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,e equivalence of systems plays a critical role in multidimensional systems, which are usually represented by the multivariate
polynomial matrices. ,e Smith form of a matrix is one of the important research contents in polynomial matrices. ,is paper
mainly investigates the Smith forms of some multivariate polynomial matrices. We have obtained several new results and criteria
on the reduction of a given multivariate polynomial matrix to its Smith form. ,ese criteria are easily checked by computing the
minors of lower order of the given matrix.

1. Introduction

,e subject of multidimensional (nD) systems is concerned
with a mathematical framework for tackling a broad range of
paradigms whose analysis or synthesis requires the use of
functions and polynomials in several complex variables.
Many physical systems, multiple-input multiple-output
systems, data analysis procedures, and learning algorithms
have a natural nD structure due to the presence of one spatial
variable. So the theory of nD systems is widely applied in
areas of image processing, linear multipass processes, geo-
physical exploration, iterative learning control systems, etc.
[1–9]. ,e equivalence of systems is one important research
problem in the nD system theory. It is often required to
transform a given system into a simpler but equivalent form.
As we all know, a multivariate (nD) polynomial matrix is
often used to represent an nD system. So the equivalence
problem of nD system is often transformed into the
equivalence problem of nD polynomial matrices. For 1D
systems, the equivalence problem has been solved [5, 7] by
the quite mature theory of 1D polynomial matrix. For nD
(n≥ 2) case, since the equivalence problem is equivalent to a
highly difficult problem, the isomorphism problem of two
finitely presented modules, there is no hope that the
equivalence problem can be solved completely. ,ere exist

two primary problems on equivalence of multivariate (nD)

polynomial matrices: one is to reduce an nD polynomial
matrix to its Smith form. Kung et al. have obtained some
interesting results about the equivalence of nD polynomial
matrices to their Smith forms [5, 6, 10–13]. Furthermore, the
Smith forms of some nD polynomial matrices can be
computed by Maple [14]. ,e other is called Serre’s re-
duction problem. One of the motivations for doing Serre’s
reduction for an nD polynomial matrix is to reduce an nD
system to an equivalent system containing fewer equations
and unknowns. Cluzeau et al. have studied Serre’s reduction
and presented some new interesting results in [15, 16].

,e following problem, proposed by Serre in 1960s, plays
an important role in the research problems of nD systems. It
is not only the problem of reducing a matrix to its Smith
form, but also Serre’s reduction problem.

Problem 1. When is an nD (n≥ 2) polynomial matrix F(z)

equivalent to the matrix

S(z) �
Il− 1 0l− 1,1

01,l− 1 d
 , (1)

where d � detF(z)? Il− 1 is the (l − 1) × (l − 1) identity
matrix and 0l,m is the l × m zero matrix.
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For the real number field R, Lin et al. [12] have in-
vestigated Problem 1 for F(z) ∈ Rl×l[z] with detF(z) � z1 −

f(z2, . . . , zn) and proved that F(z) is equivalent to its Smith
form. Li et al. [17] have investigated Problem 1 for
F(z) ∈ Rl×l[z] with detF(z) � (z1 − f(z2, . . . , zn))q and
obtained that F(z) is equivalent to its Smith form with F(z)

satisfying some criteria. Cluzeau et al. [13–16] also studied it
and gave some new interesting results.

In this paper, we will investigate Problem 1 for the case of
F(z) ∈ Kl×l[z] and det F(z) � (z1 − f1(z2, . . . ,

zn))q1(z2 − f2(z3, . . . , zn))q2 , where q1, q2 are nonnegative
integers, K is an arbitrary field (even a function field or a
finite field). ,en, we investigate the Smith forms of some
rectangular polynomial matrices and consider the following
problem.

Problem 2. Let F(z) ∈ Kl×m[z](l≤m) with d(F(z)) � (z1−

f(z2, . . . , zn))q1 · (z2 − f2(z3, . . . , zn))q2 , where d(F(z)) is
the greatest common divisor of the l × l minors of F(z),
q1, q2 are nonnegative integers. When is F(z) equivalent to
its Smith form?

,e paper is organized as follows. In Section 2, we give
some basic concepts on the equivalence of nD polynomial
matrices. In Section 3, main results and some tractable
criteria on equivalence of several kinds of polynomial ma-
trices are proposed. In Section 4, an example is provided to
illustrate the effectiveness of our constructive method.

2. Preliminaries

In the following, K[z] � K[z1, z2, . . . , zn] will denote the
polynomial ring in n variables z1, z2, . . . , zn with coefficients
in arbitrary field K, K will be an algebraic closed field of K,
K

n will be the n dimensional vector space over K, Kl×m[z]

will denote the set of l × m matrices with their entries in
K[z], Kl×m[z2, . . . , zn] will denote the set of l × m matrices
with their entries in K[z2, . . . , zn], the r × r identity matrix
will be denoted by Ir and the r × t zero matrix will be
denoted by 0r,t. A matrix over K[z] with its determinant in
K is said to be unimodular. ,roughout the paper, the
argument (z) is omitted whenever its omission does not
cause confusion.

Definition 1 (see [18]).Let F(z) ∈ Kl×m[z] be of full row
(column) rank. ,en F(z) is said to be zero left prime (zero
right prime) if the l × l(m × m) minors of F(z) generate the
unit ideal K[z].

If F(z) ∈ Kl×m[z] is zero left prime (zero right prime),
then F(z) is called simply to be ZLP (ZRP). According to the
Quillen-Suslin theorem [19], we have that F(z) is ZLP if and
only if there is a matrix N(z) ∈ Km×m[z] such that
F(z) · N(z) � (Il 0l×(m− l)). It is also equivalent to say that
any ZLP (ZRP) matrix over K[z] can be completed to an
unimodular (invertible) matrix.

Definition 2 Let F(z) ∈ Kl×m[z], l≤m, and Φi be poly-
nomially defined as follows:

Φi �
di(F)/di− 1(F), 1≤ i≤ r,

0, r< i≤ l,
 (2)

where r is the rank of F(z), d0(F) ≡ 1, di(F) is the greatest
common divisor of the i × i minors of F(z), and Φi satisfies
Φi |Φi+1, i � 1, . . . , l. ,en, we define the Smith form of F(z)

as

S � diag Φi  0l×(m− l) . (3)

Definition 3 (see [17]). Let T1(z) and T2(z) denote two
matrices in Kl×m[z], T1(z), and T2(z) are said to be
equivalent if there exist two invertible matrices
M(z) ∈ Kl×l[z] and N(z) ∈ Km×m[z] such that
T2(z) � M(z)T1(z)N(z).

3. Main Results

In this section, the main results are presented. First, we give
some well-known results and provide an answer to Problem
1 for case of detF(z) � (z1 − f1(z2, . . . , zn))(z2 − f2
(z3, . . . , zn)) in Subsection 3.1. ,en we extend this result to
more general case of detF(z) � (z1 − f1(z2, . . . , zn))

(z2 − f2(z3, . . . , zn))q2 and present a complete answer to
Problem 2 in Subsection 3.2.

3.1. Equivalent*eorem. In order to prove our main results,
we first give several useful lemmas.

Lemma 1 (see [20]). Let f1(z), . . . , fs(z) ∈ K[z], then
f1(z), . . . , fs(z) have no common zeros in K

n (are zero
coprime) if and only if there exist u1(z), . . . , us(z) ∈ K[z]

such that

u1(z)f1(z) + · · · + us(z)fs(z) � 1, (4)

i.e., f1(z), . . . , fs(z) is a ZLP row vector in K1×s[z], or
f1(z), . . . , fs(z) generate the unit ideal K[z].

Lemma 2 (see [20]). Let g(z) ∈ K[z1, z2, . . . , zn] and
f(z2, . . . , zn) ∈ K[z2, . . . , zn]. Suppose that g(f(z2, . . . ,

zn), z2, . . . , zn) � 0, then z1 − f(z2, . . . , zn) is a divisor of
g(z).

Lemma 3 (see [17]). Let F(z), F1(z), F2(z) ∈ Kl×l[z],
F(z) � F1(z) · F2(z). If the (l − 1) × (l − 1) minors of
F(z) have no common zeros in K

n (generate K[z]), then the
(l − 1) × (l − 1) minors of Fi(z) have no common zeros in K

n

(generate K[z]) for i � 1, 2.

Proof. ,e proof is similar to that of Lemma 2.2 in [17], so it
is omitted here. □

Lemma 4 (see [18]). Let Q ∈ K(l− 1)×l[z] be of normal full
rank, if the reduced minors of Q generate K[z], then there
exists a ZLP matrix w ∈ Kl×1[z] such that Q · w � 0(l− 1),1.

,e following result is presented in [20], for the con-
venience of the reader, we record it here.
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Lemma 5 (see [20]). Let F(z) � F(z1, z2, . . . , zn) ∈ Kl×l[z],
f(z2, . . . , zn) ∈ K[z2, . . . , zn], if the (l − 1) × (l − 1) minors
of F(z) generate K[z], then the (l − 1) × (l − 1) minors of
F(f(z2, . . . , zn), z2, . . . , zn) also generate K[z].

Proof. Assume that the (l − 1) × (l − 1) minors of F(z) are
c1(z1, . . . , zn), . . . , cr(z1, . . . , zn). If the (l − 1) × (l − 1)

minors of F(z) generate K[z], then there exist
u1(z1, z2, . . . , zn), . . . , ur(z1, z2, . . . , zn) ∈ K[z] such that

u1 z1, z2, . . . , zn( c1 z1, z2, . . . , zn(  + · · ·

+ ur z1, z2, . . . , zn( cr z1, . . . , zn(  � 1.
(5)

Substitute z1 � f(z2, . . . , zn), then

u1 f z2, . . . , zn( , z2, . . . , zn( c1 f z2, . . . , zn( , z2, . . . , zn( 

+ · · · + ur f z2, . . . , zn( , z2, . . . , zn( cr

f z2, . . . , zn( , z2, . . . , zn(  � 1.

(6)

It is straightforward that c1(f(z2, . . . , zn),

z2, . . . , zn)cr(f(z2, . . . , zn), z2, . . . , zn) are the (l − 1) × (l −

1) minors of F(f(z2, . . . , zn), z2, . . . , zn). ,us the (l − 1) ×

(l − 1) minors of F(f(z2, . . . , zn), z2, . . . , zn) also generate
K[z]. □

Lemma 6. Let F(z) ∈ Kl×l[z], then detF(z) and the (l −

1) × (l − 1) minors of F(z) have no common zeros if and only
if the (l − 1) × (l − 1) minors of F(z) have no common zeros.

Proof. Necessity. Assuming that the (l − 1) × (l − 1) minors
of F(z) have a common zero point a0, by Laplace expansion,

we can easily know that a0 is also a zero point of detF(z),
contradicting the fact that detF(z) and the (l − 1) × (l − 1)

minors of F(z) have no common zeros. ,us, the (l − 1) ×

(l − 1) minors of F(z) have no common zeros.

Sufficiency. It is straightforward.
For the convenience, we first define P1(z), P2(z), P(z) as

follows:

P1(z) �
Il− 1 0l− 1,1

01,l− 1 z1 − f1 z2, . . . , zn( 
 ,

P2(z) �
Il− 1 0l− 1,1

01,l− 1 z2 − f2 z3, . . . , zn( 
 ,

P(z) �
Il− 1 0l− 1,1

01,l− 1 z1 − f1 z2, . . . , zn( (  z2 − f2 z3, . . . , zn( ( 
 .

(7)

We have the following key conclusion which is very
important to derive our main results. □

Lemma 7. Let F(z) ∈ Kl×l[z] and F(z) � P1(z)V(z)P2(z),
where V(z) ∈ Kl×l[z2, . . . , zn] is unimodular. If all the (l −

1) × (l − 1) minors of F(z) generate K[z], then F(z) is
equivalent to its Smith form P(z).

Proof. We prove this by induction on l. When l � 2, let

V(z) �
v11 v12

v21 v22
 , (8)

then

F(z) �
v11 v12 · z2 − f2 z3, . . . , zn( ( 

v21 · z1 − f1 z2, . . . , zn( (  v22 · z1 − f1 z2, . . . , zn( (  z2 − f2 z3, . . . , zn( ( 
 . (9)

Obviously, detF(z) � c · (z1 − f1(z2, . . . , zn))(z2 − f2
(z3, . . . , zn)), 0≠ c ∈ K. Note that V(z) is unimodular, then
v11, v12 have no common zeros. Assume that v11, v12(z2 −

f2(z3, . . . , zn)) have a zero α0 � (z20, z30, . . . , zn0), where
z20 � f2(z30, . . . , zn0), then v11, v12 · (z2 − f2(z3, . . . , zn)),

v21 · (z1 − f1(z2, . . . , zn)), v22 · (z1 − f1(z2, . . . , zn))(z2 − f2
(z3, . . . , zn)) has a common zero (f1(α0), z20, z30, . . . , zno).
,is is a contradiction. ,us, v11, v12 · (z2 − f2(z3, . . . , zn))

have no common zeros, and (v11, v12 · (z2 − f2(z3, . . . , zn)))

is a unimodular row. According to Quillen-Suslin ,eorem,
there exists a 2× 2 unimodular matrix M1(z) ∈K2×2[z] such
that

v11, v12 z2 − f2 z3, . . . , zn( ( ( M1(z) � (1, 0). (10)

So

F(z)M1(z) �
1 0

p1(z) p2(z)
 , (11)

where p1(z), p2(z) ∈ K[z]. ,en there exists the unim-

odular matrix M2(z) �
1 0

− p1(z) 1  such that

M2(z)F(z)M1(z) �
1 0

0 p2(z)
 . (12)

Note that p2(z) � det(M2(z)F(z)M1(z)) � u ·detF(z) �

u′ · (z1 − f1(z2, . . . ,zn))(z2 − f2(z3, . . . ,zn)), 0≠u, u′ ∈K.
,us, F(z) is equivalent to its Smith form

P(z) �
1 0

0 z1 − f1 z2, . . . , zn( (  z2 − f2 z3, . . . , zn( ( 
 .

(13)

So the conclusion is true for l � 2.
Assume that the conclusion is true for l − 1, we inves-

tigate the case of l. Let V(z) �
V11 V12
V21 V22

 , where

V11 ∈ K(l− 1)×(l− 1)[z2, . . . , zn], V12 ∈ K(l− 1)×1[z2, . . . , zn],
V21 ∈ K1×(l− 1)[z2, . . . , zn], V22 ∈ K1×1[z2, . . . , zn]. ,en
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F(z) �
V11 V12 · z2 − f2 z3, . . . , zn( ( 

V21 · z1 − f1 z2, . . . , zn( (  V22 · z1 − f1 z2, . . . , zn( (  z2 − f2 z3, . . . , zn( ( 
 . (14)

Let (v11, . . . , v1,l− 1, v1l) be the first row of V(z). Since
V(z) is unimodular, using Laplace ,eorem and expanding
its first row, we obtain that v11a1(z) + · · · + v1,l− 1al− 1(z)+

v1lal(z) � k, where a1(z), . . . , al− 1(z), a(z) are all the (l −

1) × (l − 1) minors of V(z) and 0≠ k ∈ K. Combined with
Lemma 1, we have that v11, . . . , v1,l− 1, v1l have no common
zeros. Assume that v11, . . . , v1,l− 1, v1l(z2 − f2(z3, . . . , zn))

have a common zero α0 � (z20, z30, . . . , zn0), then all the (l −

1) × (l − 1) minors of F(z) have a common zero (f1(α0),
z20, z30, . . . , zn0). ,is is a contradiction. ,us, (v11, . . . ,

v1,l− 1, v1l(z2 − f2(z3, . . . , zn))) is a unimodular row in
K[z2, . . . , zn], by the Quillen-Suslin ,eorem, there exists a
unimodular matrix M1(z) such that

v11, . . . , v1,l− 1, v1l z2 − f2 z3, . . . , zn( (  M1(z) � (1, 0, . . . , 0).

(15)

So

F(z)M1(z) �
1 01,l− 1

Q1(z) Q2(z)
 , (16)

where Q1(z) ∈ K(l− 1)×1[z], Q2(z) ∈ K(l− 1)×(l− 1)[z]. ,en
there exists the matrix

M2(z) �
1 01,l− 1

− Q1(z) Il− 1
 , (17)

such that

M2(z)F(z)M1(z) �
1 01,l− 1

0l− 1,1 Q2(z)
 . (18)

Setting N(z) � M2(z)F(z)M1(z), since all the (l − 1) ×

(l − 1) minors of F(z) have no common zeros, combined
with Lemma 3, we have that all the (l − 1) × (l − 1) minors
of N(z) have no common zeros. Note that an (l − 1) × (l −

1) minor of N(z) is just an (l − 2) × (l − 2) minors of Q2(z)

or detQ2(z) or 0, then detQ2(z) and the (l − 2) × (l − 2)

minors of Q2(z) have no common zeros. By Lemma 6, the
(l − 2) × (l − 2) minors of Q2(z) have no common zeros. By
the inductive hypothesis, there exist two (l − 1) × (l − 1)

unimodular matrices N1(z), N2(z) such that

N2(z)Q2(z)N1(z)

�
Il− 2 0l− 2,1

01,l− 2 z1 − f1 z2, . . . , zn( (  z2 − f2 z3, . . . , zn( ( 
 ,

(19)

then

1 01,l− 1

0l− 1,1 N2(z)
 N(z, w)

1 01,l− 1

01,l− 1 N1(z)
 

�
1 01,l− 1

0l− 1,1 N2(z)Q2(z)N1(z)
 

�
Il− 1 0l− 1,1

01,l− 1 z1 − f1 z2, . . . , zn( (  z2 − f2 z3, . . . , zn( ( 
 .

(20)

,us, N(z) is equivalent to the matrix P(z), combined
with F(z) is equivalent to the matrix N(z); then we obtain
that F(z) is equivalent to the matrix P(z), and P(z) is the
Smith form of F(z).

Now we are going to state one of our main results, which
give partial answer to Problem 1. We recall the notation

P(z) �
Il− 1 0l− 1,1

01,l− 1 z1 − f1 z2, . . . , zn( (  z2 − f2 z3, . . . , zn( ( 
 .

(21)

□

Theorem 1. Let F(z) ∈ Kl×l[z] with detF(z) � (z1−

f1(z2, . . . , zn))(z2 − f2(z3, . . . , zn)). F(z) is equivalent to
its Smith form P(z) if and only if all the (l − 1) × (l − 1)

minors of F(z) generate K[z].

Proof. Sufficiency. Because detF(z1, f2(z3, . . . ,

zn), z3, . . . , zn) � 0, then the rank of F(z1, f2(z3, . . . , zn),

z3, . . . , zn)≤ l − 1. Since all the (l − 1) × (l − 1) minors of
F(z) generate K[z], by Lemma 5, the (l − 1) × (l − 1) mi-
nors of F(z1, f2(z3, . . . , zn), z3, . . . , zn) also generate K[z],
then rankF(z1, f2(z3, . . . , zn), z3, . . . , zn) � l − 1 for every
(z1, z3, . . . , zn) ∈ K. By Lemma 4, there exists a ZRP column
vector Y1(z) ∈ Kl×1[z] such that

F z1, f2 z3, . . . , zn( , z3, . . . , zn( Y1(z) ≡ (0, . . . , 0)
T
.

(22)

By the Quillen-Suslin theorem, an l × l unimodular
matrix U11(z) can be constructed such that Y1(z) is its last
column. ,en the elements of the last column of
F(z1, f2(z3, . . . , zn), z3, . . . , zn) · U11(z) are zero polyno-
mials. By Lemma 2, the last column of F(z) · U11(z) have the
common divisor z2 − f2(z3, . . . , zn), i.e.,

F(z) · U11(z) � F1(z) ·
Il− 1 0l− 1,1

01,l− 1 z2 − f2 z3, . . . , zn( 
 ,

(23)

for some F1(z) ∈ Kl×l[z]. Let U1(z) � U− 1
11(z), then we have

F(z) � F1(z)P2(z)U1(z). (24)
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Note that U1(z), U11(z) are unimodular, and
detF(z) � (z1 − f1(z2, . . . , zn))(z2 − f2(z3, . . . , zn)), then

detF1(z) � c · z1 − f1 z2, . . . , zn( ( , 0≠ c ∈ K. (25)

From Lemma 3, we have that the (l − 1) × (l − 1) minors
of F1(z) also generate K[z]. Note that
detF1(f1(z2, . . . , zn), z2, z3, . . . , zn) � 0, combined with
Lemma 5, we obtain that the (l − 1) × (l − 1) minors of
F1(f1(z2, . . . , zn), z2, z3, . . . , zn) also generate K[z] for
(z2, z3, . . . , zn) ∈ K. Similarly, a unimodular matrix
V11(z) ∈ Kl×l[z2, . . . , zn] can be constructed such that

F1(z)V11(z) � F2(z) ·
Il− 1 0l− 1,1

01,l− 1 z1 − f1 z2, . . . , zn( 
 ,

(26)

where F2(z) ∈ Kl×l[z]. Let V1(z) � V− 1
11(z), then we have

F1(z) � F2(z)P1(z)V1(z). (27)

Note that V1(z) ∈ Kl×l[z2, . . . , zn] is unimodular, and
detF1(z) � c1 · (z1 − f1(z2, . . . , zn)), then
detF2(z) � c2, 0≠ c2 ∈ K, F2(z) is unimodular, and

F(z) � F2(z)P1(z)V1(z)P2(z)U1(z). (28)

By Lemma 7, thematrixP1(z)V1(z)P2(z) is equivalent to

P(z) �
Il− 1 0l− 1,1

01,l− 1 z1 − f1 z2, . . . , zn( (  z2 − f2 z3, . . . , zn( ( 
 .

(29)

Combined with F2(z), U1(z) are unimodular, we obtain
that F(z) is equivalent to its Smith form P(z).

Necessity. If F(z) is equivalent to P(z), there exist two
unimodular matrices U(z), V(z) such that
F(z) � V(z)P(z)U(z). Note that all the (l − 1) × (l − 1)

minors of P(z) have no common zeros; combined with
Lemma 3, we have that all the (l − 1) × (l − 1) minors of
F(z) have no common zeros, i.e., all the (l − 1) × (l − 1)

minors of F(z) generate K[z].
In the following, we will extend the above result to more

general case. □

3.2. Generalization

Lemma 8. Let D(z) ∈ Kl×l[z] with D(z) �
Il− 1 0
0 h(z)

 ,

h(z) ∈ K[z], and V(z) ∈ Kl×l[z] be a unimodular matrix. If

all the (l − 1) × (l − 1) minors of Ds(z)V(z)Dt(z) generate
K[z] and s, t are positive integers, then Ds(z)V(z)Dt(z) is
equivalent to Ds+t(z).

Proof. Let

V(z) �
V11(z) V12(z)

V21(z) V22(z)
 , (30)

where V11(z) ∈ K(l− 1)×(l− 1)[z], V12(z) ∈ K(l− 1)×1[z],
V21(z) ∈ K1×(l− 1)[z], V22(z) ∈ K1×1[z].

,en

F(z) � D
s
(z)V(z)D

t
(z) �

V11(z) V12(z)ht(z)

V21(z)hs(z) V22(z)hs+t(z)
 ,

(31)

and detF(z) � c · hs+t(z), 0≠ c ∈ K.
Next, we will proof that V11(z) V12(z)ht(z)(  is a ZLP

matrix. Note that V(z) is unimodular, then
V11(z) V12(z)(  is a ZLP matrix. Let c1(z), c2(z), . . . ,

cl(z) denote all the (l − 1) × (l − 1) minors of
V11(z) V12(z)( . ,en all the (l − 1) × (l − 1) minors of
V11(z) V12(z)ht(z)(  are c1(z), c2(z)ht(z), . . . ,

cl(z)ht(z). We can prove that c1(z), c2(z)ht(z), . . . ,

cl(z)ht(z) have no common zeros. Suppose that c1(z),

c2(z)ht(z), . . . , cl(z)ht(z) have a common zero α0 and
combined with c1(z), c2(z), . . . , cl(z) have no common zeros,
so α0 is a zero of c1(z) and h(z). Note that the elements of the
last row of matrix F(z) all have the factor h(z) and that an
(l − 1) × (l − 1) minor of F(z) is just c1(z) or includes the
factor h(z), so the (l − 1) × (l − 1) minors of F(z) have the
common zero α0, this is a contradiction. ,us, all the (l − 1) ×

(l − 1) minors of V11(z) V12(z)ht(z)(  have no common
zeros, and it is a ZLP matrix. According to Quillen-Suslin
theorem, there exists anm × m unimodularmatrixN1(z) such
that

V11(z) V12(z)ht(z)( N1(z) � Il− 1(z) 0l− 1,1( . (32)

,en,

F(z)N1(z) �
Il− 1(z) 0l− 1,1

H1(z) H2(z)
 , (33)

for some H1(z), H2(z) ∈ K[z]. Let

N2(z) �
Il− 1(z) 0l− 1,1

− H1(z) 1
 . (34)

,en,

N2(z)F(z)N1(z) �
Il− 1(z) 0l− 1,1

01,l− 1 H2(z)
 . (35)

Note that N1(z), N2(z) are unimodular, then
H2(z) � u · detF(z) � u′ · hs+t(z), 0≠ u ∈ K, u′ � u · c,
thus F(z) is equivalent to Ds+t(z).

Now we investigate Problem 1 for the case of q1 � q2.
Denote

P
q
(z) �

Il− 1 0l− 1,1

01,l− 1 z1 − f1 z2, . . . , zn( ( 
q

z2 − f2 z3, . . . , zn( ( 
q .

(36)

□

Theorem 2. Let F(z) ∈ Kl×l[z] with detF(z) � (z1−

f1(z2, .., zn))q(z2 − f2(z3, . . . , zn))q, where q is a positive
integer.*en F(z) is equivalent to its Smith form Pq(z) if and
only if all the (l − 1) × (l − 1) minors of F(z) generate K[z].

Proof. Sufficiency. Notice that detF(z1, f2(z3, . . . , zn),

z3, . . . , zn) � 0, we have that rank F(z1, f2(z3, . . . , zn)
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, z3, . . . , zn)≤ l − 1. Since all the (l − 1) × (l − 1) minors of
F(z) generate the unit ideal K[z], according to Lemma 5,
then the (l − 1) × (l − 1) minors of F(z1, f2(z3, . . . , zn),

z3, . . . , zn) also generate the unit ideal K[z]. Hence,
rankF(z1, f2(z3, . . . , zn), z3, . . . , zn) � l − 1 for every
(z1, z3, . . . , zn) ∈ K, repeating the proof of ,eorem 1, we
have that

F(z) � F1(z)P1(z)V1(z)P2(z)U1(z), (37)

where V1(z) ∈ Kl×l[z2, . . . , zn], U1(z) ∈ Kl×l[z] are unim-
odular, F1(z) ∈ Kl×l[z] with detF1(z) � (z1 − f1
(z2, . . . , zn))q− 1(z2 − f2(z3, . . . , zn))q− 1. By Lemma 3, all
the (l − 1) × (l − 1) minors of P1(z)V1(z)P2(z) also gen-
erate K[z]. According to Lemma 7, there exist unimodular
matrices M1(z), N1(z) ∈ Kl×l[z] such that P1(z)V1(z)

P2(z) � M1(z)P1(z)P2(z)N1(z) � M1(z)P(z) N1(z).
,us

F(z) � F1(z)M1(z)P(z)N1(z)U1(z). (38)

Again by Lemma 3, we obtain that all the (l − 1) × (l − 1)

minors of F1(z) generate K[z]. If q≥ 2, iterating the pre-
ceding process, we obtain that

F1(z) � F2(z)M2(z)P(z)N2(z), (39)

where F2(z) ∈ Kl×l[z] with detF2(z) � (z1 − f1(z2, . . . ,

zn))q− 2(z2 − f2(z3, . . . , zn))q− 2. ,en

F(z) � F2(z)M2(z)P(z)N2(z)M1(z)P(z)N1(z)U1(z).

(40)

Let S2(z) � N2(z)M1(z), we have that S2(z) is unim-
odular and all the (l − 1) × (l − 1) minors of P(z)S2(z)P(z)

generate K[z]. By Lemma 8, P(z)S2(z)P(z) is equivalent to
P2(z), that is, there exist unimodular matrices
L1(z), T1(z) ∈ Kl×l[z] such that P(z)S2(z)P(z) �

L1(z)P2(z)T1(z). Furthermore,

F(z) � F2(z)M2(z)L1(z)P
2
(z)T1(z)N1(z)U1(z). (41)

Let V2(z) � M2(z)L1(z), U2(z) � T1(z)N1(z)U1(z),
then V2(z), U2(z) are unimodular, and

F(z) � F2(z)V2(z)P
2
(z)U2(z). (42)

If q≥ 3, iterating the same procedure successively, we
obtain that

F(z) � Fq(z)Vq(z)P
q
(z)Uq(z), (43)

where Vq(z), Uq(z) are unimodular. Note that
detF(z) � (z1 − f1(z2, . . . , zn))q(z2 − f2(z3, . . . , zn))q,
then detFq(z) � c, c ∈ K; that is, Fq(z) is a unimodular
matrix. So F(z) is equivalent to its Smith form Pq(z).

Necessity. It is straightforward that all the (l − 1) × (l − 1)

minors of Pq(z) generate K[z]. According to Lemma 3, all
the (l − 1) × (l − 1) minors of F(z) also generate K[z].

Next we investigate Problem 1 for the case of
F(z) ∈ Kl×l[z] and det F(z) � (z1 − f1(z2, . . . , zn))q1

(z2 − f2(z3, . . . , zn))q2 , where q1, q2 are nonnegative
integers. □

Theorem 3. Let F(z) ∈ Kl×l[z] with detF(z) � (z1−

f1(z2, . . . , zn))q1(z2 − f2(z3, . . . , zn))q2 , where q1, q2 are
nonnegative integers. If all the (l − 1) × (l − 1)minors ofF(z)

generate K[z], then F(z) is equivalent to its Smith form

Q(z) �
Il− 1 0l− 1,1

01,l− 1 z1 − f1 z2, . . . , zn( ( 
q1 z2 − f2 z3, . . . , zn( ( 

q2
 .

(44)

Proof. (1) If q1 � q2 � 0, then detF(z) � 1, i.e., F(z) is
unimodular, so F(z) is equivalent to Il.

(2) If q1 � 0 or q2 � 0, we have that detF(z) � (z1−

f1(z2, . . . , zn))q1 or (z2 − f2(z3, . . . , zn))q2 . Without loss of
generality, we assume that detF(z) � (z1− f1(z2, . . . , zn))q1 .
Because detF(f1(z2, . . . , zn), z2, . . . , zn) � 0, then the rank
of F(f1(z2, . . . , zn), z2, . . . , zn)≤ l − 1. Since all the (l − 1) ×

(l − 1) minors of F(z) generate K[z], by Lemma 5, the (l −

1) × (l − 1) minors of F(f1(z2, . . . , zn), z2, . . . , zn) also
generate K[z]; hence, rankF(f1(z2, . . . , zn), z2, . . . , zn) �

l − 1 for every (z2, z3, . . . , zn) ∈ K
n− 1. By Lemma 4, we

obtain a ZRP column vector Y1(z) ∈ Kl×1[z] such that

F f1 z1, . . . , zn( , z2, . . . , zn( Y1(z) ≡ (0, . . . , 0)
T
. (45)

According to the Quillen-Suslin ,eorem, an l × l

unimodular matrix U11(z)(detU11(z) � 1) can be con-
structed such that Y1(z) is its last column. ,en the last
column of F(f1(z1, . . . , zn), z2, . . . , zn) · U11(z) are zero
polynomials. By Lemma 2, the last column of F(z) · U11(z)

have the common divisor z1 − f1(z2, . . . , zn), i.e.,

F(z) · U11(z) � F1(z) ·
Il− 1 0l− 1,1

01,l− 1 z1 − f1 z2, . . . , zn( 
 ,

(46)

for some F1(z) ∈ Kl×l[z]. Let U1(z) � U− 1
11(z), then we

obtain that

F(z) � F1(z)P1(z)U1(z),

detF1(z) � z1 − f1 z2, . . . , zn( ( 
q1− 1

.
(47)

By Lemma 3, all the (l − 1) × (l − 1) minors of F1(z) also
generate the unit ideal K[z]. If q1 ≥ 2, iterating the preceding
process, we obtain that

F1(z) � F2(z)P1(z)U2(z). (48)

Furthermore,

F(z) � F2(z)P1(z)U2(z)P1(z)U1(z). (49)

By Lemma 3, the (l − 1) × (l − 1) minors of
P1(z)U2(z)P1(z) generate the ideal K[z], according to
Lemma 8, there exist unimodular matrices N1(z), V1(z)

such that P1(z)U2(z)P1(z) � N1(z)P2
1(z)V1(z). ,en

F(z) � F2(z)N1(z)P
2
1(z)V1(z)U1(z). (50)

Furthermore, detF2(z)N1(z) � (z1 − f1(z2, . . . ,

zn))q1− 2, combined with Lemma 3, the (l − 1) × (l − 1)

minors of F2(z)N1(z) also generate K[z].
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If q1 ≥ 3, iterating the same procedure successively, we
obtain that

F(z) � Fq1
(z)Nq1− 1(z)P

q1
1 (z)Vq1− 1(z), . . . , V1(z)U1(z),

(51)

with detFq1
(z)Nq1− 1(z) � 1. ,us, F(z) is equivalent to its

Smith form P
q1
1 (z) � Q(z).

(3) If q1, q2 are positive integers, then q1 ≥ q2 or q2 ≥ q1.
Without loss of generality, we assume that q1 ≥ q2. By
,eorem 2, combined with the conclusion of the case (2)
above, we have that F(z) is equivalent to the matrix

Pq2(z)V(z)P
q1− q2
1 (z). In the following, we prove that

Pq2(z)V(z)P
q1− q2
1 (z) is equivalent to the matrix Q(z)

Let

V(z) �
V11(z) V12(z)

V21(z) V22(z)
 , (52)

where V11(z) ∈ K(l− 1)×(l− 1)[z], V12(z) ∈ K(l− 1)×1[z],
V21(z) ∈ K1×(l− 1)[z], and V22(z) ∈ K1×1[z].

,en

P
q2(z)V(z)P

q1− q2
1 (z) �

V11(z) V12(z)p
q1− q2
1 (z)

V21(z)p
q2
1 (z)p

q2
2 (z) V22(z)p

q1
1 (z)p

q2
2 (z)

 , (53)

where p1(z) � z1 − f1(z2, . . . , zn), p2(z) �

z2 − f2(z3, . . . , zn).
In fact, we can prove that V11(z) V12(z)p

q1− q2
1 (z)(  is a

ZLP matrix. Note that V(z) is unimodular, then
V11(z) V12(z)(  is a ZLP matrix. Let c1(z), c2(z), . . . ,

cl(z) denote all the (l − 1) × (l − 1) minors of
V11(z) V12(z)( . ,en all the (l − 1) × (l − 1) minors of
V11(z) V12(z)p

q1− q2
1 (z)(  are c1(z), c2(z)p

q1− q2
1 (z), . . . ,

cl(z)p
q1− q2
1 (z). We can prove that c1(z), c2(z)p

q1− q2
1 (z), . . . ,

cl(z)p
q1− q2
1 (z) have no common zeros. Suppose that

c1(z), c2(z)p
q1− q2
1 (z), . . . , cl(z)p

q1− q2
1 (z) have a common

zero α0, note that c1(z), c2(z), . . . , cl(z) have no common
zeros, so c1(z) and p1(z) have the common zero α0.
Moreover, the elements of the last row of matrix
Pq2(z)V(z)P

q1− q2
1 (z) have the common factor p1(z), since

an (l − 1) × (l − 1) minors of Pq2(z)V(z)P
q1− q2
1 (z) is just

c1(z) or includes the factor p1(z), so the (l − 1) × (l − 1)

minors of Pq2(z)V(z)P
q1− q2
1 (z) have the common zero α0,

this is a contradiction. ,us, all the (l − 1) × (l − 1) minors
of V11(z) V12(z)p

q1− q2
1 (z)(  have no common zeros, and it

is a ZLP matrix. By the Quillen-Suslin theorem, there exists
an l × l unimodular matrix N(z) such that

V11(z) V12(z)p
q1− q2
1 (z)( N(z) � Il− 1(z) 0l− 1,1( .

(54)

,en,

P
q2(z)V(z)P

q1− q2
1 (z)N(z) �

Il− 1(z) 0l− 1,1

H1(z) H2(z)
 , (55)

for some H1(z), H2(z) ∈ K[z]. ,ere exists a unimodular
matrix N1(z) such that

N1(z)P
q2(z)V(z)P

q1− q2
1 (z)N(z) �

Il− 1(z) 0l− 1,1

01,l− 1 H2(z)
 .

(56)

Note that N(z), N1(z) are unimodular, then H2(z) �

u · detPq2(z)V(z)P
q1− q2
1 (z) � u′ · p

q1
1 (z)p

q2
2 (z), 0≠ u ∈ K,

u′ � u · c; thus, Pq2(z)V(z)P
q1− q2
1 (z) is equivalent to Q(z).

Note that F(z) is equivalent to the matrix

Pq2(z)V(z)P
q1− q2
1 (z), combined with the definition of the

Smith form of a matrix, we obtain that F(z) is equivalent to
its Smith form Q(z).

,eorem 3 provides a positive answer to Problem 1 for
the case of F(z) ∈ Kl×l[z] and det F(z) � (z1 − f1(z2, . . . ,

zn))q1(z2 − f2(z3, . . . , zn))q2 . It also gives a sufficient con-
dition to check this kind of matrices are equivalent to their
Smith forms; in fact, this condition is also a necessary
condition. □

Theorem 4. Let F(z) ∈ Kl×l[z] with det F(z) � (z1−

f1(z2, . . . , zn))q1(z2 − f2(z3, . . . , zn))q2 , where q1, q2 are
non-negative integers, then F(z) is equivalent to its Smith
form

Q(z) �
Il− 1 0l− 1,1

01,l− 1 z1 − f1 z2, . . . , zn( ( 
q1 z2 − f2 z3, . . . , zn( ( 

q2
 ,

(57)

if and only if all the (l − 1) × (l − 1) minors of F(z) generate
K[z].

Proof. Sufficiency. From ,eorem 3, it is straightforward.

Necessity. By computing, we can easily obtain that all the
(l − 1) × (l − 1) minors of Q(z) generate K[z]. By Lemma 3,
all the (l − 1) × (l − 1) minors of F(z) generate K[z]. □

Remark 1. In the theorem above, K is an arbitrary field.
When K � R is the real field and q2 � 0, ,eorem 4 is same
as ,eorem 2.5 in Li et al. [17]. Furthermore, if q1 � 1 and
q2 � 0, ,eorem 4 is just Proposition 4 in Lin et al. [12]. So
,eorem 4 extends the above two results.

In the following, we will investigate the Smith forms of
some rectangular polynomialmatrices and consider Problem 2.
Let d(z) denote the greatest common divisor (g.c.d) of the l × l

minors of the matrix F(z), dl− 1(F(z)) denote the g.c.d of all
the (l − 1) × (l − 1) minors of F(z) and denote
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B(z) �
Il− 1 0l− 1,1

01,l− 1 d(z)
 . (58)

Theorem 5. LetF(z) ∈ Kl×m[z] (l≤m) be of full row rank and
suppose d(z) � (z1 − f1(z2, ... ,zn))q1(z2 − f2 (z3, ... ,zn))q2 ,
where q1,q2 are nonnegative integers. *en F(z) is equivalent to
its Smith form

Q(z) � B(z) 0l×(m− l)( , (59)

if and only if all the (l − 1) × (l − 1) minors of F(z) generate
K[z].

Proof. Sufficiency. According to ,eorem 3.3 in [21], there
exists G(z) ∈ Kl×l[z], F0(z) ∈ Kl×m[z] such that
F(z) � G(z) · F0(z), where detG(z) � d(z), and F0(z) is a
ZLP matrix. Combined with ,eorem 5, we can obtain two
unimodular matrices V1(z), V2(z) ∈ Kl×l[z] such that
G(z) � V1(z) · B(z) · V2(z). ,en

F(z) � V1(z) · B(z) · V2(z) · F0(z). (60)

It is obviously that V2(z) · F0(z) is also ZLP. According
to the Quillen-Suslin ,eorem, we can construct an m × m

unimodular matrix U(z) such that V2(z) · F0(z) is its first l

rows. Hence

F(z) � V1(z) · B(z) 0l,m− l(  · U(z) � V1(z) · Q(z) · U(z),

(61)

and dl− 1(Q(z)) � 1. Since Q(z) � V− 1
1 (z) · F(z) · U− 1(z),

combined with Lemma 3, we have that dl− 1(F(z)) � 1, then
the Smith form of F(z) is Q(z).

Necessity. If F(z) is equivalent to its Smith form
Q(z) � B(z) 0l,(m− l)( , we see that all the (l − 1) × (l − 1)

minors of Q(z) generate K[z]. Using Lemma 3, we obtain
that all the (l − 1) × (l − 1) minors of F(z) generate
K[z]. □

Remark 2. Let f1(z), f2(z), . . . , ft(z) ∈ K[z] be nonzero
polynomials, a necessary and sufficient condition for G �

f1(z), f2(z), . . . , ft(z)  generates that K[z] is the reduced
Gröbner basis of the ideal generated by G includes a unit in
the field K. According to ,eorems 4 and 5, we can check
whether an nD polynomial matrix F(z) is equivalent to its
Smith form by using the existing Gröbner basis algorithms
to the ideal generated by the lower minors of F(z). ,us, the
conditions of ,eorems 4 and 5 can be verified easily.

4. Example and Algorithm

In this section, we first present a 2D example to illustrate our
result and explain how to obtain the unimodular matrices
associated with the equivalence of system matrices in the
method. ,en we give an algorithm to deal with the
equivalence of the kind of matrices we discussed to their
Smith forms.

In many areas of engineering such as Circuits and
Signals, the general 2D systems can be defined in terms of the
generalized Rosenbrock system [8] as

F z1, z2( x � U z1, z2( u,

y � V z1, z2( x + W z1, z2( u,
(62)

where x ∈ Kn is the state vector, u ∈ Kl is the input vector,
y ∈ Km is the output vector, F(z1, z2) ∈ Kn×n[z1, z2],
U(z1, z2) ∈ Kn×l[z1, z2], V(z1, z2) ∈ Km×n[z1, z2],
W(z1, z2) ∈ Km×l[z1, z2] are polynomial matrices, K is a
field. ,e operators z1 and z2 may have various meanings
depending on the type of system. For example, in delay-
differential systems, z1 represents a differential operator and
z2 a delay-operator. For 2D discrete systems, z1 and z2
represent horizontal and vertical shift operators, respec-
tively. ,is system gives rise to the system matrix in the
general form:

T z1, z2(  �
F z1, z2(  U z1, z2( 

− V z1, z2(  W z1, z2( 
 . (63)

Example 1. Consider a system matrix

T z1, z2(  �
F z1, z2(  U z1, z2( 

− V z1, z2(  W z1, z2( 
 

�

z3
2 − 6z22z

2
1 − 8z22z1 − z2

2 + 4z2z
2
1 + 2z2z1 − z2

1 0 z1

z2
1 − 4 − 8z1 + z2z1 − 2z22 + z3

2 z1 + 1 z2

z1 − 1 2z2
2 − z1z2 − 6z2 + 4z1 1 0

z1 z2 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(64)

where
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F z1, z2(  �

z3
2 − 6z2

2z
2
1 − 8z2

2z1 − z2
2 + 4z2z

2
1 + 2z2z1 − z2

1 0

z2
1 − 4 − 8z1 + z2z1 − 2z2

2 + z3
2 z1 + 1

z1 − 1 2z22 − z1z2 − 6z2 + 4z1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

U z1, z2(  � z1 z2 0( 
T
,

V z1, z2(  � − z1 − z2 0( ,

W z1, z2(  � 0( .

(65)

By computing, detF(z) � (z1 − z2)
2(z2 − 1)4, the 2 × 2

minors of F(z) is as follows: c1(z)�z6
2 − 2z5

2+z4
2z1−

8z32z1 − 4z32+6z22z
4
1+8z22z

3
1 +z2

2z
2
1 − 4z2z

4
1 − 2z2z

3
1+z4

1, c2(z)�

z3
2(z1+1), c3(z) � − (z1 +1)(6z2

2z
2
1 +8z22z1 + z2

2 − 4z2z
2
1−

2z2z1 + z2
1), c4(z) �2z52 − z4

2z1 − 6z42 +4z3
2z1 +6z2

2z
3
1 +2z2

2z
2
1−

7z22z1 − z2
2 − 4z2z

3
1 +2z2z

2
1 +2z2z1 +z3

1 − z2
1, c5(z) � z3

1, c6(z) �

− 6z22z
2
1 − 8z2

2z1 − z2
2 +4z2z

2
1 +2z2z1 − z2

1, c7(z) � − z3
2z1 +z3

2+

2z22z
2
1 +2z22z1− 2z22 − z2z

3
1− 7z2z

2
1 +z2z1 +4z31 +8z21 − 4z1 − 4,

c8(z) �1, c9(z) � z3
2 − 2z22z1 − 4z22 +z2z

2
1 +8z2z1 +6z2 − 4z21−

12z1− 4.
,e reduced Gröbner basis of the ideal generated by

c1(z), . . . , c9(z) is 1{ }. So the 2 × 2 minors of F(z1, z2)

generate unit ideal K[z1, z2], by ,eorem 4, F(z1, z2) is
equivalent to its Smith form. Consider

F z1, 1(  �

1 − 3z2
1 − 6z1 − 1 0

z2
1 − 7z1 − 5 z1 + 1

z1 − 1 2z1 − 4 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (66)

Solving the equations, F(z1, 1)Y1 � 0, where
Y1 ∈ K3×1[z1], we obtain
YT
1 � (3z2

1 + 6z1 + 1, 1, − 3z3
1 − 3z21 + 2z1 + 5), where YT

1 is
the transpose of Y1. It then follows that

F z1, 1( 

3z21 + 6z1 + 1

1

− 3z31 − 3z21 + 2z1 + 5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (67)

We complete (3z21 + 6z1 + 1, 1, − 3z3
1 − 3z2

1 + 2z1 + 5)T

into a unimodular matrix U41 ∈ K3×3[z1] such that
FU41 � F1P2, where

F1 �

z3
2 0 3z22z

2
1 + 6z22z1 + z2

2 − 3z2z
2
1 − 2z2z1 + z2

1

z2
1 − z1 − 1 z2

2 − z2 + z1 − 1

z1 − 1 − 1 2z2 − z1 − 4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

P2 �

1 0 0

0 1 0

0 0 z2 − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

U41 �

1 0 3z2
1 + 6z1 + 1

0 0 1

0 − 1 − 3z3
1 − 3z2

1 + 2z1 + 5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(68)

We then have

F � F1P2U4, (69)

where

U4 � U
− 1
41 �

1 − 3z2
1 − 6z1 − 1 0

0 − 3z31 − 3z21 + 2z1 + 5 − 1

0 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (70)

We consider F1(z1, z2) again

F1 z1, 1(  �

1 0 z2
1 + 4z1 + 1

z2
1 − z1 − 1 z1 − 1

z1 − 1 − 1 − 2 − z1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (71)

Repeating the procedure above for F1, we have that

F1 � F2P2U3, (72)

where
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F2 �

z3
2 0 z2

2z
2
1 + 4z2

2z1 + z2
2 − 2z2z

2
1 − 2z2z1 + z2

1

z2
1 z1 + 1 − z2

z1 − 1 1 − 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

U3 �

1 0 z2
1 + 4z1 + 1

0 − 1 − z3
1 − 3z2

1 + 2z1 − 1

0 0 − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(73)

,en,

F � F1P2U4 � F2P2U3P2U4. (74)

By ,eorem 3.5 in [17], we have that P2U3P2 is
equivalent to P2

2, and

P2U3P2 � P
2
2M2, (75)

where

M2 �

1 0 z2 − 1(  z2
1 + 4z1 + 1( 

0 − 1 − z2 − 1(  z3
1 + 3z2

1 − 2z1 + 1( 

0 0 − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (76)

So,

F � F1P2U4 � F2P2U3P2U4 � F2P
2
2M2U4. (77)

Consider F2, factor it like above, we obtain that

F2 � F3P2U2, (78)

where

F3 �

z3
2 0 2z2

2z1 + z2
2 − z2z

2
1 − 2z2z1 + z2

1

z2
1 − z1 − 1 1

z1 − 1 − 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

U2 �

1 0 2z1 + 1

0 − 1 2z21 − z1 + 1

0 0 − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(79)

,en,

F � F2P
2
2M2U4 � F3P2U2P

2
2M2U4. (80)

We consider F3 again

F3 z2, z2(  �

z3
2 0 z3

2

z2
2 − z2 − 1 1

z2 − 1 − 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (81)

Solving the equations, F3(z2, z2)Y2 � 0, where
Y2 ∈ K3×1[z2], we obtain YT

2 � (1, z2 − 1, − 1), where YT
2 is

the transpose of Y2. It then follows that

F3 z2, z2( 

1

z2 − 1

− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (82)

We complete (1, z2 − 1, − 1)T into a unimodular matrix
V21 ∈ K3×3[z2] such that F3V21 � F4P1, where

F4 �

z3
2 0 z2 − 1 )( z1 − z2( 

z2
1 z1 + 1 z1 + 1

z1 − 1 1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

P1 �

1 0 0

0 1 0

0 0 z1 − z2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

V21 �

1 0 1

0 − 1 z2 − 1

0 0 − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(83)

We obtain that

F3 � F4P1V2, (84)

where

V2 � V
− 1
21 �

1 0 1

0 − 1 1 − z2

0 0 − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (85)

,us,

F � F3P2U2P
2
2M2U4 � F4P1V2P2U2P

2
2M2U4. (86)

Now we consider P1V2P2. By Lemma 7, we have that
P1V2P2 is equivalent to P. And

P1V2P2 � PM1, (87)

where

M1 �

1 0 z2 − 1

0 − 1 − z2 − 1( 
2

0 0 − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (88)

,us,

F � F4P1V2P2U2P
2
2M2U4 � F4PM1U2P

2
2M2U4. (89)

Repeating the procedure above for F4, we obtain that
F4 � F5P2U1. Furthermore, we consider F5 and obtain
F5 � F6P1. So

F � F4PM1U2P
2
2M2U4 � F5P2U1PM1U2P

2
2M2U4

� F6P1P2U1PM1U2P
2
2M2U4,

(90)

where
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F5 �

z3
2 0 1 − z2

z2
1 − z1 − 1 0

z1 − 1 − 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

F6 �

z3
2 0 − 1

z2
1 − z1 − 1 0

z1 − 1 − 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

U1 �

1 0 0

0 − 1 − 1

0 0 − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(91)

Setting

P � P1P2

1 0 0

0 1 0

0 0 z1 − z2(  z2 − 1( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (92)

we obtain that

F � F6P1P2U1PM1U2P
2
2M2U4 � F6PU1PM1U2P

2
2M2U4.

(93)

Let L1 � M1U2, L2 � M2U4, we have

F � F6PU1PL1P
2
2L2. (94)

Now we consider the matrix PU1P. From,eorem 2, we
know that PU1P is equivalent to P2. And

PU1P � P
2
M3, (95)

where

M3 �

1 0 0

0 − 1 z2 − z1(  z2 − 1( 

0 0 − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (96)

,en we have

F � F6P
2
M3L1P

2
2L2. (97)

Let L3 � M3L1, now consider the matrix P2L3P
2
2. By

,eorem 3, we have that P2L3P
2
2 is equivalent to B, where

B �

1 0 0

0 1 0

0 0 z1 − z2( 
2

z2 − 1( 
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

P
2
L3P

2
2 � BL4,

(98)

where

L4 �

1 0 z2 − 1( 
2 2z1 − z2 + 2( 

0 − 1 z2 − 1( 
2 2z21 − z2z1 + z2( 

0 0 − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (99)

Now

F � F6BL4L2. (100)

Let L5 � L4L2, then

L5 �

1 z3
2 − 2z2

2z1 − 4z2
2 + z2z

2
1 + 8z2z1 + 6z2 − 4z21 − 12z1 − 4 0

0 z3
2z1 − z3

2 − 2z22z
2
1 − 2z22z1 + 2z22 + z2z

3
1 + 7z2z

2
1 − z2z1 + 4z31 − 8z21 + 4z1 + 4 − 1

0 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (101)

we have

F � F6BL5. (102)

By computing, detF6 � detF5 � 1.
,us F is equivalent to the matrix

B �

1 0 0

0 1 0

0 0 z1 − z2( 
2

z2 − 1( 
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (103)

Now we can find X � 01×3, Y � 03×1, such that
F− 1
6 03×1

X 1
 

F U

− V W
  �

B U1

− V1 W1
 

L5 Y

01×3 1
 ,

(104)

where U1 � F6U � z2 z2z1 − z2 z4
2 − z1( 

T, V1 � VL− 1
5 �

− z1 0 − a1( , a1 � − z1z
3
2 +2z21z

2
2 +4z1z

2
2 − z2z

3
1 − 8z2z

2
1−

6z2z1 + z2 +4z31 +12z21 +4z1, W1 � 0.
,us, the system

F z1, z2(  U z1, z2( 

− V z1, z2(  W z1, z2( 
 , (105)

is equivalent to the system
B z1, z2(  U1 z1, z2( 

− V1 z1, z2(  W1 z1, z2( 
 , (106)

which is simpler.
With the help of Example 1 and ,eorem 3, we now can

get the Algorithm 1.
,e program of the function SyzygyModule which we

use in algorithm can be found in https://faculty.math.
illinois.edu/Macaulay2/doc/Macaulay2-1.15/share/doc/
Macaulay2/MCMApproximations/html/_syzygy__Module.
html.

Another function CompleteMatrix is available in http://
wwwb.math.rwth-aachen.de/QuillenSuslin. Moreover, for a
new algorithm for CompleteMatrix, see the package
MatrixFactorization in http://www.mmrc.iss.ac.cn/dwang/
software.html, which contained a ZLP algorithm. ,is

Mathematical Problems in Engineering 11

https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2-1.15/share/doc/Macaulay2/MCMApproximations/html/_syzygy__Module.html
https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2-1.15/share/doc/Macaulay2/MCMApproximations/html/_syzygy__Module.html
https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2-1.15/share/doc/Macaulay2/MCMApproximations/html/_syzygy__Module.html
https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2-1.15/share/doc/Macaulay2/MCMApproximations/html/_syzygy__Module.html
http://wwwb.math.rwth-aachen.de/QuillenSuslin
http://wwwb.math.rwth-aachen.de/QuillenSuslin
http://www.mmrc.iss.ac.cn/dwang/software.html
http://www.mmrc.iss.ac.cn/dwang/software.html


algorithm can obtain a unimodular matrix whose inverse is
the complete matrix of a given ZLP matrix.

5. Conclusions

In this paper, we have investigated the equivalence problem
of several kinds of nDpolynomials matrices over an arbitrary
field, and have presented some interesting results. We have
obtained some criteria for these matrices to equivalent to
their Smith forms respectively. ,ese criteria are easily
checked by the existing Gröbner basis algorithm for the ideal
generated by theminors of lower order of a givenmatrix. We
also give an example to illustrate our method. All of these
could provide useful information for engineers to reduce nD
systems.
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(i) Step 1. Declare the ring K[z] � K[z1, . . . , zn] over which the matrix is defined by declaring the indeterminates and the field of
coefficients. Factor the determinant of F. Check that the determinant of F is the form
(zj − fj(z2, . . . , zn))qj (zk − fk(z3, . . . , zn))qk . If yes, set q1 � max qj, qk , the polynomial it corresponds is z1 − f1,
q2 � min qj, qk , the polynomial it corresponds is z2 − f2, go to Step 2. Otherwise, return this method is not fit for F.

(ii) Step 2. Compute the reduced Gröbner basis G of ideal generated by the lower minors of F. If G � 1{ }, go to Step 3; otherwise,
return this method is not fit for F.

(iii) Step 3. Set F0 � F, P1 � diag(1, . . . , 1, z1 − f1), P2 � diag(1, . . . , 1, z2 − f2), P � P1P2, i � 0 and t � q1 − q2.
(iv) Step 4. Substitute z1 � f1 in Fi to obtain Fi. Compute a ZRP vector Yi ∈ K[z2, . . . , zn] such that FiYi � 0 by using the function

SyzygyModule. ,en compute a unimodular matrix U with Yi is its last column by using the function CompleteMatrix. Compute
Fi+1 such that FiU � Fi+1P1. Compute U− 1 and set Ui+1 � U− 1. Compute Pi

1Ui+1P1 � NiP
i+1
1 Vi and obtain F � Fi+1NiP

i+1
1 Vi,

store Fi+1. L3 � Fq1
L1, i � i + 1.

(v) Step 5. When i≤ t, go to Step 4. When t< i< q1, do Step 6; otherwise, compute Pq2Nq1
Pt
1 � L1P

q2Pt
1L2, let return F � L3P

q2Pt
1L2.

(vi) Step 6. Substitute z1 � f1 in Fi to obtain Fi, do procedure similar to the step 4. And obtain a ZRP vector Yi such that FiYi � 0 and
a unimodular matrix U with Yi is its last column. ,en compute Fi+1 such that FiU � Fi+1P1, and compute U− 1 and set
Ui+1 � U− 1. Set Fi � Fi+1, substitute z2 � f2 in Fi to obtain Fi. Compute a ZRP vector X ∈ K[z1, z3, . . . , zn] such that FiX � 0 by
using the function SyzygyModule. ,en compute a unimodular matrix V with X is its last column by using the function
CompleteMatrix. Compute Vi− t � V− 1 and Fi+1 such that FiVi− t � Fi+1P2. Compute P1Ui+1P2 � NiPMi and obtain
F � Fi+1P

i− tNiP
t
1Vi, where Vi � MiVi− t. Store Fi+1, i � i + 1. Go to Step 5.

ALGORITHM 1: A matrix equivalence (ME) algorithm.
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