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Two integrable hierarchies are derived from a novel discrete matrix spectral problem by discrete zero curvature equations. They
correspond, respectively, to positive power and negative power expansions of Lax operators with respect to the spectral parameter.
The bi-Hamiltonian structures of obtained hierarchies are established by a pair of Hamiltonian operators through discrete trace
identity. The Liouville integrability of the obtained hierarchies is proved. Through a gauge transformation of the Lax pair, a
Darboux-Bécklund transformation is constructed for the first nonlinear different-difference equation in the negative hierarchy.
Ultimately, applying the obtained Darboux-Bédcklund transformation, two exact solutions are given by means of

mathematical software.

1. Introduction

It is well known that the study of nonlinear integrable
differential-difference equations (NIDDEs) has attracted
much attention in recent decades [1-14]. Many problems in
mathematical physics may be modeled by NIDDEs. Up to
now, many important NIDDEs have been presented such as
the Ablowitz-Ladik lattice [1], the Toda lattice [2], the
relativistic Toda lattice [3], the modified Toda lattice [4, 5],
the Merola-Ragnisco-Tu lattice [6], and the deformed re-
duced semidiscrete Kaup-Newell lattice [7-14]. Now,
finding new NIDDEs, in lattice soliton theory, is still an
important and complicated task. In general, we choose an
appropriate discrete matrix spectral problem and a list of
auxiliary spectral problems:

E¢n = (Pn+1 = Un (uwl)(pn’

- (1)
(Pntm = Vr(l )(un’/\)(Pn’

where for a lattice function f, = f (n), the shift operator E
and the inverse of E are defined by

Efn:fn+1’E71fn:fn—1’ I”IGZ, (2)

U, (u,, 1) is a square matrix, V" (u,, 1) is a list of the same
order square matrices of U, (u,, ), u,, is a potential vector
function, ¢, is the eigenfunction vector, A is the spectral
parameter, and A, = 0. The integrability condition of (1) is
E((¢,); ) = (Eg,), , and it is equivalent to

u, =(Evi")U,-u,vi”, m=o0. (3)
Here, (3) is called a discrete zero curvature equation.
Usually, (3) determines a hierarchy of NIDDEs (or lattice

soliton equations):
unlm = K(un’un—l’ un+1’ o ) (4)

One of the important problems in the lattice soliton
theory is to search for a Hamiltonian operator J; and a

m

— o0
hierarchy of conserved densities {H (m)} so that (4) has
m=0

the following Hamiltonian structures:

n_ m=>0, (5)
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where the Hamiltonian functionals H r(lm) = 15162H (m)
(m=>=1) and the variational derivative (§H nm /éu,) =

Y ez E-™ (0H ™ /0u,,,,). Furthermore, if there is another
operator J, so that J; and J, form a pair of Hamiltonian
operators and

77 (m) 77 (m=1)
0H 0H
u ] z = ]2 z >

- >1, (6)
Tl Su, du,, "

then the integrable hierarchy (4) possess a bi-Hamiltonian
structure. According to the theory of Hamiltonian operators,
if J, is reversible, then the hierarchy (4) is integrable in
Liouville sense ([4, 13] and their references). As is known to
all, staring from a continuous matrix spectral problem, we
only derive one integrable hierarchy, but for some suitable
discrete matrix spectral problems, we can get two hierarchies
of the NIDDE:s [13]. In this paper, we are going to present
two integrable hierarchies from a discrete matrix spectral
problem. They, respectively, apply positive power and
negative power expansions of Lax operators with respect to
the spectral parameter. Theory is, respectively, called positive
and negative integrable hierarchies. Moreover, as is known
to all, Backlund transformation is a powerful method to
obtain exact solutions of NIDDEs [15, 16]. This transfor-
mation is a relation between the new solution and the old
solution of the NIDDEs. Based on a known solution, ap-
plying this transformation, a new solution may be derived.
According to [15], Bicklund transformation is usually di-
vided into three types: the Wahlquist-Estabrook (WE) type
[16, 17], the Hirota type [18], and the Darboux-Béacklund
type [19-22]. In the Darboux-Bécklund type, the Lax pair
plays a key role. A gauge transformation of the Lax pairs is
called a Darboux-Bécklund transformation if it transforms
the Lax pair into another Lax pair of the same form.

This paper is organized as follows. In Sections 2 and 3, we
introduce a novel discrete spectral problem:

E(Pﬂ = Un (un’ A)(pn’

A 7
Un(un,/\):<pn 1>, 7)
g.A 1

where ¢, = ((;)i,(pfl) is the eigenfunction vector,
u, = (p,»q,)" is the potential vector, and p, = p(n,t) and
q,, = q(n,t) depend on integer n € Z and real t € R. Staring
from spectral problem (7), positive and negative integrable
hierarchies of NIDDEs are, respectively, presented by dis-
crete zero curvature equations. Then, the Hamiltonian
structure and bi-Hamiltonian structure of the obtained
hierarchies are established by means of the discrete trace
identity [11]. Afterwards, infinitely many common com-
muting conserved functionals of the obtained positive hi-
erarchy are worked out. The Liouville integrability of the
obtained positive hierarchy is proved. For the obtained
negative integrable hierarchy, the same results can be
similarly obtained. In Section 4, a Darboux-Backlund
transformation is established though the gauge transfor-
mation of the Lax pair for the first NIDDE in the negative
integrable hierarchy. In Section 5, using obtained Dar-
boux-Backlund transformation, two exact solutions are
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given with the help of the mathematical software “Mathe-
matica.” Finally, in Section 6, there will be some conclusions
and remarks.

2. Positive Integrable Hierarchy and Its Bi-
Hamiltonian Structure

Now, we want to deduce a hierarchy of NIDDEs associated
with eigenvalue problem (7). For this purpose, we first solve
the following stationary discrete zero curvature equation:

(E (Mn))Un - UnMn = Mn+1Un - UnMn =0. (8)

M- A, B, )
n_<cn _An)'

We find that equation (8) implies
P (An+1 - An) - Cn + anrH—l =0,

Let us set

panA - (An+1 + An) - Bn+1 =0, (10)
pncn+1A ~4qn (An+1 + An) - Cn =0,
(Cn+1 - ann))L + (An - An+1) =0.
Substituting expansions
o0
A=y AP
m=0
[ee)
B,= Y B\, (11)

into (10) and comparing each power of A in equation (10), we
obtain the initial conditions:

(0) 0)) _ ~(0) (0) 0) _ 0) _
Pn(An+1 - An ) - Cn - ann+1’ Bn =0, Cn+1 =0,
(12)
and the recursion relations:

Pn(A(mH) _ A(m+1)) _ Cr(,mﬂ) —q

n+1 n

B(m+1)

n-n+l > mz=0

DB = (A 4 A 4 B

n+l n+12 m =0,

PaCIY = (AT + AT +C, m=o.

n+l n+1

(13)
Proposition 1. We take that
1
Afl()) = 59
(14)
c\ =0,

then A, B{™, C"™ (m>0), which are solved by equation
(13), are all local, and they are just rational functions in the
two dependent variables p, and q,,
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Proof. According to second and third equations in (13), we
get that B and C"™*1 can be shown locally by means of
A B,(l’”), and C,(l'”) (m=>0). In order to derived
AlmD (m > 0) from first equation in (13), we require to apply
operator D™! = (E - 17! to solve the related difference
equation. Next, we will show that Ay(l’”“) (m>0) may be also
deduced through an algebraic method rather than by solving
the difference equation. Based on (8), we obtain that

(E-Dtr(M;) = 2(E-1)(A;, + B,C,A) = 0. (15)

So (A% + B,C,A) = y(t), y(t) is an arbitrary function of
time variable t only. Furthermore, we take that y(f) = 0.
Then, we obtain a recursion relation for A™:

>

- 1 2
AW — T B\ = _)Cr(ll) _ qn-1,A£z) 1 W U5 L U]

3
AT =Y AD AN N Oy s,
j=1 j=1
(16)

Therefore, A"V (m=>0) can be derived locally by
Alm), B,(lm), and C,S’”) (m=>0) and then
E’”),Br(l'”), andC™ (m>0) are all local; they are just ra-
tional functions in the two dependent variables p, and gq,,.
The proof is completed.

Specially, we have

In-19n-2 _ In-1 _ dn-—2

n

~ PuaPa Pa Pt PriPh PuniPaPat PaPriPuz PiPusiPuct PaPutPra .
Br(lz) ___ 9 - ‘Zln—l + 1 ’Cr(IZ) _ ‘213171 _ qZ—l%—z 2
Pus1Pn PnPp1 PnPnn Pu1Pn PpaPna  Pr1Pn-2
Let us denote which give rise to the hierarchy of NLDDE:s:
M = < gA,i%m*ngW"*i gCi”A’””'“— gA:')A’"‘), m=0. Pu,, = Pa(1=B)(A" +B"), - (25)

(18)

By means of (13), we get

(m+1)
0 p.B
(m) (m) nPn
(EMy™U, -U,M," = < >
(me1)y (A (m) _ 4 )
_PnCnT; A (Anm - An:nl )

(19)

Obviously, (19) is not compatible with (U,,)tm. So, we
choose a correction term

(m) (m)
-B™ — A 0
A= T , (20)
0 Al

n

and set
M = MO A mzo. (21)

We consider the following auxiliary spectral problems
associated with the spectral problem (7):

9, =M, m=0. (22)

Then, the compatibility condition of equations (7) and
(22)

(E(Pn)tm = E((¢n)tm)’ (23)
is equivalent to the discrete zero curvature equations

U, = (EM,(lm)>U,, UM, m=0,  (24)

(m) (m)
q”tm = qﬂBnm - Cnm >

Remark 1. Owing to the entries in matrix M ,(lm) (m=>0) only
has nonnegative power powers of the eigenvalue A, then the
integrable hierarchy (25) is called a positive integrable hi-
erarchy associated with the discrete matrix spectral problem
(7).

When m = 0, (25) becomes a trivial linear system:
Pn, = 0,
(26)
qnto =0.

When m =1 in (25), we obtain the first NIDDE in hi-
erarchy (25):

_ Pa (pn—l _qn—l) _pn (Pn B qn)

pntl - pn—lpn Pnpn+1 ’
(27)
_n G
qntl pn pn—l

Furthermore, it is easy to derive the time part of the Lax
pair of (27) is

A1l
2
0 Pn Pn
Pn, =M, 9y = P (28)
@A A
pn—l 2



Next, we are going to establish the Hamiltonian structure
for the hierarchy of NLDDE (25) by means of the discrete
trace identity [11].

First, let us introduce some notions for further discus-
sion. The Gateaux derivative and the inner product are
defined, respectively, by

, 0
J (un) [Vn] = aj(un + SVn)|£=0,

<fn’ gn> = Z (fn’gn)Rz’

neZ

(29)

where f, and g, are demanded to be rapidly vanished at the
infinity. The standard inner product of f, and g, in the
Euclidean space R* is given by (f,,g,)g- Operator J* is
defined by {f,,J*9,> = {Jf.» g,»> and it is called the ad-
joint operator of J. If an operator J possesses the property
J* =], then ] is called to be a skew-symmetric. A linear
operator ] is called a Hamiltonian operator if ] is a skew-
symmetric operator and fulfills the Jacobi identity, i.e.,

Swlgn) =TS Gn>

' () [T f 2] G By + Cycle(f s g ) = 0.
(30)

For a Hamiltonian operator J, we may define a corre-
sponding Poisson bracket [4]:

{fn’gn}]:<8f 8

n 1 0Gn 6f, 89,
aun”aun> = nezz<5u ”aun>R2‘ (31)

n

According to [11], we write
An B ann/1 An B pan/\

~1 (pn - qn)A (pn - qn)/\
Sn = Mn (Un) = > (32)
A+ qncn A+ pncn
(pn_qn) )Lpn_qn

and (Y, Z) = Tr(YZ), where Y and Z are the same order
square matrices. We have

ou, ([P0

a/\, B qn 0 ’

oU A0

5Pn B ( 00 > (33)

ou,, 00
oq, \10)
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Hence,

U, A,

<R”’ﬁ> = T,
U, A,-gq,B)

<Rn) > = —q> (34)
apn Pn—4n
oUu -A + p, B\

<Rn’ n> — n Tt Puby ]
aqn Pn—4qn

By virtue of the discrete trace identity [11],

[ & ou 0 oU
Sp—=) = A AKS,, =,
op, rg; " a/\> oA s ap,,>
] (35)
0 au,, 0 ¢, OU,
(S_qn ’é<sw W) =1 aA <Sn’ a—qn>
Substituting  expansions A, =Y  AMA"" B, =

Yo, BMAT andC, = Y% (CWA™™ into  (35) and
comparing the coefficients of 1™, we arrive at

(m m+1
d An )_anfz v
6pn Pn— 49
Z(A,(tm)) =(e—-m)
nez m mal
; A+ B

8q" Pn— 4
(36)
When m =0 in equation (36), by means of a direct

confirmation, we get that & = 0. Thus, equation (36) can be
written as

; A =g
8Pn A(m) Pn—4qn
Z (— L ) = , m>0
m
o |7 A+ B
Sqn Pn—4qn
(37)

Moreover, we have
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_Pn(l _ E—l)(pnlenﬁ—l) _ A,(lm))

_pnc;imﬂ) + an7 l(pnBr(zmH) - Ar(LM)) + an

+1

where

0
]1=< 2
—Pndnt Pu— (pn - Qn)Epn

i =<E1(Pn_‘Zn)‘(Pn_%)E pn_qn_(pn_qn)E >
0

Pty +E71 (pn _qn)

Furthermore, we can get

Q

where Q, =-(1/p,)(1-E ") "E(q,/(p,—q,)(1-E)"
(1/p,) = (U/p,) (1 = E N (q,/ (p, — g )E (1 -E) ' (1/
p,) and

1 —1\—1
0 - 1-E
. pn _qn( )
]2 = ]
1-E) '—— Q
(pn _qn) ?
(41)
In above matrix, Q,=— (1-E)"'(1/ (p,-q,)

(1-E)' +(1-EN " (1/(p—q))A-E N
Proposition 2. For all values of two arbitrary constants «
and f5,

](“)/—;) = a]] +ﬁ]2> (42)

is a Hamiltonian operator.
Expressly, J, = J(1,0)and J, = J (0, 1) constitute a pair
of Hamiltonian operators.

Proof. Obviously, the operator J (a, ) is a skew-symmetric
operator, i.e., J(a,f) = —J (a, f)". Furthermore, by a direct

11 :< _
—Pugn t pfl - (pn - qn)Epn _(pn - qn)Eqn + an ' (pn —qn

5
A - g
Prn=4qn
= Il
b ~A™ + p Bl
Prn—4qn
(38)
Ar(zm V- aniim)
Pn—4qn ’
= ]2 , m>1,
A;i:nl K + pnC(m)
Prn—4qn
_Pi + Pugn t an_l (pn - qn) >
_(Pn - qn)Eqn + an_l (pn - qn) (39)
2
-p, + + p.E(p,—
P+ Pulln + PuE (P~ 4,) | ) (40)

and tedious calculation, we can prove that the operator
J (a, B) fulfills the Jacobi identity (30).

The proposition is proved.

So we obtain the following proposition.

Proposition 3. Equation (25) possesses the following
Hamiltonian structure:

A g5

>

Pn— 4 —~
Pn (SH:lm)
Uy = =] =], S m2>1,
W/ | Al '
Pn— 4 i
(43)

where Ijlim) = ZneZ(H,Sm))andHigm) = (Ar(f”)/m)(mz 1).

According to equation (13), we get the recursion relation:

— (m+1)

om, ™" _  oH,"
du,  du,

n

(m=0),® =J,'J,. (44)

Furthermore, we have



(m>0).

- pn _] 8H:lm+l) _] 61'_'17(114171)
Hrnt,, = Y S, du,
dn t,,

(45)

That is, (25) is a hierarchy of discrete bi-Hamiltonian
systems.

Using the operator @, the positive integrable hierarchy
(25) can be written as follows:
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Next, we prove the Liouville integrability of the discrete
bi-Hamiltonian systems (25). It is crucial to make known the
existence of infinite involutive conserved functionals.

Proposition 4. {H are conserved functionals of the

whole family (25) or (45) And they are in involution in pairs
with respect to the Poisson bracket (31).

P, 5™ sH i Proof. Though a direct calculation, we have
u, = =7 =J,® =, 0" = m>o. P
" <qn> 1 Outy 1 du, 1 (Su" (]l(D) =]2 =_]2=_]1(D (48)
(46) namely,
Obviously, the integrable NLDDE (27) possesses O], =],® (49)
Hamiltonian structure:
Therefore,
Pn Sﬁ(l)
un,tl = = ]1 6“” . (47)
n /¢t "
7 (m) (1) (1)
_ - 0H, 8H _10H _0H
{Hr(lm)’Hr(Ll)} T m-1041, qu)l 104,
A ou, ou,, du,, du,,
~ (1) (1) (1)
:<(Dm_18Hn l 28H}1 > <(D 8Hn ] 28H (50)
du,, Su, !
S AR A A {H ) ={H§’”*””,Hf)} .
T T I

Repeating the above argument, we can obtain

~ () ~ ~ -1) ~
{H,i),H,im)} :{H:’” ”,Hfll)} . (51)
]1 1
By equations (51) and (52), we have
~ —
{H,(,m),H,(,)}] =0, ml>1, (52)
1

(m) (m) 0]

7 6H, 60" 6H, m =0 _

( )—< " Uy ) = < ]16 Y = { JH, }11_0’ ml>1.

(53)

The proposition is proved.
Based on (45) and the Propositions 3 and 4, we can
obtain the following theorem. O

Theorem 1. The integrable NLDDE in hierarchy (25) is all
Liouville integrable discrete bi-Hamiltonian systems.

3. Negative Integrable Lattice Hierarchy and Its
Bi-Hamiltonian Structure

In this section, we would like to derive the negative inte-
grable hierarchy associated with matrix spectral problem (7).
To this end, we first consider the following stationary dis-
crete zero curvature equation:

(EN,)U,-U,N, =N,,,U,-U,N, =0, (54)
with
an bn
N, =( ) (55)
Cn —ay
On the basis of equation (54), we arrive at
Pn (anﬂ - an) -t qnbnﬂ =0,
b_.+(a,,+a,)-bAp, =0,
n+l ( n+l1 n) n pn (56)
Cht 4 (an+1 ta ) - pnCnHA =0,
( n+l qnbn)A + (a n+1) =0.
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Here, we expand a,,b,,c, by the nonnegative power
power of \:

o0
a, = Z almm,
m=0
[ee]
b,= Y by"A", (57)
m=0
o0
c, = Z M,
m=0

Substituting the above expansions into (56), we get the
following initial conditions:

(0) (0) (0)
pn(anﬂ —a, ) '+ Gnbpe1 = 0
b:l?rl ~(a O 4 an+1) (58)

= -a,(a,” +a,),

and recursion relations

(57 ") -0, mzo,
b = —alte — ™ 1 p b, m20,
( +1) +1) (m+1) (m)
Cnm qn( o +an:-n1 )+pn n:-nl’ mz0.
(59)

N,(,M) _ < i 1)/\—m+1—lzb 1)/\—m+1 IZ r(li)/\—m-#i_ i
i=0

At this point,

0 —puby"
(ENV(lm))Un - UnN;gm) = < (m) " (m) >
pn n+1A Cnt1 — pnbn )
(64)

It is obvious that (64) is not also compatible with (Un)tm.
So, we choose the following correction term:

(m) (m+1)
(m) pn—lbnr—nl - aﬂ'_"]* 0
n," = . (65)
0 _a(m+1)

n

Then, we introduce auxiliary matrix spectral problem:

RO = N oy >, (66)

Through a direct calculation, we obtain that

(Un)tm =

it is equivalent to

(EN,)U,-U,N,, n=0, (67)

7
If the initial values are chosen as
1
(0)
a, = 5, (60)
then we get that
b\ = -1,
" (61)
0 _ _
Cn - qn'

Similar to Proposition 1, we can obtain that
a{™, b M (11> 1) are all local, and they are just poly-
nomial functions in the two dependent variables p, and g,,,
and {a{™},,. , may be deduced through an algebraic method
rather than by solving the difference equation.

The first few terms are given by

1 _
>

(
n
1)
br(tl) =4yt 9p-1 =~ Pn-1> (62)
¢ = dnnn t qn Prn+1>
Set
(i) y—m+i—1
a") , m>0, (63)
i=0
( 1)
pn,t =pn<1_ )(pnbm —a\" )’
(m+1) (m+1)
qn,t = PnC n+1 qn(pn 1 nl anr—n1+ ) 4.4 ntrnl+ >
m=>0.
(68)
Remark 2. Because the entries in matrix N ,(,m) (m=>1) only

have negative powers of the eigenvalue A, then the integrable

hierarchy (68) is called a negative integrable hierarchy as-

sociated with the discrete matrix spectral problem (7).
When m = 0, (68) becomes

{ pn,t0 = Pn (Pn—l - pn) = P (qn—l - qn)’

(69)
Ant, = 9n (qn+1 - qn—l) * Pn-19n — Pun+1-

If we set p, =0, (69) is reduced to the well-known
Volterra lattice g, =4, (q,,1 —q,—1); namely, (69) is a
generalized Volterra lattice.

In next section, we are going to establish a Dar-
boux-Bdcklund transformation of (69). It is easy to get the
time part of the Lax pair of (69) is
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1 P 1 into (71), we get
oA Py = (m) (m+1) (m)
q)nt = N;il)q)n = @, (70) BKTI M
! 1 6pn Pn—4an
~4n YR = , m>0, (73)
6K(m) (m+1 +p b(m
In the discrete variational identity (35), we replace M, n 00 T Pnn
with N,; at this point the following equations hold: 69, Pn=n
- U, o - —a (D) _ i ;
Z< 5 n> 3 —AE(S Way. where K, : Ve (—a" "V /m) (m=>0). There is the re
5Pn = op,, cursion relatlon as follows:
(71) 6k 6k
_¢0 ¢ = OU 5o
2 3G, Ly L, D, Opn OPn
A ez O oA 0q, = , om0, (74)
~ & ( = (m-1)
where S, = N, (U,)"". 3K," 3K,
Substituting expansions 0q, 0q,
O (mqm where @' = JJ1].
I = mZ:O a, A% Based on (56), we get
[ee]
b,= Y b, (72)
m=0
(e8]
c, = Z clmym,
m=0
o - gl
Pa(1-E ) (pb" —ai™™), Pn=4n
=—J,
pn n+1 qn(pn 1b7(1m1 r(1m1+1) + aiiTlﬂ)) —aff"”) + pn r(lm+1)
le qn
(75)
ar(zMH) qnbn+l
Pn=4n
=-J , mz=0.
a,"" + by}
Pn=4n
Then, we have Thus, the integrable hierarchy (68) has a bi-Hamiltonian
—(m) — (me1) structure (76). Furthermore, similar to integrable hierarchy
_ Pn _ 0K, 0K, (25), we can prove that integrable hierarchy (68) is also
u, = = —]2 = —]1 5 m>0. . . .
m q ou ou,, Liouville integrable.
"7 With the help of the operator ®!, the negative inte-
(76)  grable hierarchy (68) can be written as follows:
pl’l 61‘{*(”’) 61‘%(”’_1) . Sk(l)
n_ _ -1 n _ -1\m- 1014,
”"tm:<q > =-J, S __]2(q> ) B ..._—]2(q> ) o m>0. (77)
n/t
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4. Darboux—Bicklund Transformation

We introduce a gauge transformation of spectral problem

(7):
¢n=T,9,. (78)

Under this transformation, two spectral problems (7)
and (70) become

Eg;n = ¢n+1 = Un@n’

%= N, 5, 7
with
(7 =T,,U, (T )_1’
N =(1, + T,NO)(T) (50
Here, we suppose
(rix+1)(1-19) T
T ( T2 T@)+1 > ey

. ( (T@r+1)(1

TOLYD +(TD) 4 1)@

We consider

(Tﬁ“)/\,. +1)(1
T + (T, 1)y =

®Y,,1) (b (2) _
_Tn )yn +Tn Yn

In the above equation, set i=1,2, Kj(j= 1,2), are
nonzero constants.

Solving equation (85) for T'?, T®) T and TP, we
obtain that

T(a) _ o,[n] - 0, [n]

" N0, [n] = Ao [n])
T® _ M=h

n A=Ay + (Mo [1] = Aoy [n])

(86)

T© _ nloy[n] (A, - 1,)

" MA, (0, [n] - 0, [”])’
T(d A0, [”] A0, [n]

MA, (0[] = 0y [n])

In equation (86),

®Y,,1) ), (2)
_Tn )yn +Tn Yn

where T\, T(") T and T\# are undetermined functions
of variables 1 and t and ne Z t € R. Next, we are gom to
solve T\, T®) T andT@ such that U, and N, a

equation (80) are prov1ded w1th the same form with U and

N, je.,
B pA 1
U, = ,
gt 1

% - Z)n—l + ’Qn—l _% (82)
N(l) _
~ L
~qn _ﬁ + 4,

For two different reals A, andA,, we can get that y, =
T T . .
(yiV, y D andz, = (zV,zP)" are two real linear inde-
pendent solutions of equations (7) and (70):

@ M
z
w, = < yiz) ?z) ) (83)
Y2 %y
Let w,, = T,w,,, and we get

nn>

(199 4 1)(1 - TO)) 4+ 702
TOL (1 +1)c? ) o

T ﬂ)/l 1)(1- T(b) (1) T (2)
(T2 )0 1), .

(T )28 +(Ty(ld)Ai + l)zn )

(2) _ (2)
o,[n] = 'g W) =ryn )5 ()

1( i) - K')’nl)()‘i)

Through direct calculation, we have

Det(T,] =(1-T.") A-h)0-1) Aii)(f ~h) (88)
2

Proposition 5. The matrix U, defined by (80) has the same
form as U, in equation (7), and the original potentials
P, and q,, are changed into new potentials p, and g, by means

of

( d
- T, py
b= @ r@r® @
] (89)
©
-~ dn — Tn
qn = 1— T(b) ‘
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Proof. We know that T’ is the adjoint matrix of T,; from ((n) = +o;n,7,(n) = \p, +o,[n], i=1,2.
equations (7) and (87), we obtain that 1)
_ {;(n) . . .
oiln+1] = . () i=12, (90) From equations (90) and (91), we arrive at
with
T@ _ (i (m)1,y(n) = {, ()7, (n)
i MG, (), (n) = A, ()T, ()
T® _ (4 - A)1 ()7, (m)
(A = )T (M1 (m)T, (1) + A G ()T () = AL (G ()T, ()
(92)
7€ _ (Al - Az)(1 (n)¢, (n)
e A, ((1 (”)Tz (n) - (2 (n), (”),
T@ _ My (4G (1) — 2,0, (n)7, (n))
" WA, (G (W (1) = Gy () ()
As a result, we have where
An An
TiU, T, = ( Su b Juth ) (93)
f21 (A, n) fzz (A, n)
Fuun) =T (1 =TT, " + G (1 =T )T + Ty (1= T, ) put
(1 - Tr(i)l) pn + Tni)l nqn)A + (_)T(C (1 - T:Ei)l)pn + anfli)l )L
Fia o) =T (T, = D)9 - 1) p, TP (1)1 T) - T, (1- TOY (T, - 1)
+T b)(Tr(zil - 1)pn - Tn+1Qn)/\ +1- T(b) (94)
S Q) =(p VT +a, T TN +(T0T0 = TN T + pa Ty + 4Tt + 4,1, A +(q, =TS9,
Fath) (18, @D TPV T T -
AT TOT 1 1T, T TOT g T (1),
Then, we find that f,; (A,n) and f,, (A,n) are two 3th- a1 4 @ 4O
order polynomial in A and f,,(A,n) and f,, (A, n) are two a, = H T2 (96)
2th-order polynomial in A. By a tedious but direct com- (x21 0+ ocz((l)) aég)

putation or by a mathematical software, we get that A, A, are
two roots of f;;(A,n)(1<i, j<2). Thus, we may assume

T,.U,T, =Det[T,]a,, (95)

with

where a, a! )(1 <1i, j<2) are all independent of A. Thus,
we obtain

T,.U, =a,T,. (97)
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By comparing the coefficients of (i = 0,1), in both Hence, we obtain that a, = U,
sides of equation (97), we get that The proof is finished.
M 7,"p
— n n ~
o = T®  T@1® _ Proposition 6. The matrix Nr(ll) given in (80) has the same
Pntn non " form as NV in (70) by means of the transformation (89).
=0
Proof. Let us denote
ap =1, (98) A1) g, (A n)
(e TN =(2 0 =), o

T g 0o g2

2 =

1- T,(Lb) where

91 O =((T9(1 = TOYTD) - TOTOT (- g, W (101~ T) - TOTY
1
IO =TS - TOTO 4 IO (T T 10 (-1, ()~ TOT
1
IO T)g, +(1-TOT g, , - TOTOq, - TOTDg ) 4 L (101 - 10)

1-7
IO T - T)) e -1 (1= TO)p 4 (1-T)g s - TV, 4

G2 () = (((TOV 4 2(T@ VT - T@T® (1@ (7O | 1@ () | g ®

n,t

a) (b a b)\2 a) (b b a b
+ Tr<1 )TV(L )(Pnfl - qnfl) - Tr(t )(Tr(l )) (Pn—l - qnfl) + Tr(l )Tfl )(1 - Tr(l ))qn)A + Tr(l )(3T£l )

d d
+ Tr(1C)Tr(1 = Tr(1C) (pn—l - qn—l) - TiSC)qn - 2Tr(1 )qn))L + Tr(LC) ~ G-

TOTO(TY -1
MmﬂwaWW%wwmwww{ (" 1)

CTOTOTO 1) =TI (1) - TOTE s TOTO (p, - g,) + TO(1-TO)g,

1 TV -1
(d) (a) ((b) (b (o) (d) (= (b) n
+ T+ (T,0(1,) - 1) +(T,7 = 2)T,7 + T,O(T,” = 1) + 29,) + ~—
(100)
Based on (70) and (87), we get Through tediously long calculation, we can find that
9ij(A;,;n) = 0(i, j = 1,2). So, we have
1 1 .
Oit (n) = ~qn +<qn - A_ * Pu1 — qn71>oﬂi [n] + Iai [n])Z’ =12 (Tnt + Tanll))T:l = Det (Tn)ﬂn’ (102)

(101) where
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ﬁ<—n (-1)
/3(0) 4+ Pu 12
11 /1 /\
Ba= , (103)
(-1)
(0) (0) 22
21 22 1

and B9, 5V, BEY, BV, B and B;Y are all independent
of A.
By means of equation (102), we obtain

(T, +T,N\") = B,T,. (104)

Comparing the coeflicients of A (i =-1,0) in (104), we
have

0) _ =

1 = Gn-1~ Puts
(n_1L
11 2’
(=1)
1 =-L
(105)
(1) ~
21 = 4w
0) _ ~
22 = 9w
1
n__1
ﬁzz 2'
Thus,
(T, + T.NO)T, = N,V (106)
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The proof is finished.

The transformations (78) and (89), namely, from
(Vs P q,) to (¥,5 P, G,,) constitute a Darboux-Backlund
transformation of the NIDDE (69).

In conclusion, according to the Propositions 5 and 6, we
have the theorem.

Theorem 2. Every solution (p,,q,)" of the NLDDE (69) is
changed into a new solution (p,,q,) under the Dar-
boux-Bdcklund transformation (89).

5. Exact Solutions

Next, we will use the Darboux-Backlund transformation
(89) to find two solutions of equation (69).

First, we consider a seed solution of (69) (a simple special
solution) (p,,q,)" = (1,0)". Substituting this solution into
the corresponding Lax pair (7) and (70), we have

1,1 (107)
21 A
YV = Yo
0o L
21

Solving above two equations, we arrive at the solutions

A" exp(((A - 21%)t)/(21%)) — exp (~t/2))

Then, we obtain

NNy -1
v, = V/(2) (/\ t) = t >
()
(108)
~N"exp(((A - 21%)t)/(21%)) - exp (~t/21)
95" (A1) -1
¢, = o =
n (A1) t
‘b (53
v (aot) - kg (A t) (1 +x;)A} exp (—t/24;) (1 - 4,) i=1.2. (109)

o;[n] =

n

v t) = k0D (Apt) (1 —1)A exp((X; - 217)/(27)) + (1 + &, )exp (—t/2);)
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Using the Darboux-Bdcklund transformation (89) and
with the help of mathematical software "Mathematica,” we
obtain an exact solution of (69):

(d)
Tn
T+ 7T - T\

(/\102 [n] - 1,0, [”])2 (Al -\ - (/\1‘72 [n] - 1,0, [”])) (110)
M, (0[] = 0, [n]) (A = Ay) (0, [n] = Ay0, [n]) + (04 [n] = 0, [1]) (A, = A, - 1)))

= _ Tr(1C) _ (4 =4, = (A0, [n] - Ay0, [n]) (A, - 4,)
== T® "~ (0,[n] - 0, [n]) (A0, [n] = Ay 0, [n])A, A, () [1] = 0, [

Then, it easy to verify that (p,,q,)" = (1,-1)" is another Set
seed solution of (69). Substituting it into the corresponding
Lax pair, it is found that

1,1 (111)
2 A
v, = Vi
L
21

t(-31 - \/)L -61+1

X (A1) = exp

2
Xz(/\,t)=exp<t( )31 + VA —6A+1>
VA Zer+1

27" < )L+\//12—6/1+1 1+A- VA2—6)L+1> 2‘"‘1(—1+/\+\/A2—6A+1><1+A+\/AZ—6/\+1)

hy () = " :
: 2 6h+1 V2 6L+ 1
2"’)L n n
hz()t,n)zﬁ«uw A2—6A+1> —<1+/\+\/)L2—6)L+1> )
2” n n
ll()t,n):\/ﬁ<<1+l—\/)tz—6)u+l> —<1+/\+\/A2—6)L+1> )
2‘”_1(—1+)L+\/A2—6A+1)<1+/\—\/A2—6A+l)n 2‘”‘1<1—/\+\/A2—6A+1)(1+A+\//\2—6A+1>n
L(Ln) = N .
? V2 6L+ 1 V2 6L+ 1

(112)



14

By means of mathematical software “Mathematica,” we
may get that two real linear independent solutions as follows:

_ wi,”ma)
7P00) )

_ 3 (1)

=\ -0 :
b, (A, 1)

(113)

7 (1) = hy (A,n)

Mathematical Problems in Engineering

where

2 —6r+1

- My, (A,n) -

- Dy, A4,n) + A+ 1y, (A n) )(1 An) +x, (A, n)) P n)(Xl A n) —x, (A,n))
y )| ——— ),

2

2V —61 + 1
A=D1y, (A4,n) N XA n) + x, (A, n)

~(2 o) =k O )(/1 X (A, ) — Ay, (A, n)) hz(/\,n)((l

2VA2 -6+ 1

2VA7 —61+1 2 '

(114)

Lty =10
(00 ()< 27 —6r+1

-y, (A, n) -

-y, 4,n) + A+ 1y, (A n) Xl An) +x, (A, n)) L n)(Xl (A, n) —XZ(A,n))
LN ),

2

2V -6+ 1

50 =1, (MDD )

2V 61 + 1

Based on (87), we have

(A=1Dy,(4,n) +X1 A, n) +x, (A, n))
2VA7-61+1 2 '

Though the Darboux-Backlund transformation (89), we
arrive at another exact solution of (69):

=(2) L, EZD
51‘ [?’l] — V/n (Ai’ t) yl?r(tl)(ll’t)’ =1,2. (115)

7 (A t) =78, (Aiot)
_ T (MG, 1] = 4,3, (1) (<A + Ay + A5, [n] - 4,5, (1))
O B R VW W €07 B ) [ B W o A )

(116)

5 = L+ T (A =y + 1,8, [1] = 1,3, [n]) (WA, (3, [1] = 3, [n]) = (&, = 1,)3, [n]5, [n)
To-r® MA; (3, [n] =5, [n]) .

6. Conclusions and Remarks

In this paper, we have deduced two hierarchies of NIDDEs
from a discrete matrix spectral problem by the discrete zero
curvature equation. The obtained hierarchies, respectively,
work in concert with positive power and negative power
expansions of Lax operators with respect to the spectral
parameter. Two bi-Hamiltonian forms for the obtained
integrable hierarchies are given by the discrete trace
identity. And then, the Liouville integrability of the ob-
tained hierarchies is demonstrated. Furthermore, by the aid
of a gauge transformation of the Lax pair, a Dar-
boux-Backlund transformation for the first NIDDE in the
negative integrable hierarchy was presented. Applying the
obtained Darboux-Bécklund transformation and “Math-
ematica,” we get two exact solutions. These solutions also

are called one-fold solutions. This Darboux-Béicklund
transformation is continuously done N times, then N-fold
solution of (69) can be derived. Besides, we can get the
Darboux-Béicklund transformation of the first NIDDE (27)
in the positive hierarchy in a similar way. Recently, in the
soliton theory, some new types of explicit solutions for the
continuous soliton equations have been found, for in-
stance, abundant lump solutions and interaction solutions
[23-26]. For the NIDDE (69), explicit solutions of these
types can also be researched. These results will appear in
later papers.

In addition, many interesting problems deserve further
investigation for the NIDDEs in the obtained hierarchies
(25) and (68), such as symmetries constraint, integrable
coupling systems by semidirect sums of Lie algebra, sym-
metries, and master symmetries.
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