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Purpose. -e total variation (TV) minimization algorithm is an effective image reconstruction algorithm capable of accurately
reconstructing images from sparse and/or noisy data. -e TV model consists of two terms: a data fidelity term and a TV
regularization term. Two constrained TV models, data divergence-constrained TV minimization (DDcTV) and TV-con-
strained data divergence minimization (TVcDM), have been successfully applied to computed tomography (CT) and electron
paramagnetic resonance imaging (EPRI). In this work, we propose a new constrained TV model, a doubly constrained TV
(dcTV) model, which has the potential to further improve the reconstruction accuracy for the two terms which are both of
constraint forms.Methods. We perform an inverse crime study to validate the model and its Chambolle-Pock (CP) solver and
characterize the performance of the dcTV-CP algorithm in the context of CT. To demonstrate the superiority of the dcTV
model, we compare the convergence rate and the reconstruction accuracy with the DDcTV and TVcDM models via simulated
data. Results and Conclusions. -e performance-characterizing study shows that the dcTV-CP algorithm is an accurate and
convergent algorithm, with the model parameters impacting the reconstruction accuracy and the algorithm parameters
impacting the convergence path and rate. -e comparison studies show that the dcTV-CP algorithm has a relatively fast
convergence rate and can achieve higher reconstruction accuracy from sparse projections or noisy projections relative to the
other two single-constrained TV models. -e knowledge and insights gained in the work may be utilized in the application of
the new model in other imaging modalities including divergence-beam CT, magnetic resonance imaging (MRI), positron
emission tomography (PET), and EPRI.

1. Introduction

Image reconstruction algorithms are critical components of
accurate medical imaging [1]. -is includes various tomo-
graphic imaging modalities such as computed tomography
(CT), magnetic resonance imaging (MRI), positron emission
tomography (PET), and electron paramagnetic resonance
imaging (EPRI) [2]. -ere are mainly two reconstruction
algorithm frameworks, analytic and iterative algorithms [1].
Before 2006, analytic algorithms were the mainstream ap-
proach used in commercial imagers. However, in the wake of
increased interest in compressed sensing (CS) [3] and the
extensive use of graphics processing units (GPU) [4], iter-
ative algorithms gained popularity.

In fact, iterative algorithms are based on a discrete-to-
discrete (DD) imaging model, i.e., the reconstructed image

and the measured data are both discrete. -e DD imaging
model is a linear system of equations with the coefficient
matrix being the system matrix that represents the forward
imaging process. Usually, the linear system is large scale, ill-
posed, and underdetermined; therefore, the direct inversion
of the linear system is impossible. To achieve accurate re-
construction, the reconstructed image can be formulated as
the solution of an optimization model, in which prior in-
formation may be included. -e CS-based optimization
model uses the sparsity prior knowledge since the recon-
structed image always has a specific sparse transform [5].
-e total variation (TV) minimization algorithm is a clas-
sical optimization-based algorithm and has been widely and
successfully used in medical imaging [6, 7] due to its ca-
pability to accurately reconstruct images from sparse or
noisy data [8, 9].
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-e DD imaging model can be formulated as

g � Au, (1)

where u is a vector of size N, representing the reconstructed
image; g is a vector of size M, representing the measured
discrete data; and A is a matrix of size M × N, representing
the system matrix. For 2D parallel-beam CT, A indicates the
2D Radon transform [10]; for 2D fan-beam CTor 3D cone-
beam CT, A indicates the ray transform [11]; for MRI, A

indicates the Fourier transform [12], and for 3D EPRI, A

indicates the 3D Radon transform [13].
-e TV model consists of two terms, the data fidelity

term and the TV regularization term. Four specific TV
models of different constraint forms can be formulated as
follows:

u
o

� argmin
u

1
2
‖g − Au‖

2
2 + w‖u‖TV, (2)

u
o

� argmin
u

‖u‖TV, s.t. ‖g − Au‖2 ≤ ϵ, (3)

u
o

� argmin
u

‖g − Au‖
2
2, s.t. ‖u‖TV ≤ t1, (4)

u
o

� argmin
u

0, s.t. ‖u‖TV ≤ t1 and ‖g − Au‖2 ≤ ϵ. (5)

(2) is the unconstrained TV (ucTV)model; (3) is the data
divergence-constrained TV (DDcTV) minimization model;
(4) is the TV-constrained data divergence minimization
(TVcDM) model; and (5) is the newly proposed doubly
constrained TV (dcTV) model.

In equation (2), (1/2)‖g − Au‖22 is the data fidelity term
and ‖u‖TV is the TV regularization term. w is the model
parameter that balances the importance of data fidelity and
TV regularization. -is is a frequently used TV model,
especially in CT [14–17]. However, this model has a dis-
advantage in that the model parameter w does not have any
physical meaning and therefore is hard to tune for specific
reconstruction tasks. When w is very small, the convergence
rate will be very slow [18].

In equation (3), ϵ is the data tolerance bound. -e
DDcTV model has an advantage relative to ucTV in that the
model parameter ϵ has a clear physical meaning, as it in-
dicates the noise level of the data and the inconsistence level
of the linear system. -e DDcTV model was first proposed
by Sidky et al. in 2006 [8]. An algorithm for solving the
model is the famous adaptive steepest descent projection
onto convex sets (ASD-POCS) algorithm [9]. From 2006 to
2015, the ASD-POCS algorithm has been extensively studied
and its capability to accurately reconstruct images from
sparse-view projections or noisy projections in CBCT [19],
offset-detector CBCT [11], and EPRI [13] has been
demonstrated.

In equation (4), t1 is the TV bound. -is model pa-
rameter is not as sensitive as that in DDcTV, which is why
the TVcDM was later proposed as an improved model in
2014 [20] and has since been the subject of extensive studies.
-e model has been successful in short scan CBCT [21],

C-arm CBCT [22], positron emission tomography (PET)
[23], and EPRI [24].

In equation (5), there are two constraint terms, the data
divergence constraint and the TV constraint. Each con-
straint defines a convex set. -e objective function is a 0
function, which has no substantial optimization meaning,
and we just use it to formulate the optimization form.
Clearly, the solution of the dcTV model is any point in the
intersection set of the two convex sets. In fact, this type of
optimization problem is the so-called convex feasibility
problem [25–27]. -e convex feasibility problem may be
inconsistent or consistent. If all the convex sets have in-
tersection set, it is consistent. Otherwise, it is inconsistent.
By selecting appropriate model parameters, we can ensure
model consistency. Most solving algorithms of the convex
feasibility problem are based on projection onto convex sets
(POCS). From the initial solution estimate, it is sequentially
projected onto each convex set. POCS may always achieve a
convergent, useful solution. For the consistent case, the
POCS algorithm stops when the moving point enters the
intersection set. For the inconsistent case, the POCS algo-
rithm may converge to a point that is close enough to each
convex set. Clearly, the solution is not unique. But each
solution of the convex feasibility problem in the solution set
is considered to be equivalent. So, though the specific so-
lution depends on the initial solution estimate and the
solving algorithm, it does not impact the utility of the convex
feasibility problem.

-ere are two model parameters, t1 and ϵ, in the dcTV
model, which control the TV bound and data tolerance
bound. In the DDcTV model, only the data tolerance bound
is used; thus, the reconstructed image tends to be overly
smooth because of the minimization of TV if the data
tolerance bound is comparatively large to correspond to
higher noise. In the TVcDM model, only TV bound is used;
thus, the reconstructed image tends to be too noisy because
of the minimization of the data fidelity term if the projec-
tions have comparatively high noise. By comparison, the
dcTV model uses both model parameters to control the TV
value and the data tolerance, respectively, thus resulting in
enhanced capability to appropriately balance these effects
and provide more accurate image reconstruction. Using
these double constraints is equivalent to using two aspects of
quantitative prior knowledge. -is is the rationale behind
why the proposed dcTV model may be superior to the
DDcTV and TVcDM models. We may also use Figure 1 to
explain the possible superiority of the dcTV model.

We name the upper ellipse as ϵ-ellipse that indicates the
convex set determined by the data fidelity constraint and
name the lower ellipse as the t1-ellipse that indicates the
convex set determined by the TV constraint.

For the DDcTVmodel, the solution is the image with the
minimal TV value in the ϵ-ellipse. Clearly, the green point
indicates the solution for it has the minimal TV value. For
the TVcDM model, the solution is the image with the
minimal data divergence in the t1-ellipse. Clearly, the blue
point indicates the solution for it has the minimal data
divergence. If the ϵ and t1 are both the optimal value, i.e.,
ϵ � ‖g − Autruth‖2 and t1 � ‖utruth‖TV. It is clear that the blue
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point suffers from too small data divergence and the green
point suffers from too small TV value. If we may get the
tradeoff of the two points, the solution should be more
accurate. -e dcTV model has the solution set, i.e., the
intersection set of the two ellipses, in which each point is a
solution of the model and its data divergence is not so small
as that of the TVcDMmodel and its TV value is not so small
as that of the DDcTV model. Clearly, the dcTV model has
potential to achieve higher accuracy for it may achieve the
balance between noise and smoothness.

Selection of an algorithm for solving the above TV
models is difficult because of the nonsmooth TV term and
the large-scale/ill-posed linear system. However, designing
an appropriate algorithm for solving these models plays a
critical role in successfully applying these models for image
reconstruction. -ere are currently three main solving al-
gorithms: ASD-POCS, alternating direction method of
multipliers (ADMM) [14] (split Bregman [28]), and
Chambolle-Pock (CP) algorithm [18, 29–33]. ASD-POCS
has been used to solve the DDcTV model; ADMM or split
Bregman are usually used to solve the ucTV model; the CP
algorithm has been used to solve DDcTV and TVcDM
models [18, 20–23].-e CP algorithm has certain advantages
relative to the ADMM or ASD-POCS algorithms: (1) it may
solve all the convex optimizationmodels whether or not they
are smooth; (2) each subproblem has a closed form; and (3)
all of the algorithm parameters in the CP algorithm may be
explicitly determined analytically (i.e., via solving equations)
rather than empirically selecting suitable values [31]. So, we
select CP algorithm to be the solver of the newly proposed
dcTV model.

In this work, we perform two studies: (1) characteriza-
tion of the dcTV-CP algorithm performance and (2)
comparison of the three constrained TV algorithms (dcTV-
CP, DDcTV-CP, and TVcDM-CP algorithms). In the per-
formance characterization study, we conduct an inverse
crime study to validate the algorithm and investigate the
impact of the model parameters on reconstruction accuracy

and the impact of algorithm parameters on convergence
rate. In the comparison study, we compare the convergence
rate and the reconstruction accuracy of the three algorithms.

-ere are two related works that should be mentioned
here. One is on the first-order convex feasibility algorithms
for X-ray CT [34], in which the third model, inequality
constrained, TV (ICTV) model, is similar to our dcTV
model. However, this work just focused on the acceleration
effect of the CP2-ICTV algorithm and the iteration property
of the algorithm. -e other one is regarding the POCS al-
gorithm for solving the multiconstrained TV models [35].
However, this work just focused on the effectiveness of the
POCS algorithm. -e main aims of our work are different
from these two works. We focus on the performance
characterization of the dcTV-CP algorithm and the evalu-
ation of the potential superiority of the new algorithm
relative to the other two existing constrained TV algorithms,
the DDcTV-CP and TVcDM-CP algorithm. -is work may
continue to contribute to this type of TV algorithm.

In Section 2, we describe the methods according to the
chain: imaging system modeling, optimization program
design, CP algorithm instance derivation, model parameter
selection, convergence condition metrics, and reconstruc-
tion accuracy metrics. In Section 3, we present the algorithm
performance characterization and comparison studies. A
brief discussion of this work is given in Section 4.

2. Methods

-is work focuses on a novel dcTV model and its CP solving
algorithm. -e terms dcTV-CP and dcTV will be used in-
terchangeably. Without loss of generality, we evaluate the
algorithm in the context of 2D parallel CT. In this section, we
introduce the imaging system model, optimization program
design, reconstruction parameters, and metrics to evaluate
algorithm convergence and reconstructed image quality.

2.1. Imaging SystemModeling. -e imaging system model of
the 2D parallel CT is a linear system shown in equation (1).
-e system matrix A represents the forward imaging pro-
cess, i.e., the 2D Radon transform. Here, the system matrix
may also be referred to as a projection matrix, since the
projection data g is the multiplication of the projection
matrix A and the image u. -erefore, modeling of the
imaging system, which is the calculation of the system
matrix, is also the modeling of the projection method. -ere
are three common projection methods: pixel-driven, ray-
driven [36], and distance-driven [37] projection methods. In
this work, we use the novel accurate pixel-driven method
proposed by our group [38]. -e linear system is large scale,
ill-posed and often underdetermined, so it is almost im-
possible to solve it by calculating the pseudoinverse of A. So
we continue to model the imaging system as an optimization
model.

2.2. dcTV Model: An Optimization Model. To accurately
reconstruct an image according to the imaging model, one
may design the optimization model by incorporating useful

t1-ellipse

-ellipse

Figure 1: Solution relationship schematic diagram of the three
constrained TV models. -e upper ellipse of size ϵ indicates the
convex set determined by the data fidelity constraint. -e lower
ellipse of size t1 indicates the convex set determined by the TV
constraint. -e two red points indicate two of the solutions of the
dcTV model, the blue point indicates the solution of the TVcDM
model, and the green point indicates the solution of the DDcTV
model.
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prior information. In this work, we propose a new TV
model, the dcTV model shown in equation (5). -e data
fidelity term and the TV regularization term are both of
constraint forms. However, the two corresponding convex
functions can have very different magnitudes. -is may lead
to slow convergence rate. In order to avoid this, two al-
gorithm parameters are incorporated into the model to
balance their relative magnitudes, resulting in the optimi-
zation program given in the following equation:

u
o

� argmin
u

0, s.t. ]‖u‖TV ≤ ]t1 and λ‖g − Au‖2 ≤ λϵ. (6)

-e solution to this model is a point in the intersection
set of the two convex sets corresponding to the two con-
straint terms. Note that the two algorithm parameters do not
impact the size of the convex sets and therefore do not
impact the solution of the model. However, they may impact
the convergence rate of the solving algorithm.

2.3. dcTV-CP Algorithm. -e CP algorithm framework is a
powerful optimization framework. -e CP algorithm in-
stances of many optimization models, especially TV models,
have been derived and have had their convergence validated.
-e derivation process is more difficult than that of the
ADMM algorithm instances for the calculations of convex
conjugate functions and the proximal mapping of convex
functions. For that reason, we give the detailed derivation of
the dcTV-CP algorithm instance as follows.

2.3.1. CP Algorithm Framework. Here, we summarize the
CP algorithm framework briefly, as it will be used for the
derivation of the dcTV-CP algorithm instance. -e CP al-
gorithm framework solves optimization models of the form
given in the following equation:

x
o

� argmin
x

F(y) + G(x)􏼈 􏼉, s.t. y � Kx, (7)

where x and y are the vectors in vector spacesX andY; K is a
linear transform, indicating a linear mapping from X to Y; F

and G are two convex functions of y and x, respectively. -e
CP algorithm framework requires F and G to be convex but
does not require them to be smooth.

-e CP algorithm framework is shown in Algorithm 1
[18].

In Algorithm 1, ‖K‖SV is the largest singular value of
matrix K. F∗ is the convex conjugate of F. proxσ[F∗] and
proxτ[G] are two proximal operations. -e superscript T

indicates the matrix transpose.
-e convex conjugate of function H(z) may be defined

as

H
∗
(z) � max

c
z

T
c − H(c)􏽮 􏽯. (8)

-e proximal mapping may be defined as

proxa[H](z) � argmin
c

H(c) +
‖z − c‖22

2a
􏼨 􏼩. (9)

-e key to deriving the CP algorithm instance of a
specific optimization model is the calculation of the convex

conjugate function F∗ and the two proximal mapping op-
erations, proxσ[F∗] and proxτ[G].

2.3.2. Derivation of the dcTV-CP Algorithm Instance.
First, we define two indicator functions as follows:

δℓ2Ball(a)(x) ≡
0, ‖x‖2 ≤ a,

∞, ‖x‖2 > a,
􏼨 (10)

δℓ1Ball(a)(x) ≡
0, ‖x‖1 ≤ a,

∞, ‖x‖1 > a.
􏼨 (11)

An indicator function is equivalent to a convex set
constraint, and thus, a constrained optimization model can
be effectively converted into an unconstrained one. -e TV
term in equation (6) is defined as

‖u‖TV � |Du|mag

�����

�����1
, (12)

where D is a matrix of size 2N × N, indicating the discrete
gradient transform, and is of the form,

D �
D1

D2
􏼠 􏼡, (13)

where, D1 and D2 are both matrices of size N × N, indi-
cating the gradient transform along the x- and y-axes, re-
spectively. Assuming that ux,y, where
x ∈ [1, nx], y ∈ [1, ny], indicates a pixel of the 2D image;
then, the D1 transform is given by

D1u( 􏼁x,y �
ux,y − ux− 1,y, x ∈ 2, nx􏼂 􏼃,

0, x � 1.
􏼨 (14)

And the D2 transform is given by

D2u( 􏼁x,y �
ux,y − ux,y− 1, y ∈ 2, ny􏽨 􏽩,

0, y � 1.

⎧⎨

⎩ (15)

| · |mag in equation (12) is the magnitude of a 2D vector and
may be defined with ℓ1 norm or ℓ2 norm. In this work, we
use the ℓ2 norm to define | · |mag as

a

b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌mag
�

a

b

���������

���������2
�

������
a2 + b2

√
. (16)

-us, Du is a vector of size 2N, representing the discrete
gradient transform of the image u, whereas |Du|mag is a
vector of size N, representing the isotropic gradient mag-
nitude transform of the image, u. So, the TV norm defined in
equation (6) is the isotropic TV norm.

According to (10), (11), and (12), the dcTVmodel may be
reformulated into an unconstrained form as follows:

u
o

� argmin
u

0 + δℓ1Ball ]t1( ) |]Du|mag􏼐 􏼑 + δℓ2Ball(λϵ)(λg − λAu).

(17)

To derive the CP algorithm instance, we make the fol-
lowing mechanical associations with equation (7):
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x � u,

p � λAu,

q � ]Du ,

K �
λA

]D

⎛⎝ ⎞⎠ ,

y �
p

q

⎛⎝ ⎞⎠,

F(y) � F1(p) + F2(q) ,

F1(p) � δℓ2Ball(λϵ)(λg − p),

F2(q) � δℓ1Ball ]t1( ) |q|mag􏼐 􏼑,

G(x) � 0 .

(18)

According to equations (8) and (9), we get

F
∗
1(p) � λϵ‖p‖2 +〈p, λg〉 , (19)

proxσ F
∗
1􏼂 􏼃(p) � max ‖p − σλg‖2 − σλϵ, 0( 􏼁 ×

p − σλg

‖p − σλg‖2
.

(20)

In equation (19), 〈·, ·〉 indicates the inner product of
vectors. In equation (20), the right hand side is the shrinkage
operation or soft threshold operation. -e detailed deriva-
tion of equations (19) and (20) are not shown here, but
similar derivations may be found in Appendix C of reference
[18].

According to equations (8) and (9), we get

F
∗
2(q) � ]t1 |q|mag

�����

�����∞
, (21)

proxσ F
∗
2􏼂 􏼃(q) � q 1I −

σProjectOntoℓ1Ball]t1
|q|mag/σ􏼐 􏼑

|q|mag

⎛⎝ ⎞⎠.

(22)

In equation (21), ‖ · ‖∞ is the∞-norm of a vector, which
selects the largest element in the vector. In equation (22),
ProjectOntoℓ1Balla(x) is a projection operator which may

project a vector x onto the ℓ1 ball of radius a [20, 22]. 1I is a
“1” vector in space I � RN.

According to equation (9), we get

proxτ[G](x) � x. (23)

Substituting equations (18), (20), (22), and (23) into
Algorithm 1, we get Algorithm 2, the CP algorithm instance
of the dcTV model.

In Algorithm 2, u, �u ∈ RN, p, a ∈ RM, and q, c ∈ R2N.
In line 9, 1I ∈ RN is a ‘1’ vector in image space I. In line 2,
the calculation algorithm of L is shown in Algorithm 8 of
reference [18]. -e algorithm for ProjectOntoℓ1Ball in line 8
is shown in Algorithm 2 of reference [20].

2.4. Reconstruction Parameters. -e dcTV-CP algorithm
involves many parameters, which may be divided into two
types: model parameters and algorithm parameters. Model
parameters are those parameters that decide the final so-
lution, whereas algorithm parameters are those parameters
that cannot impact the final solution but may impact the
convergence rate and path.

Model parameters of the dcTV-CP algorithm shown in
Algorithm 2 include pixel size, projection method, data
tolerance bound, and TV bound. In this work, we use a
normalized DD model, so the pixel size is 1. -e projection
method used is the accurate pixel driven method proposed
by our group. -e data tolerance bound and TV bound are
two important model parameters in the dcTV model since
they determine the size of the convex sets defined by the data
fidelity term and TV regularization term. -us, they have an
important impact on the reconstruction accuracy. We will
study the approach to selecting these two model parameters
in Section 3.

Algorithm parameters consist of two types: the intro-
duced algorithm parameters (e.g., λ and ]) and the fixed
algorithm parameters in the CP algorithm (e.g.,
σ, τ, and θ). -e three fixed algorithm parameters may be
determined by equations in line 2 of Algorithm 2. -e two
introduced algorithm parameters may balance the mag-
nitude of the two convex functions corresponding to the
data fidelity term and TV regularization term. Selection of
these parameters impacts the convergence rate of the it-
eration process. We will study the approach to selecting
these parameters in Section 3.

(1) L � ‖KSV‖; σ � 1/L; τ � 1/L; θ � 1; n � 0
(2) x0 � 0; �x0 � 0; y0 � 0
(3) repeat
(4) yn+1 � proxσ[F∗](yn + σK�xn)

(5) xn+1 � proxτ[G](xn − τKTyn+1)

(6) �xn+1 � xn+1 + θ(xn+1 − xn)

(7) n � n + 1
(8) until n≥N

ALGORITHM 1: Pseudocode for N steps of the CP algorithm framework.
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2.5. Metrics for Practical Convergence Conditions

2.5.1. For Inverse Crime Study. Due to the fact that, by
definition, for inverse crime studies, the truth image exists,
the linear system is consistent and the projection data are
ideal and sufficient, we make use of the three metrics as
follows (equations (24)–(26)) to set up the practical con-
vergence condition:

NOE un( 􏼁 � RMSE un( 􏼁 �
un − utruth

����
����2��

N
√ , (24)

NDE un( 􏼁 �
g − Aun

����
����2

‖g‖2
, (25)

NTVE un( 􏼁 �
un

����
����TV − utruth

����
����TV􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

utruth
����

����TV
. (26)

-e normalized object error NOE, describes the distance
between the reconstructed image and the truth image. -e
normalized data error, NDE, describes the distance between
the projection data generated from the reconstructed image
and the measured projection data.-e normalized TV error,
NTVE, describes the distance between the TV value of the
reconstructed image and the truth image TV value. RMSE
stands for the root mean square error.

For the inverse crime study, we can simply set the
convergence conditions such that all the three metrics must
become negligibly small.

2.5.2. For the Nonideal Data Reconstruction. Except for the
special case of the inverse crime study, all image recon-
structions are nonideal. -e nonideal factors include in-
sufficient projection data (i.e., sparse data) and noisy
projection data. Even for simulation reconstructions from
nonideal data, where the truth image exists, the three metrics
shown in equations (24)–(26) cannot be used to formulate

practical convergence conditions because we do not know
what values to expect for those metrics. -us, the practical
convergence conditions may be set up based on the flatness
of each metric plotted versus iteration number, shown in the
following equations:

dNOE un( 􏼁 �
un − uref

����
����2 − un− 1 − uref

����
����2􏼐 􏼑

uref
����

����2
, (27)

dNDE un( 􏼁 �
g − Aun

����
����2 − g − Aun− 1

����
����2􏼐 􏼑

‖g‖2
, (28)

dNTVE un( 􏼁 �
un

����
����TV − un− 1

����
����TV􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

un

����
����TV

. (29)

-e differential normalized object error, dNOE, in-
dicates the flatness of the NOE iteration curve. -e dif-
ferential normalized data error, dNDE, indicates the
flatness of the NDE iteration curve. And the differential
normalized TV error, dNTVE, indicates the flatness of the
NTVE iteration curve. uref means the reference image.
For simulation reconstruction, it is the truth image,
whereas for real-data reconstruction, it may be the image
reconstructed by analytic algorithm or other high-quality
reference image.

2.6.Metrics for Image Quality Evaluation. -ere exists many
metrics to assess image quality. In this work, we choose to
use NOE, i.e. RMSE, of the reconstructed image relative to
the reference image, to be the metric:

NOE uconv( 􏼁 �
uconv − uref

����
����2��

N
√ . (30)

Here, uconv means the convergent solution.

INPUT: g, A, D, ϵ, t1; λ, b

(1) ]A � ‖A‖sv/‖D‖sv; ] � b]A

(2) L �
λA

]D

�������

�������sv
; σ � 1/L, τ � 1/L, θ � 1, n � 0

(3) u0 � 0; p0 � 0; q0 � 0; �u0 � 0
(4) Repeat
(5) a � pn + σλ(A�un − g)

(6) pn+1 � max (‖a‖2 − σλϵ, 0) × a/‖a‖2
(7) c � qn + σ]D�un

(8) s � ProjectOntoℓ1Ball]t1
(|c|mag/σ)

(9) qn+1 � c(1I − σs/|c|mag)

(10) un+1 � un − τλATpn+1 − τ]DTqn+1
(11) �un+1 � un+1 + θ(un+1 − un)

(12) n � n + 1
(13) Until n≥N

OUTPUT: -e designed solution uN.

ALGORITHM 2: Pseudocode for (N) steps of the dcTV-CP algorithm.
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3. Results

We perform two studies: one to characterize the perfor-
mance of the dcTV-CP algorithm and one to compare the
dcTV-CP, DDcTV-CP, and TVcDM-CP algorithms.

3.1. dcTV-CP Algorithm Performance Characterization.
-is section includes 4 parts: (1) an inverse crime study, (2)
determination of the impact of algorithm parameters on
convergence rate, (3) determination of the impact of the TV
bound on reconstruction accuracy, and (4) determination of
the impact of the data tolerance bound on reconstruction
accuracy.

3.1.1. Inverse Crime Study. Image reconstruction is a
classical inverse problem. Inverse crime studies are a
commonly used tool for end-to-end validation of a given
approach to inverting an inverse problem. -e whole re-
construction chain of the dcTV-CP algorithm includes
imaging system modeling, optimization model design,
solving algorithm design, and its computer implementa-
tion. -e inverse crime is considered successful if the
reconstructed image is accurate enough such that any
residual errors are due to computer float error. For 8-bit
grayscale images, there are only 256 possible discrete in-
tensity values to assign to a given pixel. -erefore, a suc-
cessful inverse crime study in this case will produce a
reconstructed image with NOE relative to the truth image
being less than or equal to 10− 4.

-e phantom used for the inverse crime study is the
Shepp–Logan phantom of size 256 × 256. -e parallel
scanning configuration is used. -e projection data are also
of size 256 × 256, which means there are 256 projections
evenly distributed in the angle range of [0, π]and there are
256 measurements on each projection. -e origin of the
imaging coordinate system is located at [128, 128] of the
phantom. -e axis range of each projection signal is
− 128 : 127. -e projections are generated by use of Eq. (1);
thus ,the linear system is completely consistent.

-e system matrix is determined by use of the accurate
pixel driven projection method. Since the projection data are
ideal, the model parameters are set as ϵ � 0 and
t1 � ‖utruth‖TV. To get fast convergence, the two algorithm
parameters are set as λ � 1 and ] � 0.1]A.

-e inverse crime sign, i.e., the convergence condition, is
set as

NOE un( 􏼁≤ 10− 4
,

NDE un( 􏼁≤ 10− 4
,

NTVE un( 􏼁≤ 10− 3
.

(31)

-e dcTV-CP algorithm for the study stops at iteration
2910. Figures 2(a) and 2(b) show the truth image and the
reconstructed image, respectively. It can be seen that the
two images are visually identical. Figure 2(c) shows the
profiles of the vertical center-line of the images. It shows
that the reconstructed profile completely overlaps with the

truth profile. At the convergence point, NOE< 10− 4. Both
the qualitative and the quantitative evaluations show that
the inverse crime succeeded. -is means that the design
and implementation of the dcTV-CP algorithm are both
correct.

-e iteration trends of the three metrics for the dcTV-CP
algorithm are shown in Figures 3(a)–3(c), respectively.

From Figure 3, one may see that the three metrics de-
crease monotonically with progressive iterations. Even at the
convergence point, the three metrics still maintain the de-
creasing trend. -is shows that the dcTV-CP algorithm is
convergent. It is noted that all the iteration curves exhibit a
slight oscillatory behavior, which can also be observed in
other CP algorithms, for example, DDcTV-CP and TVcDM-
CP algorithms. Maybe, this is the iteration law of all the CP
algorithms. However, this does not impact the overall
downward trend towards convergence.

3.1.2. Impact of Algorithm Parameters on Convergence Rate.
-e two algorithm parameters in the dcTV-CP algorithm are
λ and ]. To investigate their impact on the convergence rate,
we varied λ and ] and compared convergence rates.

-e Shepp–Logan phantom was used for this study as
well.-e imaging conditions and parameter selection are the
same as those in the inverse crime study, except that the
number of projections is 60 and the iteration number is
1500. We used three different combinations of values for
λ and ] : λ � 1 and ] � 0.1]A, λ � 1 and ] � ]A, and
λ � 1 and ] � 10]A.

Figure 4 shows the error images between the recon-
structed images and the Shepp–Logan phantom. Figure 5
shows the iteration trend of NOE for the image recon-
structions with the three different parameter combinations.
From Figure 4, based on error-image observation after a
fixed number of iterations, it can be seen that λ � 1 and ] �

0.1]A leads to the fastest convergence, whereas λ � 1 and ] �

10]A leads to the slowest convergence. -is is further evi-
denced in Figure 5.

-ese results show that the two algorithm parameters
have significant impact on the convergence rate. For a
specific image reconstruction application, one may run the
reconstruction algorithm with a different combination of
parameter values and select the most appropriate values that
provide rapid convergence for that specific application.

3.1.3. Impact of TV Bound on Reconstruction Accuracy.
-ere are two model parameters, the TV bound and the data
tolerance bound, whose selection may impact the recon-
struction accuracy.

For the TVcDM-CP algorithm and DDcTV algorithm, it
is known how the model parameters impact the recon-
struction accuracy. For the DDcTV algorithm, the model
parameter is the data tolerance bound. In reconstruction
from noisy data, a large data tolerance value can lead to an
overly smooth image because an image with a smaller TV
value can be obtained in larger convex set defined by the data
fidelity term. Conversely, a small data tolerance value can
lead to a noisy image because the noise information in the
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(a) (b) (c)

Figure 4: Error image between the reconstructed images and the truth image.-e error image is the absolute value of the difference between
the reconstructed image and the truth image. (a) λ � 1 and ] � 0.1]A. (b) λ � 1 and ] � ]A. (c) λ � 1 and ] � 10]A. -e display window is
[0, 0.01].
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Figure 2: dcTV-CP reconstruction images of the Shepp–Logan phantom. (a) -e Shepp–Logan phantom image (truth). (b) -e
reconstructed image. (c) Comparison of the profiles on the vertical center-line of the phantom image and the reconstructed image.
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Figure 3: Convergence behavior of the dcTV-CP algorithm for reconstructing the Shepp–Logan phantom. (a) -e object error NOE. (b)
-e data error NDE. (c) -e relative TV error NTVE, each as a function of the iteration number.
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projection data will be propagated into the reconstructed
image. For the TVcDM-CP algorithm, the TV bound is the
model parameter. In noisy data reconstruction, too large of a
TV bound leads to a noisy image because the TV noise-
reduction effect is suppressed, whereas too small of a TV
bound leads to an overly smooth image because low TV
value corresponds to a smooth image.

In order to isolate the effect of each model parameter for
the dcTV-CP algorithm, their impact on reconstruction is
studied separately.

As before, the Shepp–Logan phantom is of size
256 × 256; the projection data are of size 256 × 60. Gaussian
noise with magnitude of 45 dB is added to the projections,
resulting in ϵtruth � 24.59. -e model parameter ϵ is set to be
ϵtruth, and the model parameter t1 is set to be 0.6, 0.8, 1, 1.2,
and 1.4 times of utruth TV, to determine how it may impact
reconstruction accuracy. We set λ � 1 and ] � 0.1]A to get
fast convergence. -e practical convergence conditions are
given in the following equation:

dNOE un( 􏼁≤ 10− 3
,

dNDE un( 􏼁≤ 10− 3
,

dNTVE un( 􏼁≤ 10− 3
.

(32)

-e reconstructed images and the error images are
shown in Figures 6 and 7, respectively, and the plot of NOE
as function of t1 is shown in Figure 8.

From Figure 6, it can be seen that the image becomes
smoother when the TV bound is decreased, i.e., more noisy
when the TV bound is increased. It appears that a multiple of
1 may achieve the best tradeoff. -e error images in Figure 7
are displayed with a narrow intensity window to further
demonstrate this phenomenon. It can be clearly seen that a
multiple of 1 achieves the best tradeoff. Figure 8 shows the
NOE of the five reconstructed images. A multiple of 1

corresponds to the lowest reconstruction error. Both the
qualitative and quantitative analysis, therefore, show that a
multiple of 1 may achieve the most accurate reconstruction.

3.1.4. Impact of Data Tolerance Bound on Reconstruction
Accuracy. -e impact of the data tolerance bound on re-
construction accuracy is further investigated by repeating
the reconstructions in the last section except now; t1 is fixed
as the truth TV and ϵ is varied as 0.1, 0.2, 0.3, 0.4, 0.5 0.6, 0.8,
1, 1.2 and 1.4 times of ϵtruth.

For briefness, we just show the plot of NOE of the
reconstructed images as function of ϵ in Figure 9.

From Figure 9, it can be seen that 0.4 times of the truth
data tolerance bound achieve the lowest reconstruction error
and, therefore, the most accurate reconstruction. -e ra-
tionale of this phenomenon is that a large data tolerance
bound corresponds to a large convex set defined by the data
fidelity term; therefore, a smooth image may be selected in
the set. A small data tolerance bound corresponds to a small
convex set; therefore, the reconstructed image tends to be
noisy due to the existence of noise in the projections.

3.2. Comparison of the dcTV-CP, DDcTV-CP, and TVcDM-
CP Algorithms. In this section, three comparisons are made
between the dcTV-CP, DDcTV-CP, and TVcDM-CP al-
gorithms: comparison of convergence rate, comparison of
reconstruction capability from sparse projections, and
comparison of reconstruction capability from noisy pro-
jections.-eDDcTV-CP algorithm is shown in Algorithm 3,
and the TVcDM-CP algorithm is shown in Algorithm 4.

3.2.1. Convergence Rate Comparison. We use the FORBILD
phantom to perform this comparison. -e imaging condi-
tions and parameters are the same as those used in the
inverse crime study except that the number of projections is
60. -e convergence condition is NOE ≤ 5 × 10− 4.

-e convergence curves of NOE are shown in Figure 10
for the FORBILD reconstruction. It can be seen that the
TVcDM-CP algorithm converges the fastest, the DDcTV-CP
algorithm converges the slowest, and the newly proposed
dcTV-CP algorithm has a slightly slower convergence rate
than the TVcDM-CP algorithm.

3.2.2. Comparison of Reconstruction Accuracy from Sparse
Projections. TV-based algorithms can accurately recon-
struct images from sparse-view projections since this type of
optimization model embodies the idea of compressed
sensing. In this section, we will compare the sparse re-
construction capability of the three different TV algorithms.
Each algorithm has a different optimization meaning dic-
tated by their different constraint forms. So they may per-
form different sparse reconstruction capabilities.

To demonstrate the capability of each algorithm to
handle sparse projection data, images are reconstructed
from 10, 20, 30, 40, and 50 projections. -e imaging con-
ditions and parameters are the same as in the inverse crime
study except that we use the different projection numbers
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Figure 5: Iteration curves of NOE for the dcTV-CP algorithms
using different combinations of values for λ and ].
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mentioned above. -e FORBILD phantom is used to per-
form this study.

Figures 11 and 12 show the reconstructed FORBILD
images and the error images, respectively. Figure 13 shows
the plot of NOE as function of the projection number. From
Figure 11, it can be seen that all the three TV algorithms
achieve accurate sparse reconstruction, as it is hard to tell the
difference between the images reconstructed from 20, 30, 40,
and 50 projections and the truth image for any TV algorithm
(see images from the second to the fifth column). From the
images reconstructed from 10 projections, we may see that

the DDcTV image is too smooth, whereas the TVcDM and
dcTV images have clear streak artifacts. From Figure 13, we
may see that the order of reconstruction accuracy from
high to low is dcTV, TVcDM, and then DDcTV if ≥20
projections are used. From Figure 12, it can be seen that the
dcTV error image reconstructed from 40 projections is
subtle, whereas the features in the DDcTV error image and
TVcDM error image are so pronounced that the structure
of the phantom may be distinguished. -is analysis shows
that the dcTV-CP algorithm can achieve the highest re-
construction accuracy.

(a) (b) (c) (d) (e)

Figure 6: Images reconstructed using the dcTV-CP algorithm and varying t1. (a–e) t1 of values 0.6, 0.8, 1, 1.2 and 1.4 times ‖utruth‖TV. -e
display window is [0, 1].

(a) (b) (c) (d) (e)

Figure 7: Reconstructed error images corresponding to the images in Figure 6. -e display window is [0, 0.05].
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Figure 8: Plot of NOE as function of multiple of t1 relative to the
truth TV.
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Figure 9: Plot of NOE as function of multiple of ϵ relative to the
truth ϵ.
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3.2.3. Comparison of Reconstruction Accuracy from Noisy
Projections. TV algorithms can achieve accurate recon-
structions not only from sparse-view projections but also
from noisy projections. In fact, TVmodels have been used in
image denoising before its wide application in image re-
construction from 2006. -e capability to accurately re-
construct images from noisy projection data is very useful
for low-dose CT, in which the dose for each view is reduced,
resulting in increased projection noise. -e DDcTV and
TVcDM models have been deeply investigated in low-dose
CT and have shown their capability of suppressing the as-
sociated noise. Here, we compare the proposed dcTV-CP
algorithm’s capability to reconstruct images from noisy
projections with that of the established DDcTV and TVcDM
models.

-e FORBILD phantom is used. -e imaging conditions
and parameters are the same as those in the last section
except that the number of projections is fixed at 60 and the
SNR of the noisy projections is varied from 30 dB, 35 dB,
40 dB, 45 dB, to 50 dB.

INPUT: g, A, Dϵ; λ, b

(1) ]A � ‖A‖sv/‖D‖sv; ] � b]A

(2) L �
λA

]D

�������

�������sv
; σ � 1/L, τ � 1/L, θ � 1, n � 0

(3) u0 � 0; p0 � 0; q0 � 0; �u0 � 0
(4) Repeat
(5) a � pn + σλ(A�un − g)

(6) pn+1 � max(‖a‖2 − σλϵ, 0) × a/‖a‖2
(7) c � qn + σ]D�un

(8) qn+1 � c/max(1I, |c|mag)

(9) un+1 � un − τλATpn+1 − τ]DTqn+1
(10) �un+1 � un+1 + θ(un+1 − un)

(11) n � n + 1
(12) Until n≥N

OUTPUT: -e designed solution uN.

ALGORITHM 3: Pseudocode for N steps of the DDcTV-CP algorithm instance.

INPUT: g, A, D, t1; λ, b

(1) ]A � ‖A‖SV/‖D‖SV, ] � b]A

(2) L �
A

]D

�������

�������
SV

; σ � 1/L; τ � 1/L; θ � 1; n � 0

(3) u0 � 0; �u0 � 0; p0 � 0; q0 � 0
(4) Repeat
(5) pn+1 � (pn + σ(A�un − g))/(1 + σ/λ)

(6) a � qn + σ]D�un

(7) s � ProjectOntoℓ1Ball]t1
(|a|mag/σ)

(8) qn+1 � a(1I − σs/|a|mag)

(9) un+1 � un − τ(ATpn+1 + ]DTqn+1)

(10) �un+1 � un+1 + θ(un+1 − un)

(11) n � n + 1
(12) Until n≥N

OUTPUT: -e designed solution uN.

ALGORITHM 4: Pseudocode for N steps of the TVcDM-CP algorithm instance.
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Figure 10: Plot of NOE as function of iteration number for the
three algorithms.
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Figures 14 and 15 show the reconstructed images and the
corresponding error images, respectively, and Figure 16
shows the plot of NOE of the reconstructed images as
function of SNR.

From Figure 14, it can be seen that the three TV al-
gorithms all have the capability to accurately reconstruct
images from projections with SNR of 35 dB to 50 dB. Subtle
differences between the three images reconstructed from
projections with SNR of 30 dB can be observed: the DDcTV
image is smoother, the TVcDM image is noisier, but the
dcTV image appears to balance these two characteristics well
(i.e., not as smooth as the DDcTV image and not as noisy as
the TVcDM image). -is can be clearly seen in Figure 15,
where the DDcTV error image exhibits strong features near
high-frequency edges in the phantom, the TVcDM error
image has a large degree of random differences, but the dcTV
error image achieves the balance between these two. -is is
evidenced quantitatively in Figure 16, where the dcTV-CP

algorithm achieves the highest reconstruction accuracy in
the context of image reconstruction from noisy projections.

4. Discussion and Conclusions

-e TV-based reconstruction algorithms have the capability
to accurately reconstruct images from sparse-view projec-
tions and/or noisy projections in CT. -is is very useful for
low-dose CTas these cases correspond to two low-dose data
acquisition patterns. In MRI and EPRI, the TV algorithm
may achieve accurate image reconstruction frommore rapid
data acquisition sequences.

-ough the three constrained TV algorithms, DDcTV,
TVcDM, and dcTV algorithm, can all achieve accurate re-
constructions from sparse data and/or noisy data, their
reconstruction characteristics and utility are different.

In this work, we propose the novel dcTV-CP algo-
rithm and characterize its performance by analyzing its
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Figure 11: FORBILD phantom images reconstructed using the DDcTV-CP (the first row), TVcDM-CP (the second row), and dcTV-CP
(the third row) algorithms from 10, 20, 30, 40, and 50 projections. -e display window is [0, 1].

(a) (b) (c)

Figure 12: FORBILD phantom reconstructed error images from 40 projections using the DDcTV (the first column), TVcDM (the second
column), and dcTV (the third column) algorithms. -e display window is [0, 0.01].
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Figure 13: Plots of NOE as function of the projection number.
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Figure 14: Reconstructed FORBILD images using the DDcTV-CP (the first row), TVcDM-CP (the second row), and dcTV-CP (the third
row) algorithms from projections with SNR of 30 dB, 35 dB, 40 dB, 45 dB, and 50 dB. -e display window is [0, 1].
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Figure 15: FORBILD error images reconstructed from projections with SNR of 30 dB using the DDcTV (the first column), TVcDM (the
second column), and dcTV (the third column) algorithms. -e display window is [0, 0.01].
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convergence behavior and exploring how to select the
model parameters and algorithm parameters. -ese
studies show that dcTV-CP algorithm is convergent, the
two introduced algorithm parameters impact the con-
vergence rate significantly and should be chosen to suit a
given application, and both the TV bound and data tol-
erance bound impact the reconstruction accuracy and
therefore should be selected to achieve appropriate
tradeoffs in image quality. One may always use the op-
timal TV bound for the TVcDM model and the optimal
data tolerance bound for the DDcTV model as the two
optimal model parameters for the dcTV model to achieve
the highest or near-highest reconstruction accuracy.
According to the optimization meaning explanation of the
convex-ellipses schematic diagram of the three TV
models, we know that this approach for selecting the two
model parameters may guarantee the existence of the
intersection set of the two convex sets.

We have systematically compared the three TV models
using the same solving algorithm, i.e., the CP algorithm.
Comparison of the convergence rate demonstrated that the
dcTV-CP and TVcDM-CP algorithms have faster conver-
gence rates than the DDcTV-CP algorithm. In the context of
sparse reconstruction, studies show that the dcTV-CP al-
gorithm achieves the highest accuracy. In the context of
nonideal data reconstruction, the studies show that the
dcTV-CP algorithm achieves the highest accuracy.

-e novel dcTV model proposed in this work tries to
find a balance between the issues of the DDcTV and
TVcDM models. -e dcTV model uses not only the TV
prior but also the data fidelity prior quantitatively.
-erefore, the TV bound controls the TV value quanti-
tatively and the data tolerance bound controls the data
divergence value quantitatively. If the TV bound is the
truth TV and the data tolerance bound can optimally
control the noise and system inconsistency, then the dcTV
model can achieve more accurate reconstructions relative

to the DDcTV and TVcDM models. -e theoretical
analysis and the evaluation experiments consistently show
that the dcTV-CP algorithm of appropriately selected
model parameters and algorithm parameters may be su-
perior to the existing single-constrained TV algorithm, the
DDcTV-CP and TVcDM-CP algorithms.

-e insight and knowledge gained in this work may also
be extended to other optimization models in image re-
construction.-ough solving algorithms for multiconstraint
models are practically difficult to design, we have shown that
the CP algorithm framework is completely capable. Also, we
suggest the use of a multiconstraint optimization model in
image denoising, image restoration, and other image pro-
cessing task for its potential to further improve the image
quality.
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