitude-
Aware Permutation Entropy

2.3.1. Basic Principle. 1e mvMAAPE realizes multivariate
and multiscale analysis by extending the mvAAPE method
to multiple scales, so as to obtain more useful information.
However, the coarse-graining method adopted by
mvMAAPE has serious defects, which leads to incomplete
information analysis. For instance, the calculation of
mvMAAPE only considers the coarse-graining series
starting from uk,1 and ignores the coarse-graining series such
as uk,2 at scale factor τ. However, the remaining τ − 1 time
series also contain the key information, and the direct ne-
glect will lead to insufficient analysis and affect the analysis
effect. 1erefore, the refined composite multiscale coarse-
graining approach is employed to achieve accurate and
sufficient analysis. 1e implementation principle of the
coarse-graining method is presented in Figure 1.

1eDetailed Procedures of RCmvMAAPE are Described
as follows:

(1) For p-channel series U � uk,1, uk,2, . . . , uk,i, . . . ,

uk,L}, k � 1, 2, . . . , p, the coarse-grained multivariate
time series are computed on a given scale factor τ
and the elements of the a-th coarse-grained time
series Yτ

a � yτ
k,i,1, yτ

k,i,2, . . .  are computed by

y
τ
k,i,a �

1
τ



a+iτ− 1

b�a+(i− 1)τ
uk,b, (15)

where 1≤ i≤ L/τ, 1≤ k≤p, 1≤ a≤ τ. For the scale
factor τ, there will be τ diverse coarse-grained
multivariate time series.

(2) For each coarse-grained multivariate series, the
marginal relative frequencies p(πj) are computed.
1en, the average relative frequencies p(πj) can be
acquired by

p πj  �
1
τ



τ

a�1
pa πj . (16)

(3) 1e RCmvMAAPE of original multivariate time
series is computed as follows:

RCmvMAAPE(U, m, α, d, τ) � − 
m!

j�1
p πj  lnp πj .

(17)

In the RCmvMAAPE approach, there are three key
parameters, namely, the m, α, and d. For the embedding
dimension m, if the value is too small, the reconstructed
vector includes too few states and the algorithm will lose its
validity and significance, whereas if m is too large, the phase
space reconstruction will homogenize the time series, which
not only increases the amount of calculation but also cannot
reflect the slight change of the time series. According to
references [18, 29], the AAPE for univariate analysis usually
sets the embedding dimension to 3–7, and the optimal
parameters of the univariate analysis method and multi-
variate analysis are generally consistent, so this article sets
the embedding dimension to m� 5. 1e adjustment coef-
ficient α is usually set to 0.5 according to reference [18], so
this article sets α � 0.5. Time delay has little effect on the
performance of the algorithm, so in this article, d� 1.

2.3.2. Performance Analysis. To validate the performance of
RCmvMAAPE, other multivariate analysis approaches are
compared with it to reflect its advantages in extracting the
complexity of multichannel signals. White Gaussian noise
(WGN) and 1/f noise are two signals that are widely adopted
to evaluate the univariate and multivariate analysis method.
Compared with WGN signals, the power spectrum of 1/f
noise is more complicated and includes more mode infor-
mation. 1e generation of WGN is randomly distributed, so
the probability of its state transition matrix appearing is
approximately equal. On the contrary, 1/f noise is a long-
range correlation signal, and the irregularity of 1/f noise is
lower than that of WGN. Consequently, the complexity of 1/
f noise is higher than that of WGN. Considering the uni-
versality, WGN and 1/f noise are employed to create a
multichannel signal with three different channels to analyze
RCmvMAAPE, mvMAAPE, RCmvMSE, and RCmvMPE.
1ey are (a) three channel WGN; (b) three channel 1/f noise;
(c) two channelWGN and one channel 1/f noise; and (d) two
channel 1/f noise and one channel WGN. 1ere are 25
groups (length 2048) of the synthesized signals in each case.

For sake of verifying the advantages of the proposed
approach in measuring the complexity of multivariate sig-
nals, RCmvMAAPE, mvMAAPE, RCmvMPE, and
RCmvMSE of four kinds of multivariate synthetic signals are
calculated. 1e mean standard deviation diagrams of the
four methods are shown in Figure 2. Compared with
mvMAAPE, RCmvMPE, and RCmvMSE, the standard de-
viation of RCmvMAAPE is significantly smaller than
mvMAAPE and RCmvMSE, which indicates that the sta-
bility and robustness of RCmvMAAPE are stronger than
mvMAAPE and RCmvMSE. It can be clearly seen from the
figure that RCmvMAAPE can effectively separate four
multivariate synthetic signals, proving that RCmvMAAPE
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has better separation performance. What’s more, the fluc-
tuation of the RCmvMPE curve is greater than that of
RCmvMAAPE, especially the fluctuation of (d) is obvious.
1is phenomenon shows that RCmvMAAPE is more stable
when analyzing multivariate data and is not prone to large
errors. In addition, when the scale factor is 14–20,
RCmvMSE cannot effectively distinguish between (b) and
(d). Similarly, mvMAAPE cannot effectively distinguish (a)
and (c); meanwhile, the entropy value of four multivariate
signals has extremely large fluctuation, which also verifies
that the traditional coarse-graining method is prone to large
errors. In a word, compared with the other three multi-
variate analysis methods, RCmvMAAPE enjoys better
separation performance and robustness, thereby can better
characterize the complexity of multivariate signals.

3. The Principle of the WOA-KELM

3.1. Kernel Extreme Learning Machine. Kernel extreme
learning machine is a training algorithm based on single-
hidden layer feedforward neural network. It does not require
to repeatedly adjusting the hidden layer parameters [28]. In
addition, the conventional single-hidden layer feedforward
neural network parameter training problem is transformed
into solving linear equations, and the smallest norm least-
squares solution obtained is used as the network output

weight. 1e whole training process is completed once.
1erefore, the training speed is greatly improved and the
generalization performance is better.

For input and output data, the goal of ELM is to si-
multaneously minimize training error and output weight
norm, which can be expressed as follows:

min β · h xi(  − ti

����
����
2
,

min‖β‖,

⎧⎨

⎩ (18)

where β is the connection weight vector between the hidden
layer and the output layer and h(xi) is the kernel mapping of
the hidden layer.

1e optimization problem of equation (18) is simplified
to the following constraint problem:

min L �
1
2
‖β‖

2
+ C

1
2



N

i�1
ξ2i ,

h xi( β � ti − ξi, i � 1, 2, . . . , N,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

where ξi stands for training error and C denotes the penalty
factor. Using the theory of orthogonal projection, the
training process of ELM is equivalent to solving the fol-
lowing dual optimization problems:

x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 x1,2i–1 x1,2i

x2,1 x2,2 x2,3 x2,4 x2,5 x2,6

xp,1 xp,2 xp,3 xp,4 xp,5 xp,2i–1 xp,2ixp,6

x2,2i–1 x2,2i

y1,1
(1) y1,2

(1) y1,3
(1)

y2,1
(1) y2,2

(1) y2,3
(1)

yp,1
(1) yp,2

(1) yp,3
(1)

y1,i = (x1,2i–1 + x1,2i)/2(1)

y2,i = (x2,2i–1 + x2,2i)/2(1)

yp,i = (xp,2i,–1 + xp,2i)/2(1)

(a)

x1,1 x1,2 x1,3 x1,4 x1,5 x1,2i x1,2i + 1

xp,1 xp,2 xp,3 xp,4 xp,5 xp,2i xp,2i + 1

x2,1 x2,2 x2,3 x2,4 x2,5 x2,2i x2,2i + 1

y1,1
(2) y1,2

(2)

x2,1
(2) y2,2

(2)

yp,1
(2) yp,2

(2)

y1,i = (x1,2i + x1,2i + 1)/2(2)

y2,i = (x2,2i + x2,2i + 1)/2(2)

yp,i = (xp,2i + xp,2i + 1)/2(2)

(b)

Figure 1: Illustration of refined composite coarse-grained approach for multivariate data with scale factor 2. (a) First coarse-grained time
series; (b) second coarse-grained time series.
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LELM �
1
2
‖β‖

2
+ C

1
2



N

i�1
ξ2i − 

N

i�1
αi h xi( β − ti + ξi( , (20)

where αi is the Lagrangian operator, and the derivative of it is

zLELM

zβ
� 0⟹ β �  αi h xi( ( 

T
� H

Tα,

(21)

zLELM

zξi

� 0⟹ αiξi � 0, (22)

zLELM

zαi

� 0⟹ h xi( β − ti + ξi � 0, (23)

where α � [αi, . . . , αN]T.
Substituting formulas (20) and (21) into formula (22),

the formula (23) can be equivalently written as follows:
I

C
+ HHT

 α � T. (24)

1e corresponding output function of ELM is described
as follows:

f(x) � h(x)β � h(x)H
T I

C
+ HHT

 
− 1

T. (25)

It can be seen from the formula (25) that the parameter
I/C is added to the main diagonal in the unit diagonal HHT,
thereby its eigenvalue cannot be 0. 1en, the weight vector is
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Figure 2: RCmvMAAPE, RCmvMPE, RCmvMSE, and mvMAAPE of multivariate synthetic signals. (a) RCmvMAAPE; (b) RCmvMPE; (c)
RCmvMSE; and (d) mvMAAPE.
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computed. ELM is more stable and has strong generalization
ability in this way.

1e kernel function is introduced into ELM and the
KELM algorithm is proposed. Mercer condition is applied to
define the kernel function matrix of KELM as follows:

Ω � HH
T
,

Ωi,j � h xi(  × h xj  � K xi, xj ,
(26)

where K(xi, xj) denotes the kernel function and the ele-
ments of the kernel matrix Ωi,j in row i and column j,
i, j ∈ (1, 2, . . . , N).

1erefore, it can be concluded that the actual output of
the KELM model is

f(x) � h(x)H
Tπ

I

C
+ HH

T
 

− 1
T �

K x, x1( 

· · ·

K x, xN( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

I

C
+Ω 

− 1
T.

(27)

3.2. Whale Optimization Algorithm. Whale optimization
algorithm (WOA) is a novel heuristic search optimization
algorithm [31]. Its advantages lie in its uncomplicated op-
eration, less adjustment parameters, and strong capability to
jump out of local optimum. 1e algorithm mainly imitates
three behaviors of humpback whale, including encircling
prey, hunting prey, and searching prey.

WOA supposes that the current best candidate solution
is the target quarry or close to the best. After defining the
best search agent, other search agents will therefore try to
renew their best-located search agents. 1e update formula
of WOA position is as follows:

D � CX
∗
(t) − X(t)


,

X(t + 1) � X
∗
(t) − A D,

(28)

where A and C are the coefficients; t is the number of it-
erations; X(t) represents the current position vector of the
whale; and X∗(t) denotes the best whale position vector so
far. 1e mathematical expressions of A and C are as follows:

A � 2ar1 − a,

C � 2 · r2,

a � 2 1 −
t

Tmax
 ,

(29)

where Tmax represents the maximum number of iterations
and r1 and r2 are random numbers in the interval [0, 1]. 1e
value of a decreases linearly from 2 to 0, and t is the number
of iterations.

When hunting, humpback whales not only swim to the
prey in spiral shape but also contract the encircling circle.
1e position of whales is updated with 50% probability
between the contraction mechanism and the spiral model.

X(t + 1) �
X
∗
(t) − A · D if p< 0.5,

D′ · e
bl

· cos(2πl) + X
∗
(t) if p≥ 0.5,

⎧⎨

⎩

(30)

where D′ � |X∗(t) − X(t)| denotes the distance between the
whale and its prey; the constant b is used to define the spiral
shape; and l is a random number in [− 1, 1].

When the humpback whale attacks the prey, by linearly
reducing the value of parameter a, the fluctuation range of A
is continuously decreased and the value of A in the interval
[–a, a] decreases continuously as a decreases. When the
value of A is in the interval [–1, 1], the solution position of
the whale’s next search agent will be any position between
the current position and the prey position. By simulating the
behavior of the humpback whale attacking the prey, the
development capability of local search is shown. When the
random value of A is greater than 1 or less than − 1, the
humpback whale search agent moves away from the prey to
search, thereby finding a more suitable prey, which shows
the exploration function of the whale optimization algo-
rithm in the global search.

3.3. Whale Optimization Algorithm-Based Kernel Extreme
Learning Machine (WOA-KELM). Considering that the
performance of the KELM is easily affected by penalty
factors and kernel parameters, a new method for optimizing
the kernel extreme learning machine by whale optimization
algorithm is raised. 1e optimization procedure is presented
in Figure 3, and the detailed step is as follows:

(1) Input training set and testing set samples and nor-
malize the two sample sets, respectively.

(2) Initialize the position of whale population and set the
population number to N. 1e maximum iteration
number is Tmax.

(3) Initialize the parameters of KELM and select the
corresponding fitness function.

(4) 1e fitness of each whale is computed and sorted
according to the fitness value, so as to continuously
update the whale population.

(5) When the fitness value meets the conditions or
reaches the maximum number of iterations, the
optimization process is terminated.

(6) According to the optimal penalty factor and kernel
function parameter, the KELM fault diagnosis model
is established.
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(7) 1e trained KELM health condition detection model
is employed to output the fault type and severity of
the testing data.

4. The Proposed Approach

In this study, considering that RCmvMAAPE possesses
excellent performance of processing multivariate time series,
it is used to extract the fault features of rotating machinery.
Combining mRmR and WOA-KELM, an integrated health
condition detection method for rotating machinery is
proposed. 1e method includes fault detection and health
condition recognition.

4.1. Fault Detection. 1e ability of mvAAPE to measure the
complexity of multivariate nonlinear data and the proba-
bility of dynamic mutation is the basis for fault diagnosis.
Since mvAAPE is proposed based on mvPE, it inherits the
ability of mvPE to detect failures. 1e inconsistent entropy
values of mvAAPE corresponding to different states are a
prerequisite for fault screening.

1e mvAAPE values of the rotating machinery vibration
signals in all fault states are greater than that in the normal
state, and the difference is obvious. 1erefore, mvAAPE can

be applied for fault screening. In order to determine the
screening criteria intuitively, a threshold based on
mvMAAPE is set. When the mvMAAPE value of the vi-
bration signal of rotating machinery in an unknown state is
less than the threshold, the state is determined to be healthy.
Conversely, if it is greater than the threshold, it is deter-
mined that there is a fault.

4.2. Health Condition Recognition. After fault detection, if it
is detected that there is a fault in rotating machinery, further
analysis is required to judge the type and severity of the fault.
Firstly, RCmvMAAPE is employed to acquire the nonlinear
complex information of fault multichannel vibration signals
to form the initial fault feature vectors. However, the
RCmvMAAPE values at all scales may include redundant
information, so it is necessary to compress the feature di-
mensions to obtain sensitive feature vectors. 1e mRmR is a
dimensionality reduction algorithm for nonlinear data,
which uses mutual information to measure the correlation
and redundancy of features, so as to realize the importance
ranking of features. 1erefore, the mRmR is utilized to
screen the initial fault features to obtain sensitive feature
vectors. Finally, the whale optimization algorithm is utilized
to optimize the kernel function parameter and penalty factor
of KELM to construct the optimal classification model and
accomplish the health condition recognition of rotating
machinery.

1e flowchart of the raised approach is shown in Figure 4
and the implementation procedures of the integrated health
condition detection method are listed as follows:

(1) Multichannel vibration signals of rotatingmachinery
under diverse working conditions are collected.

(2) Divide the collected vibration data into multiple
nonoverlapping samples of length N.

(3) Compute the mvAAPE value of the vibration signal
and establish a threshold based on mvAAPE to
determine the health condition of the rotating ma-
chinery. If the mvAAPE value of the vibration signal
to be detected is less than the threshold value, it
indicates that the rotating machinery is healthy. 1e
output is normal and the diagnosis terminates.
Otherwise, the next step is conducted to judge the
fault type and severity of the rotating machinery.

(4) RCmvMAAPE is utilized to extract fault information
from fault vibration signals of rotating machinery to
generate the initial fault features.

(5) 1e mRmR method is employed to screen the
sensitive feature from the initial fault feature to form
the sensitive feature vectors.

(6) 1e training set samples are utilized to train the
WOA-KELM-based multiclassifier.

(7) 1e testing set samples are fed to the trained mul-
ticlassifier for prediction. 1e fault type and severity
are recognized in line with the output of WOA-
KELM multifault classifier.

Input training samples and testing samples

Initialize the position of whale, set the number of iterations and
population size

Initialize parameters of KELM and define fitness function

Calculate fitness value of whales and update population

Determine best parameters combination

Construct the best predictable model of WOA-KELM
and start training and testing

Output fault types and severity

Yes

Not ≤ Tmax ?

Figure 3: 1e flow chart of WOA-KELM algorithm.
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5. Experimental Analysis and Results

In order to study the health condition detection method for
rotating machinery raised in this paper to verify its uni-
versality and effectiveness for fault identification of general
rotating machinery, experiments and analysis are conducted
using two typical examples, namely, rolling bearings and
gearboxes. 1e rolling bearing dataset was provided by
CWRU [32]. 1e gearbox experiment data were collected on
the QPZZ-II vibration analysis platform produced by
Jiangsu Qianpeng Diagnostic Engineering Co., Ltd.

5.1.HealthConditionDetection Experiment of Rolling Bearing

5.1.1. Experimental Rig and Data Introduction. 1e data
were collected by the high-precision multichannel sensor
installed on the bearing experimental rig. 1e specific
structure of the bearing experimental rig is presented in
Figure 5. 1e experimental rig includes a motor, a torque
transducer/encoder, control electronics, and a dynamome-
ter. 1e installation position of the acceleration sensors is at
the 12 o’clock position at both the drive end and fan end of
the motor housing, which are connected with the magnetic
casing. 1e collected experimental data are the vibration
waveforms of the motor, which are collected by the 16-
channel data recorder. Single-point faults are set on SKF
rolling bearings by electrical discharge machining. 1e fault
diameter is 0.1778mm, 0.3556mm, and 0.5334mm, re-
spectively, and the fault depth is 0.2794mm. 1e three fault
diameters represent the different severity of the bearing fault.
1e experimental environment is set as follows: the motor
load is 0 hp, the motor speed is 1797 r/min, and the sampling
frequency is 12 kHZ. In this article, the data used include 10
categories, normal bearings, inner race faults, outer race
faults, and ball faults. 1e fault diameter of each fault state is

0.1778mm, 0.3556mm, and 0.5334mm (label as NM, IRF1,
IRF2, IRF3, ORF1, ORF2, ORF3, BF1, BF2, and BF3, re-
spectively). For each fault state, the synchronous vibration
signal at the drive end and fan end is used as dual-channel
data. Generally, in the field of bearing fault diagnosis, the
vibration signals are basically collected at the drive end.
Since the data quality of the driver end is higher, which
contains less noise and can directly reflect the vibration of
the output part, however, for the fault diagnosis of me-
chanical equipment, high accuracy of fault identification is
our goal. 1erefore, it is necessary for us to use all available
information to improve the utilization rate of information.
1e data of the fan end contains part of the fault information
and the use of the data can significantly improve the
characteristic quality, thus improving the fault recognition
rate.

In this study, the vibration data of each working con-
dition were divided into 58 samples without overlap, and the

�e rotating machinery with multiple sensors

Raw multivariate vibration signal

Partition into nonoverlapping windows
of series length

Compute the mvAAPE values

mvAAPE value > threshold

Normal working condition

RCmvMAAPE of all samples are computed to
generate the initial fault feature

MCFS is employed to select the sensitive
fault feature

Training and testing the WOA-KELM-based
multi classifier

Output the fault type and severity

Yes

No

Figure 4: 1e flowchart of the proposed integrated health condition detection method.

Fan end
bearing

Electric
motor Dynamometer

Drive end
bearing

Torque transducer/encoder
self-aligning coupling

Figure 5: 1e rolling bearing test platform.
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number of sampling points of each sample was set to 2048.
In order to be consistent with the engineering application
under the actual condition, 28 samples for various working
conditions are randomly selected for training, and the
remaining 30 samples are the testing set. 1e effectiveness of
the raised approach is validated by randomly selecting
training and testing samples.1e specific introduction of the
dataset is presented in Table 1.

5.1.2. Fault Detection. 1e time domain waveforms of
rolling bearing under ten working conditions are shown in
Figure 6. Due to the lack of regularity, it is hard to directly
recognize diverse working conditions based on their original
vibration signals. According to previous analysis, PE has the
ability to detect faults, the mvAAPE is obtained based on the
theory of multidimensional embedding, and reconstruction
also enjoys the same function. 1erefore, mvAAPE can be
used to detect whether the equipment is faulty. Figure 7
shows the mvAAPE values for all samples. As presented in
Figure 7, the mvAAPE values in the fault states are generally
large and the mvAAPE of the normal state is small, which is
significantly different from the mvAAPE values of the fault
states. Consequently, this method can be used to screen the
normal state of the bearing. 1e value at the blue dotted line
is defined as the mvAAPE threshold (2.9973). By comparing
the mvAAPE value of the vibration signals with the
threshold, the normal and fault states can be clearly dis-
tinguished. However, the samples of different fault types
have poor separability, so mvAAPE cannot be used as the
standard to judge the fault type and severity. A further
analysis is needed to obtain more reliable characteristics.

1e fault samples have the maximum mvAAPE value,
which demonstrates that they are more complicated than
normal samples. When the bearing is in normal operation,
the vibration mainly comes from the interaction and cou-
pling between the mechanical parts and the ambient noise,
thereby the vibration signal shows certain regularity.
1erefore, the mvAAPE value of normal condition is lower
than that of the fault condition. When a fault occurs in the
running process of the bearing, the vibration of the bearing
will produce periodic pulse components.1e high frequency
vibration is mixed with the bearing vibration, which makes
the frequency component and bandwidth of vibration signal
more complex.

1e first procedure in fault diagnosis is health detection.
For a complicated mechanical system, it is necessary to judge
whether there is a fault in the component firstly and then
identify the type and severity of the fault. If the system does
not detect the fault, it indicates that the system is running
normally, and there is no need to disassemble and repair it.

5.1.3. Fault Recognition. Once a bearing fault is detected, the
raised approach is used to distinguish the diverse fault types
and severity. To validate the advantages of multivariate
analysis, univariate analysis methods such as RCMAAPE are
employed to test the bearing vibration signals at the drive
end. By comparing with the univariate feature extraction
method, the advantages of multichannel analysis in terms of

information utilization are intuitively verified. Each method
uses data from 9 fault conditions for experiments. 1e
entropy results of univariate analysis method RCMAAPE
and multivariate analysis methods RCmvMAAPE,
RCmvMPE, RCmvMSE, and mvMAAPE are shown in
Figures 8(a)–8(e).

Compared with other multivariate analysis methods
shown in Figures 5(b)–5(d), the entropy deviation of
RCmvMAAPE is smaller and the stability is higher. First of
all, when the scale factor is 5–16, RCmvMPE has poor
discrimination of NM, IRF3, and ORF3. In addition,
mvMAAPE is generally poorly distinguished, and the en-
tropy deviation of each fault state is very large, which in-
dicates its performance is unstable and easily causes large
errors. Except for NM and ORF2, the RCmvMSE curves of
the other states are similar on most scales, and the degree of
overlap is high, making it difficult to distinguish them. For
the other two univariate analysis methods, entropy deviation
is significantly greater than that of the multivariate analysis
method, and the degree of entropy curve overlap is also
greater than that of the multivariate analysis method. 1is is
mainly because the univariate analysis method only uses the
vibration information of one channel, so the utilization rate
of information is relatively low, while the multivariate
analysis method realizes the effective use of information by
comprehensively considering the vibration information of
multiple channels, thus improving the stability and ro-
bustness of the analysis. 1erefore, based on the above-
mentioned analysis, RCmvMAAPE is more effective in
feature extraction than RCmvMPE, RCmvMSE, mvMAAPE,
and RCMAAPE, while the quality of the extracted features is
also higher.

According to the abovementioned analysis, although the
features extracted by the RCmvMAAPE method have high
quality and can represent the fault state well, the fault
features on the partial scale enjoy low separability and
cannot achieve satisfactory distinguishing effect. For the sake
of reducing the redundancy between features and enhancing
the separability of fault features, the mRmR approach is
utilized to reduce the dimension of original features. 1e
distribution of multiscale features after the rearrangement is
visually described in Figure 9. 1e dimensionality of the new
multiscale fault features is selected as 9 according to the
correlation with the main fault information and the im-
portance of the features. Finally, the obtained new fault
features are input into the WOA-KELM classifier to de-
termine the fault type and severity. Figure 10 shows the
failure classification results for one trial. It can be clearly
observed from the figure that all the faults have been ac-
curately identified and the classification accuracy has
reached 100%, which indicates that the proposed approach
can availably distinguish the types and severity of faults.

In addition, for the sake of avoiding the influence of
random factors such as contingency on the experimental
results, 20 trials are repeated to obtain more accurate and
reliable classification results. Moreover, four other entropy-
based methods are also used to diagnose rolling bearing
faults. 1e detailed classification results of the five ap-
proaches for 20 trials are presented in Figure 10 and Table 2.
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From Figure 11 and Table 2, it is obvious that the average
classification accuracy of the raised approach is higher than
that of other approaches, and the average accuracy rate is
99.96%. Moreover, the accuracy of the multivariate analysis
methods (RCmvMAAPE, RCmvMPE, RCmvMSE, and
mvMAAPE) is generally higher than that of the univariate
analysis method (RCMAAPE), which is consistent with the
previous analysis. 1erefore, the comparison results indicate
that the raised approach can effectively extract fault features
and obtain high fault recognition rate.

To verify the necessity of mRmR feature selection, two-
dimensional projections of two random features selected
without adopting the mRmR method are presented in
Figure 12(a), while the first two sensitive features obtained
applying the mRmR method are visualized as Figure 12(b).
By comparing Figures 12(a) and 12(b), it can be clearly

found that RCmvMAAPE combined with mRmR has a
better recognition effect than using RCmvMAAPE alone.
Moreover, nine random features
(τ � 8, 19, 1, 17, 9, 3, 20, 14, 6) are directly inputted into
WOA-KELM to identify the fault type and the identification
results are presented in Table 3. According to the results in
Table 3, it can be clearly found that the fault recognition
accuracy rate gained without using the mRmR method is
lower than that gained with adopting the mRmR method. In
addition, it can be noticed that the recognition accuracy of
RCmvMAAPE is still higher than that of other methods
without using mRmR. 1us, the experimental results again
verify that RCmvMAAPE can extract fault features from
multichannel signals effectively and improve the quality of
fault information. 1e mRmR method can select sensitive
low-dimensional features from high-dimensional fault

Table 1: 1e detailed introduction of experiment sample.
Fault location Fault diameter (mm) Abbreviation Training sample number Testing sample number Class label

Normal 0 NM 28 30 0
0.1778 IRF1 28 30 1

Inner race
0.3556 IRF2 28 30 2
0.5334 IRF3 28 30 3
0.1778 ORF1 28 30 4

Outer race
0.3556 ORF2 28 30 5
0.5334 ORF3 28 30 6
0.1778 BF1 28 30 7

Ball 0.3556 BF2 28 30 8
0.5334 BF3 28 30 9
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Figure 6: 1e waveforms of diverse classes of rolling bearing, where red denotes data of drive end and blue denotes fan end.
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Figure 8: Continued.
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features, which not only improves the recognition accuracy
but also improves the classification efficiency.

1is section discusses the superiority of using WOA
algorithm to optimize KELM in fault identification. For
comparison, three commonly used classifiers are used for
comparison, namely, support vector machine (SVM), ex-
treme learning machine (ELM), and kernel extreme learning
machine (KELM). 1e ratio of training samples to testing
samples remains the same. 1e diagnostic results of the five
approaches using diverse classifiers are listed in Table 4. It
can be seen that when the four classifiers are combined with
the five feature extraction methods, the classification ac-
curacy of WOA-KELM is the highest, which shows that
WOA-KELM is an effective classifier. In addition, it can be
clearly found that when the features obtained by different

feature extraction methods are input to the four classifiers,
the classification accuracy of RCmvMAAPE is the highest,
which further verifies that the raised RCmvMAAPE ap-
proach has excellent performance in feature extraction.

5.2. Health Condition Detection Experiment of Gearbox

5.2.1. Experimental Rig and Data Introduction. 1e gearbox
experiment data were collected from the experiment plat-
form QPZZ-II that is built by Jiangsu Qianpeng Diagnosis
Engineering Co., Ltd. 1e overall structure of the experi-
mental platform is shown in Figure 13. 1e experimental
platform is composed of gearbox, motor, iron base, ca-
pacitance, and sensors. 1e sensors are installed above the
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Figure 8: 1e entropy results of rolling bearing data analyzed by adopting five approaches. (a) RCmvMAAPE; (b) RCmvMPE; (c)
mvMAAPE; (d) RCmvMSE; (e) RCMAAPE.
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gearbox. 1e experimental data consist of eight channels of
vibration signals and one channel of tachometer signals, in
which the motor speed is 880 r/min. In the experiment, a
total of four operating conditions were set up, including
normal condition, gear pitting fault (pitting), gear tooth
breaking (tooth breaking), pinion wear fault (wearing), and
gear pitting fault coupling with pinion wear fault (pitting
and wearing). 1e detailed introduction of gearbox

experimental data is shown in Table 5. 1e data acquisition
equipment is QPZZ-II produced by Jiangsu Qianpeng Di-
agnostic Engineering Co., Ltd., with a sampling frequency of
5.12 kHZ and sampling time of 6 s. 1erefore, each health
state contains 53248 data points. 1e selected channels are
the acceleration signal collected by the bearing X on the
motor side of the input shaft and the bearing Y on the load
side of the output shaft. 1e collected vibration signals are
divided into 26 nonoverlapping samples with length 2048.
Among them, 10 samples were used for training, and the
remaining 16 groups were used for testing.

5.2.2. Fault Detection. 1e time domain waveforms of the
gearbox under four working conditions are shown in Fig-
ure 14. It is difficult to directly judge the type of gear failure
based on the amplitude and frequency changes of the
waveforms. According to the previous analysis, mvAAPE
can be used to detect whether mechanical equipment is
faulty and is successfully used to detect the health condition
of rolling bearings. Due to the complicated structure of the
gearbox, it is difficult to disassemble and inspect the gearbox.
1erefore, it is necessary to detect the health condition of the
gearbox. Figure 15 shows the mvAAPE values of all samples
of the gearbox. It can be observed from the figure that all
faulty samples have larger mvAAPE values, while all normal
samples have smaller mvAAPE values. 1e value shown by
the blue dashed line is defined as the mvAAPE threshold
(4.2342). By comparing the mvAAPE value of the sample to
be tested with the threshold, it can be judged whether the
gearbox is faulty. However, the entropy values between
different fault samples are relatively close, and the fault type
cannot be judged intuitively. 1erefore, the mvAAPE value
cannot be used as a criterion for judging the fault type and
further analysis is needed to obtain more obvious
characteristics.

1e fault samples have larger mvAAPE values, which
indicates that the vibration signals of the fault samples are
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Figure 10: 1e recognition results of raised approach for rolling
bearing.

Table 2: Identification result of five approaches for rolling bearings
with mRmR feature selection.

Diverse approaches Accuracy (%)
Max Min Mean SD

1e proposed method 100 99.26 99.96 0.1655
RCmvMPE and mRmR 100 97.41 98.54 0.8358
mvMAAPE and mRmR 91.11 86.30 88.69 1.2900
RCmvMSE and mRmR 95.56 92.22 93.92 1.0024
RCMAAPE and mRmR 90.37 85.56 87.52 1.4565
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Figure 11: 1e diagnostic result of the five methods for 20 trials.
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more complicated than that of the normal samples. After the
gearbox fails, the vibration signals enjoy obvious modulation
characteristics, which are composed of multiple AM and FM
signals. Compared with the vibration signals of the normal
samples, the fault signals contain more impact components;
meanwhile, due to the influence of random factors such as
noise in the signal, the signal component is more complex,
so it has a larger entropy value.

5.2.3. Fault Recognition. After detecting the gearbox failure,
for the sake of identifying different fault types, the raised
approach is utilized to process the fault vibration signals to
obtain stronger features. Similarly, to verify the advantages
of multivariate analysis, the univariate analysis method
(RCMAAPE) is used for the motor side vibration signals. In
addition, for the sake of studying the effectiveness of the
RCmvMAAPE approach for extracting fault features, the
RCmvMPE, mvMAAPE, and RCmvMSE approaches are
used to analyze multichannel vibration signals. 1e analysis
result is shown in Figures 16(a)–16(e).

It can be observed from Figure 16 that the overall trend of
the RCmvMAAPE curve is consistent with that of RCmvMPE
and mvMAAPE, but RCmvMAAPE has smaller entropy
deviation, which indicates that the RCmvMAAPEmethod has

better stability. Compared with the RCmvMSE method, the
RCmvMAAPE curve has more obvious fluctuation, so it can
effectively highlight the earth oscillation component of
gearbox fault vibration signal, so as to extract fault features
more effectively. In addition, compared with the univariate
analysis method RCMAAPE, the entropy deviation of
RCmvMAAPE is significantly smaller, that is, its performance
is better. 1e main reason is that the univariate analysis
method only makes rough use of the fault information in the
single channel vibration signal, while the rich information in
other channels is not used reasonably. However, after gearbox
fails, the transmission path of internal vibration is complex
and has multiple directions. 1e vibration signals collected
from each channel contain the fault information, so it is
impossible to fully characterize the fault state only by per-
forming univariate analysis. Based on the abovementioned
analysis, RCmvMAAPE can effectively analyze multichannel
vibration signals and has stable performance.

It can be observed from Figure 16 that the fault features
extracted by RCmvMAAPE are redundant at some scales,
which indicates that not all features can be used for fault
classification. It is necessary to screen them to select sensitive
features. In order to improve the separability of fault fea-
tures, the mRmR approach is used to process the features.
1e distribution of multiscale features after the rearrange-
ment is visually described in Figure 17. 1e dimensionality
of the new multiscale fault features is selected as 9 according
to the correlation with the main fault information and the
importance of the features. Finally, the obtained new fault
features τ � (19, 8, 7, 16, 5, 13, 10, 3, 2) are fed into the
WOA-KELM classifier to determine the fault type. Figure 18
shows the fault classification results for one trial. It can be
clearly observed from the figure that except two samples of
pitting and wear fault are misclassified as tooth breaking
fault, the other faults are accurately identified, and the
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Figure 12: (a) Two-dimensional visualization of two random selected features without adopting mRmR. (b) Two-dimensional visualization
of two new features selected utilizing mRmR.

Table 3: Identification result of five approaches without mRmR
feature selection.

Methods Accuracy (%)
Max Min Mean

RCmvMAAPE 94.44 89.26 92.32
RCmvMPE 91.85 88.15 90.69
mvMAAPE 87.04 84.44 85.86
RCmvMSE 90.37 87.78 89.63
RCMAAPE 86.30 81.85 84.27
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Table 4: 1e diagnostic results gained by combining diverse methods with four classifiers.

Diverse classifiers
1e testing accuracy of classifiers with diverse approaches (%)

Average accuracy (%)
RCmvMAAPE (%) RCmvMPE (%) mvMAAPE (%) RCmvMSE (%) RCMAAPE (%)

ELM 97.04 95.93 88.52 94.44 85.19 92.22
SVM 95.56 94.07 87.04 92.96 83.33 90.59
KELM 98.52 96.30 89.26 94.81 85.92 92.96
WOA-KELM 100 99.26 91.48 95.93 88.89 95.11
Average accuracy (%) 97.78 96.39 89.07 94.54 85.83 —

Gearbox Sensor position

Iron base

AC motor

MPB

Figure 13: 1e experimental rig of the gearbox from QPZZ-II.

Table 5: 1e brief introduction of the experimental sample.
Fault type Training sample number Testing sample number Class label
Normal 10 16 0
Wearing 10 16 1
Tooth breaking 10 16 2
Pitting and wearing 10 16 3
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Figure 14: 1e vibration signal waveforms of the gearbox in different health conditions, where red denotes data of the motor side and blue
denotes the load side.
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Figure 16: Continued.
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overall classification accuracy rate reaches 95.83%, which
shows that the raised approach can availably distinguish
different fault types of gearbox.

Similarly, in order to reduce the large randomness of
experimental results due to only performing one trial, 20
trials are repeated to obtain more reliable and accurate
classification results. In addition, in order to intuitively
verify the advantages of RCmvMAAPE method, four other
entropy-based methods are used to diagnose gearbox faults.
1e detailed classification results of five approaches for 20
trials are shown in Figure 19 and Table 6. It is obvious from
Table 7 that the average recognition accuracy of the pre-
sented approach is the highest and the standard deviation is
the smallest, which indicates that the raised approach has

stable and excellent performance. 1e accuracy of
RCmvMPE approach is slightly lower than that of the
proposed approach, which indicates that RCmvMPE can
also effectively diagnose gearbox faults. But the standard
difference is large, indicating that the recognition rate is not
stable. In addition, the accuracy of the multivariate analysis
method is higher than that of the univariate analysis method,
which verifies the necessity of multivariable analysis in
gearbox fault diagnosis.

As before, for the sake of investigating the importance of
mRmR feature selection, two-dimensional projections of
two random features selected without adopting the mRmR
method are presented in Figure 20(b), while the first two
sensitive features obtained applying the mRmR approach are
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Figure 16:1e entropy results of gearbox data analyzed by adopting five approaches. (a) RCmvMAAPE; (b) RCmvMPE; (c) mvMAAPE; (d)
RCmvMSE; (e) RCMAAPE.
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visualized as Figure 20(a). It can be seen from the figure that
the features without mRmR feature selection are disorderly
and have no obvious clustering center, which indicates that
the quality of features is not high and further processing is
needed to obtain separable features. After mRmR feature
selection, although no obvious clustering center is obtained,
the separability of the three fault states becomes stronger. It
can be concluded that mRmR feature selection can improve
the recognition of features and has better recognition effect.
1en, nine features are randomly selected and input into the
WOA-KELM classifier to determine the fault type of
gearbox. Similarly, each method was repeated 20 times.
Table 7 shows the gearbox identification results of five
methods without using mRmR feature selection for 20 trials.
As can be seen from Table 7, although the highest recog-
nition rate of the RCmvMAAPE approach is lower than that
of the RCmvMPE method, the average recognition rate is

still the highest, which indicates that the performance of
RCmvMAAPE is more stable. Consistent with the previous
analysis, the recognition accuracy of the multivariate
analysis approach is higher than that of the univariate
analysis approach, which directly verifies the necessity of
multivariate analysis. In a word, mRmR dimension reduc-
tion can significantly improve the fault recognition rate, that
is, improve the reliability of fault identification.

To validate the necessity of utilizing WOA-KELM, three
commonly used classifiers are used for comparison: SVM,
ELM, and KELM. 1e same proportion of training and test
samples is employed to train and test the classifier. Table 8
shows the classification results of five approaches using
diverse classifiers. It can be seen that the RCmvMAAPE
approach still has the highest fault recognition rate when
using different classifiers, which is higher than that of the
RCmvMPE method. Obviously, amplitude-aware
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Figure 17: Distribution of multiscale feature after applying the mRmR approach.

4

3

2

1

Cl
as

s l
ab

el

Sample number

Training sample Testing sample

0 10 20 30 40 50 60 70 80

Desired output label
Actual output label

Figure 18: 1e recognition results of raised approach for gearbox.

20 Mathematical Problems in Engineering



100

95

90

85

80

75

70

65

Cl
as

sfi
ca

tio
n 

ac
cu

ra
cy

 (%
)

2 4 6 8 10 12 14 16 18 20
Trial number

�e proposed method
RCmvMPE and mRmR
mvMAAPE and mRmR

RCmvMSE and mRmR
RCMAAPE and mRmR

Figure 19: 1e diagnostic result of the five methods for 20 trials.

Table 6: Identification result of five approaches for gearbox with mRmR feature selection.

Diverse methods Accuracy (%)
Max Min Mean SD

1e proposed method 100 93.75 98.96 1.8514
RCmvMPE and mRmR 100 89.58 98.02 3.4778
mvMAAPE and mRmR 91.67 83.33 87.50 2.8685
RCmvMSE and mRmR 100 87.50 97.5 3.9183
RCMAAPE and mRmR 87.80 77.08 83.17 3.0853

Table 7: Identification result of five approaches without mRmR feature selection.

Approaches Accuracy (%)
Max Min Mean

RCmvMAAPE 89.58 85.42 87.22
RCmvMPE 91.67 83.33 86.94
mvMAAPE 81.25 72.92 78.46
RCmvMSE 87.5 81.25 84.32
RCMAAPE 75 66.67 72.53

Table 8: 1e diagnostic results gained by combining diverse methods with four classifiers.

Diverse classifiers
1e testing accuracy of classifiers with diverse approaches (%)

Average accuracy (%)
RCmvMAAPE (%) RCmvMPE (%) mvMAAPE (%) RCmvMSE (%) RCMAAPE (%)

ELM 93.75 91.67 83.33 87.50 85.42 88.33
SVM 91.67 89.58 79.17 87.50 83.33 86.25
KELM 97.92 93.75 87.50 89.58 85.42 90.83
WOA-KELM 100 95.83 89.58 93.75 87.50 93.33
Average accuracy (%) 95.84 92.71 84.90 89.58 85.42 —
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permutation entropy has better performance than permu-
tation entropy by considering the amplitude and frequency
information of time series. In addition, when the five
methods are combined with different classifiers, the WOA-
KELM classifier has the highest average recognition rate of
93.33%, which is higher than that of the KELM classifier
alone. Since the performance of KELM is affected by the
kernel parameters and penalty factor. 1e artificial setting
cannot achieve the best classification effect. In conclusion,
the WOA-KELM classifier has excellent performance, and
the generalization performance is better than the commonly
used classifiers.

6. Conclusions

In this study, a novel nonlinear analysis approach called
RCmvMAAPE is raised. Various synthetic signals are an-
alyzed and compared with RCmvMPE, mvMAAPE, and
RCmvMSE. 1e results verify that RCmvMAAPE could
effectively measure the complexity of multivariate time se-
ries and enjoys more stable performance. In the fault de-
tection part, the mvAAPE is used to define a threshold. If the
mvAAPE value of the measured sample is less than the
threshold value, the equipment is normal, so as to realize the
fault detection of the equipment. When a fault is detected,
RCmvMAAPE is employed to extract fault features to
construct initial feature vectors, and then mRmR is used to
select sensitive features to form sensitive features to be
classified. Finally, the sensitive feature vectors are input into
the WOA-KELM classifier to determine the type and se-
verity of the fault. 1e validity of the raised approach is
verified by two typical examples, namely, rolling bearing and
gearbox. 1e results demonstrate that the raised approach
can not only accurately detect the fault of rotatingmachinery
but also effectively identify the fault type. In addition,

compared with other methods, RCmvMAAPE can extract
higher quality fault features from multichannel vibration
signals and is superior to that of common entropy-based
methods, which verifies its effectiveness in feature extrac-
tion. From the perspective of practical application, the
proposed method avoids the mode classification that is full
of uncertainty and improves the effectiveness and timeliness
of fault diagnosis by detecting the state of rotating ma-
chinery, thereby is more in line with the actual engineering
needs.
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