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A barrier function method based on the fmincon optimization function in MATLAB was used to determine the function to map a
tunnel boundary to the unit circle in the complex plane, and a structural failure criterion of the mapping convergence was
established based on the reliability theory of underground engineering. The joints were approximated as cracks around the tunnel,
the anisotropy of the stress intensity factor due to the crack inclination and position changes was studied, and the modified scoring
parameter of the layered joints around the tunnel for the rock geomechanics classification (RMR) was proposed and used at points
around the tunnel. The calculation method for the supporting stress was required to balance the bias load. The results showed the
following: (1) When taking the structural failure criterion as the convergence condition of the mapping function, the mapping
function converged when the mapping accuracy was §>31.74%. (2) The crack with an inclination angle of 8 = 45° was the
dominant structural plane of the jointed rock mass around the tunnel. The anisotropy of the stress intensity factor Ky; at the tip of
the mode II crack indicated that the corresponding cracks at the various points around the tunnel had inconsistent influences on
the tunnel. The position had the greatest influence, followed by the straight wall area, and then by the top and floor areas. (3) When
the crack inclination f3 was equal to the inclination angle 5, of the dominant joint plane, the secondary crack was parallel to the
unloading surface of the corresponding tunnel. (4) The bias load formed by the layered joints around the tunnel reduced the stress

threshold of the failure of the rib spalling.

1. Introduction

A layered jointed rock mass is a sedimentary rock with a
layered structure composed of an array of parallel joint
planes. The anisotropy of the mechanical behavior of the
rock strata and the low-strength characteristics of the joint
planes make the stability of the surrounding rock compli-
cated for underground engineering [1]. Many results have
been obtained using numerical simulation and model test
methods to study the mechanical characteristics of the
surrounding rock with different rock inclination angles. Wu
et al. [2], Sha et al. [3], Chen et al. [4], and Tian et al. [5] used
various numerical simulations to establish a tunnel model
with layered joints, and they analyzed the tunnel-

surrounding rock with different joint dips, structural de-
formation, force characteristics, and failure modes. Ma et al.
[6] used a large-scale three-dimensional model similarity
test system to analyze the deformation and failure behaviors
of multilayer jointed rock masses with different inclination
angles for high ground stresses. Zhou et al. [7, 8], Li and Zhu
[9], and Liu et al. [10] approximated joints as cracks around
tunnels, and they used different finite element analysis
software programs to simulate the stability of the tunnel-
surrounding cracks to the surrounding rock of straight wall
arch tunnels. These simulations were combined with model
tests to study the damage and destruction behaviors under
confining pressure. The results showed that the cracks at the
shoulder and foot of the tunnel were weaker locations of the
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tunnel-surrounding rock damage. When the crack incli-
nation angle was 8 = 45°, the cracks had the greatest impact
on the overall stability and strength, and the tunnel shear
failure was more significant.

Although numerical simulations and model testing are
very effective methods, the correctness of the analysis re-
sults depends on the rationality of the selected models and
materials, which are affected by the subjective judgement of
researchers. These individual results that do not reveal the
full underlying physics. Using conformal mapping theory
of complex analysis can provide a method to study the
surrounding rock stress in underground engineering to
obtain a closed solution via mathematical mechanics, i.e.,
using a complex analytical method. Huangfu etal. [11], Zhu
et al. [12], and Li and Liu [13] used different algorithms to
obtain the conformal mappings of complex cross sections
to the unit circle in the complex plane. Huangfu et al. [14],
Li et al. [15], Zhu et al. [16], and Li and Chen [17] de-
termined the analytical solutions of the surrounding rock
stresses of underground tunnels and chambers by
obtaining the conformal mappings. The distribution
characteristics of the stress in the surrounding rock of a
tunnel were studied. However, the complex analysis
method has seldom been used to study the mechanical
behaviors of tunnel-surrounding rock in a layered jointed
rock mass. Additionally, the convergence condition of the
existing mapping function cannot describe the deviation
degree of the mapping value of each sampling point from
the actual value, and the impact of the random uncertainty
of a sampling point on the accuracy has not been
considered.

Based on the results of previous research and their
deficiencies, in this study, the barrier function method
based on the fmincon optimization function was used to
establish the conformal mapping from a tunnel boundary
to the unit circle and develop a structural failure criterion
for the convergence of the mapping function. Based on
this, the joint was approximated as a crack around the
tunnel, and the complex analytical expression of the stress
intensity factor at the crack tip under confining pressure
was derived. The anisotropy of the stress intensity factor
due to crack inclination and position changes was studied.
The internal relationship between the cracks at different
locations around the tunnel and the corresponding in-
clination and initiation angles of the dominant joint plane
were revealed. The instability propagation criterion of the
crack tip of the dominant joint plane at any location
around the tunnel was deduced for the maximum cir-
cumferential stress. By combining the fragmentation
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mechanism of the fractured rock mass and considering the
relationship between the secondary cracks and the
unloading surface of the tunnel excavation, a modified
scoring parameter for the inclination of the layered joints
around the tunnel was proposed for the Rock Mass Rating
(RMR). Based on the complex variable function form of
the stability judgement of the layered joint plane at any
point around the tunnel, a method was proposed to
calculate the supporting stress required to balance the bias
load at any point.

2. Analysis of Complex Change of the
Surrounding Rock Stress in Deep
Underground Tunnel

2.1. Conformal Mapping from Tunnel Boundary to Unit Circle.
When using functions of complex variables to study elastic
mechanics plane problems, a given area in the physical plane
can be transformed into another area with simple boundary
shape in the image plane [18] to study the mechanical be-
havior of complex boundary engineering. As shown in
Figure 1, the counterclockwise direction of the tunnel
boundary was specified as the positive direction, and the
outer domain of the tunnel boundary was conformally
mapped to the outer domain of the unit circle in the complex
plane through the mapping function z = w({) [19]. The
mapping function can be expanded in the form of a Laurent
series [20] as follows:

2= 0() =R[¢+chc"‘], ()
k=0

where ( is the coordinate of any point outside the boundary
of the mapping in the complex plane, R is a positive real
number that comprehensively reflects the shape and size of
the tunnel section, and C, (k=0,1,2,...,n...) represents
the kth constant term of the Laurent series, which depends
the shape of the tunnel section. These are real constants
when discussing axisymmetric problems.

2.2. Complex Variable Function Solution for Surrounding Rock
Stress at the Tunnel Boundary. According to Muskhelishvili’s
complex function method [21], the stress analysis of the
surrounding rock of a deep underground tunnel can be
classified as the problem of excavation in an infinite plane.
The stress component around the tunnel after conformal
mapping can be expressed in the complex plane as
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Figure 1: Conformal mapping from the exterior region of the tunnel to the exterior region of the unit circle.
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where () = 9(Q) /0(Q); () =y(Q) /0(Q); { is a
multivalued function defined as ¢ =€l = cos@ +isin6;
w ({) is the conjugate complex of w ((); 7,,, 79, and 7,9 are the
stress components; and i is the imaginary unit. Re represents
the real part of the complex number, and Im represents the
imaginary part of the complex number.

The analytical functions ¢ ({) and y () in equation (2)
are defined as follows:

(0 = "0 () + 90 (O
3)
y(©) = 2220 (0 + 9, (O

where 07° and 0}° are the horizontal and vertical stresses at
infinity, respectively, and ¢, ({) and v, ({) are the analytic
functions in the neighborhood of infinity, which can be
determined using the power series expansion method [15] or
the Cauchy integral method [22].

The stress boundary condition is
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where a is the integral starting point taken on the
boundary, b is any point on the boundary, and F, and F,
are the given surface force components along the x-axis
and y-axis on the boundary, respectively. When a tunnel is
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excavated without support and there is no external load
around the tunnel, the surface force components F, and
F, are both zero, and the integral term on the right-hand
side of the equation is zero.

2.3. Stability Discriminant of Layered Joint Plane around
Tunnel. According to the Mohr-Coulomb criterion,
when the joint plane around the deep underground
tunnel is in a limit equilibrium state, the shear stress on
the joint plane should be less than the shear strength. The
discriminant of the stability of the joint plane is as
follows [23]:

o, cosﬁsin((pj —ﬁ) + 05 sin 8 cos (go]- —ﬁ) +cjcosg; >0,

(5)

where 0, and o; represent the large and small principal
stresses around the tunnel, 8 is the dip angle of the joint, ¢, is
the cohesion of the jointed rock mass, and ¢ is the internal
friction angle of the jointed rock mass. When equation (5) is
equal to zero, it represents the limiting equilibrium state. If
the left-hand side of the equation is less than zero, the joint
plane is in an unstable state.

Equation (5) can be used to judge the stability of the
boundary of an underground tunnel in a jointed rock mass.
The excavated tunnel is radially unloaded, and the tangential
stress is concentrated, i.e.,
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where ¢, and o, are the tangential and radial stresses at any
point of the tunnel boundary, respectively, and « is the polar
angle at any point of the tunnel boundary. Equation (5) can
thus be written as

aacosﬁsin(¢j—ﬁ)+cj cos¢; >0, (7)

where 0, can be obtained from the polar stress component
0y in the complex plane using equation (2), and equation (7)
can be substituted to obtain

2
,:

2Re[® ()] +Re[ ¢ [ch’(mw’(c)wn]}
w (0)

(8)

€jcosy;

= cos f3 sin(ﬁ - q)j)’

where each item on the left-hand side is a function of (.
Equation (8) can be expressed as follows:

€jCcos;
cosf3 sin(/} - (pj)

The coordinate of any point on the boundary of the
tunnel is expressed as A, (r;, a;), and the coordinate of the
mapping point on the corresponding unit circle is B; (1, 6,),
as shown in Figure 1. The mapping function given by
equation (1) can be regarded as the superposition of several
fractional linear mappings. According to the shape-pre-
serving property of the fractional linear mapping, the inverse
mapping relationship z’l(rj,ocj) = w’l[C(l,Hj)] can be
obtained as follows:

F({)= 9)

rj = R|cos ((x]- - 9]-) + :.Z()Ck cos ((xj - kﬁj)],

] (10)

1+ 322 Ce

a: = A /1 w00 71~ \
! 9]- (1 - Zk:l ka)

The stability of the jointed rock mass around the tunnel
is not only related to the occurrence of the joint itself,
namely, the dip angle § and the rock mechanical param-
eters (cohesion c; and internal friction angle ¢;) but also to
the position (1, 6,) and the position and stress magnitude
F({) of the joint endpoint at the tunnel boundary. Equa-
tions (8) and (10) together form a complex function for
assessing the stability of the layered joint plane at any point
around the tunnel.

3. Solution for Tunnel Boundary
Mapping Function

3.1. Constrained Optimization Model of Mapping Function.
Letting « = 3 = 0 in equation (10), we can obtain the fol-
lowing expression for R:
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R= 0 (11)
I+ Zgzo Ck’

where r, = uH, p € [0, 1], and H is the height of the tunnel.

When solving an actual problem, the mapping
function is composed of a finite number of coefficients Cy.
To obtain the mapping relationship between the tunnel
boundary and the unit circle, a mathematical optimiza-
tion model is used to determine the undetermined co-
efficients C,.

To satisfy equation (10), the following objective function
is defined:

-
1l
Mz

[rj : R[ (a,-0)+ 3 Ccos (a + kej)]:r.

k=0

-
Il
—_

(12)

To ensure that z = w({) is a univalent function outside
the unit circle, the constant term C, must satisfy the fol-
lowing expression:

Y kG <1. (13)
k=1

Thus, the constrained optimization mathematical model
of the mapping function is as follows:

(( min  f
st.  sin ((xj - Gj) + i Cy sin (ocj + ij) =0
k=0
| Yo« (o
k=1
i=0,1,2,...,m
k=0,1,2,...,n

The objective function is the sum of the squared errors
between the actual points on the tunnel boundary and the
corresponding mapping points on the unit circle after
conformal mapping. When the objective function value is
approximately zero, the optimal solution is the undeter-
mined coefficient C, (k =0,1,2,...,n).

3.2. Barrier Function Method Based on fmincon. In this
study, a barrier function is used to solve the above op-
timization problem with constraints. Starting from the
interior point, a barrier function is defined to keep the
search within the feasible region. The constrained opti-
mization problem is converted into an unconstrained
problem, and then the optimization iteration process is
used to continuously update the barrier function to make
the algorithm converge. The algorithm flow is shown in
Figure 2.

The algorithm convergence condition of the barrier
function is as follows:
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Generate a feasible initial point X9,
a penalty factor 7, a reduction coefficient c,
and a convergence accuracy ¢.

!

Let the number of
iterations k<« 0

Construct barrier function ke k+1
D(x, )
Is the convergence * 4+ leck"
condition satisfied? WO—x*(rk)

K ex*(r9)

FEO—fx ()

End

FIGURE 2: Program diagram of the barrier function.

(,b [x*(rk), rk] _ (/5 [x* (rkf 1)’ rk*l]
(/5 [X* (rkfl)) rk*l]

|x*(rk) —x*(rk_l)HSSZ. (16)

Between two adjacent iterations, equation (15) requires
the relative change of the barrier function value to be suf-
ficiently small, and equation (16) indicates that the un-
constrained minimum point is sufficiently close. When the
unconstrained minimum point x* (rX) that satisfies the
convergence condition approaches the optimal point of the
original problem, the iteration is terminated. The optimal
solution of the original problem is as follows:

= x*<rk)’
f(x") = f[x*(rk)].

The above algorithm was implemented using the
fmincon function of the MATLAB software, and the con-
strained optimization given by equation (14) can be ap-
proximated by the following problem:

min  f(x)—pu Zln (s1)

st h(x)=0,g(x)+s=0,

<e, (15)

(17)

(18)

where s is a slack variable, In (s;) guarantees that s > 0, g (x) +
s =0 is equivalent to g(x)<0, and y>0. When 4y — 0,
equation (18) is equivalent to the constrained optimization
model given by equation (14). During the operation, the

fmincon function expands the initial point x° in the feasible
region based on the Taylor series in the neighborhood, and
its Hessian matrix is as follows:

'V2f+Z/\hiV2hi+Z)LgiVZgi 0 Ty Ty
0 Lo

V20 (x, 5, A, ) = s ,
I 0 0 O

I T 10 0]

(19)

where J, and ] g are the Jacobian matrices,

The algorithm convergence condition of the fmincon
function is

max|Ve (x,s,A, p)| <e. (20)

The Hessian matrix is iteratively calculated until the
convergence condition is met. The convergence is equivalent
to equations (15) and (16), and the global optimal solution
obtained at that time is the undetermined coefficient C, (k =
0,1,2,...,n) of the mapping function.

3.3. Tunnel Mapping Example and Analysis of Convergence
Conditions. Following the tunnel clearance section of the
“Code for Design of Highway Tunnels (JTG 3370.1-2018),”
the barrier function method was used to obtain the mapping
of several main types of tunnel boundaries, as shown in
Figure 3. The red circles in the figure represent the mapping
points, and the solid black lines represent the actual
boundary of the tunnel. Since the tunnel was axisymmetric,
taking the positive half axis of the ordinate x-axis as the
starting point, the x-axis was divided into 18 equal parts.
That is, m = 18 sampling points were selected in a coun-
terclockwise order for mapping, and the number of coef-
ficients C,. of the mapping function was n = 6. The mapping
coefficients are shown in Table 1.

Figure 3 shows that the mapping points were very close
to the actual outline of the tunnel. To further describe the
accuracy of the mapping, the objective function value, av-
erage absolute error, maximum absolute error, average
relative error, and maximum relative error of the sampling
points of the tunnel section were calculated. The objective
function value was the sum of the squared errors, the ab-
solute error was the difference between the mapped value
and the actual value, and the relative error was the per-
centage of the absolute error compared to the actual value.
As shown in Table 2, the objective function values of the
mapping results were all less than 0.015m’ the average
absolute error was in the range of 15-25mm, and the
maximum absolute error was in the range of 45-70 mm. The
average relative error was less than 0.5%, and the maximum
relative error was less than 1.2%. For the excavation section
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(d)

FiGure 3: Conformal mapping for the tunnel. (a) Fourth-class highway two-lane tunnel (20 km/h). (b) Third-class highway two-lane tunnel
(40 km/h). (c) Second-class highway two-lane tunnel (80 km/h). (d) First-class highway two-lane tunnel (100 km/h). (e) First-class highway

three-lane tunnel (120 km/h).

of an underground tunnel, over- or underexcavation can
occur. When the maximum absolute error was used as the
convergence condition for determining the mapping func-
tion, the mapping accuracy met the construction acceptance

standard for the allowable deviation (—30 to 150 mm) of the
excavation section of underground tunnel engineering. In
this sense, when using the mapping function obtained for
this condition to calculate the stress of the surrounding rock
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TaBLE 1: Temperature and wildlife count in the three areas covered by the study.
Tunnel C, C, C, C, C, Cs
a 0.1207 —-0.0936 0.0603 -0.0316 0.0094 0.0014
b 0.1596 —-0.1188 0.0713 -0.0330 0.0057 0.0047
c 0.1457 -0.1674 0.0678 —-0.0265 0.0013 0.0083
d 0.1846 -0.1339 0.0765 -0.0320 0.0020 0.0074
e 0.1472 —-0.2435 0.0688 -0.0166 -0.0013 0.0075
TaBLE 2: Error analysis of the sampling points.
Objective Average Maximum Average Maximum Total length of Mapping Mapping

Tunnel function value  absolute absolute error relative error relative error real tunnel accuracy 6;  accuracy 6,

(m?) error (m) (m) (%) (%) boundary (m) (%) (%)
a 0.00662 0.0151 0.0459 0.39 1.11 26.1724 0.06 44.12
b 0.01085 0.0200 0.0501 0.48 1.15 29.1912 0.07 42.96
c 0.01526 0.0222 0.0685 0.44 1.17 32.8441 0.07 45.94
d 0.01391 0.0220 0.0637 0.44 1.11 32.9070 0.07 44.12
e 0.01490 0.0243 0.0589 0.38 0.82 42.0192 0.06 41.22
of the tunnel, the analytical solution obtained could be pr+pr=1, (22)

considered to be accurate [12].

The use of the ratio of the average absolute error of a
sampling point to the total side length of a real tunnel
boundary was previously proposed as the criterion for
judging the mapping accuracy [11], that is,

(21)

where As is the average absolute error of the sampling point
and L is the total length of the real tunnel boundary. When
the mapping accuracy §; < 5%, the accuracy requirement of
engineering calculation was achieved. The values of &,
shown in Table 2 were all less than 0.1%, and the mapping
accuracy met the convergence conditions proposed in this
research.

The convergence condition of the mapping accuracy was
established previously [12] based on the fact that the
maximum absolute error meets the engineering acceptance
standard, that is, the engineering deviation criterion. The
maximum absolute error can reflect the range of the absolute
error between the mapped and actual values, but the cri-
terion cannot describe the degree of deviation between the
mapped value of each sampling point and the actual value. In
a previous publication [11], the ratio of the average absolute
error to the circumference was taken as the convergence
condition of the mapping accuracy, that is, the average error
criterion. However, this criterion did not account for the
impact of the random uncertainty of the sampling points on
the accuracy. Based on the above deficiencies, in this study,
the structural failure criterion of the underground structure
reliability analysis theory [24] was used to establish the
convergence conditions of the mapping accuracy.

The probability of a structure completing a pre-
determined function under specified conditions is called the
reliability of the structure. The reliability and failure of a
structure are two mutually exclusive events, and the sum of
their probabilities is equal to 1, i.e.,

where p, represents the reliable probability that the structure
completes the predetermined function and p represents the
failure probability that the structure does not complete the
predetermined function.

X = [X,, X,, ..., X,]" is a basic random variable that
affects the structure function. In this study, the random
function

Z=g(x)=g(X;,Xp....X,) (23)
represents the random error between the mapped value and
the actual value of each sampling point, which obeyed a
normal distribution. Because it is a continuous random
variable, the failure probability is defined as follows:

0

(24)

p;=PlZ<0} = j @

By assuming that Z ~ N (y,,02), the mean is y,, the
standard deviation is 02, and the probability density function
is f,(z), then

2
(z - p2) ] (25)

1
fz (2) = maz exp|: 20_2

z

By defining Y = (Z - uz)/o,, Z is transformed into a
standard normal distribution variable Y ~ N (0, 1), and its
probability density function and cumulative distribution
function are as follows:

1 2
o (y) =\/T—ﬂe><p[—y7],

y
O(y) = J ¢ (y)dy.

(26)

Thus, equation (24) can be written as
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The reliability index of the structure is defined as
7
=" (28)

z

This expression states that the standard deviation can be
used to measure the distance from the origin to the average.
Equation (27) can then be expressed as follows:

pf = q)(_ﬂz) =1- (D(ﬁz) (29)

Because the probability density function f,(z) is sym-
metric about the axis z = y,, the relationship between the
mapping accuracy 8, and the failure probability p, of the
structure proposed in this research is expressed as follows:

5= 2p;=2[1-@(5,)] (30)

Based on the deviation between the error of each
sampling point and the mean value, to make the random
uncertainty of the mapping error as small as possible, the
mean value of the error deviation of each sampling point
multiplied by the standard deviation o, was taken as the
structural failure criterion to establish the mapping accuracy
convergence condition. Thus, §,>2[1 - ®(1)] = 31.74%.
The values of §, in Table 2 are all greater than 41%, satisfying
the structural failure criterion proposed in this study.

In summary, the barrier function method implemented
by the fmincon optimization function is efficient and easy to
be implemented, and it produced a high-precision mapping of
the tunnel section. The convergence condition of the mapping
accuracy satisfied the engineering deviation criterion, average
error criterion, and structural failure criterion.

4, Study of Stability of Tunnel-Surrounding
Rock in Layered Jointed Rock Mass

4.1. Study of Stress Intensity Factors of Crack Tips of Layered
Joints around Tunnels. To study the influence of the layered
joints around the tunnel on the stability of the surrounding
rock of the tunnel, first, the tunnel was taken as the research
object to study the stress distribution of the surrounding
rock at the boundary of the tunnel. Taking a certain section
of the tunnel project in Yibin, Sichuan, as the research
background [8], the straight-walled arched tunnel was 5m
wide and 6 m high, and it had a circular arch radius of 2.5 m.
It was subjected to a vertical stress of o, = 10 MPa and a
horizontal stress of g;, = 2.5 MPa. The calculation model is
shown in Figure 4. The mapping coefficient and the accuracy
of the tunnel are shown in Table 3. The convergence con-
ditions met the requirements of the engineering deviation,
average error, and structural failure criteria.

To obtain the mapping function, a program was written
in MATLAB to obtain the tangential stress o, of the sur-
rounding rock at each boundary point of the straight wall
arch tunnel, and the relationship between the tangential
stress 0, and the polar angle & around the tunnel was plotted,
as shown in Figure 5. The top, spandrel, and foot regions
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showed stress concentrations, the shear stress around the
tunnel reached a maximum at the foot region, and the shear
stresses in the straight wall and floor plate areas were lower.

The layered joints were parallel or nearly parallel joints
that formed in the same geological period. To facilitate
analysis, the layered joints around the tunnel were simplified
as a crack with an inclination angle of  and a length of 2a, as
shown in Figure 6. Taking this crack as the research object,
the Westergaard stress function of the crack [25] was

76 -( =1 o

(31)

z
Zy(2) = (\/ﬁ - 1)T>
z'-a

where the analytical functions Z; (z) and Z; (z) represent the
Westergaard stress functions of type I and type II cracks,
respectively. The mapping function z = w ({) = a({+{ H2
was used to transform the crack to the unit circle in the
complex plane. z = a + { is the coordinate of any point in the
complex plane, ¢ is the normal stress perpendicular to the
crack, and 7 is the shear stress parallel to the crack. The
coordinate transformation formula of the stress components
are as follows:

0 =0, sin” acos’ B
Jl ¢ ’ (32)

T = 0, sin” asin B cos B,

where o, is the tangential stress at any point of the tunnel
boundary, which can be obtained from the polar stress
component oy in the complex plane using equation (2), « is
the polar angle at any point on the tunnel boundary, and 8 is
the crack inclination angle. The stress intensity factor at the
crack tip is

K; = lim Z\2n(z -a),
zZ—a

Ky = lim Zy+2n(z - a),
zZ—a

where K| represents the stress intensity factor at the tip of the
mode I crack and Kj; represents the stress intensity factor at
the tip of the mode II crack.

By substituting equations (31) and (32) into equation
(33), we obtain the following:

(33)

K, =+mao sin® acos’ ,
{ 1 o ﬁ (34)

Ky = Va0, sin® asin  cos .

According to the theory of fracture mechanics, the stress
intensity factor K is a physical quantity that characterizes the
strength of the stress field at the crack tip. When K > K, the
crack tip is unstable, and the crack expands. K represents
the fracture toughness, which is the mechanical performance
index of the material and is related to the structure and
composition of the material. K- can be obtained with a rock
sample test [26], empirical formula estimate [27], numerical
analysis [28], or theoretical model prediction [29].
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FIGURE 4: Tunnel calculation diagram.

TaBLE 3: Coeflicients and accuracy of the mapping function for the straight wall arched tunnel.

Maximum absolute error (m) Mapping accuracy §, (%) Mapping accuracy &, (%)
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FIGURE 5: Relationship between tangential stress and polar angles.

Equation (34) shows that K is determined by «, 3, and o,,.
This formula is the analytic expression of the complex
function of the stress intensity factor of the crack tip around
the tunnel under a confining pressure. If & and o, remain
unchanged, K is controlled by . If & and  remain un-
changed, K is controlled by o,.

In this study, the tunnel crack inclination and position
model reported previously [7-9] was substituted into
equation (34) to calculate and plot the stress intensity factor
of the tunnel surrounding the crack tip. The sign of the
compressive stress in the fracture mechanics analysis was
defined as negative.

Figure 7(a) shows that the plots of K versus f3 at the top
of the tunnel (a = 0°) followed sine and cosine functions.
Since K; was controlled by the normal stress perpendicular

HRK

—— Tunnel boundary
—— Original crack
—— Secondary crack

FIGURE 6: Stress analysis diagram for the crack on the tunnel
boundary.

to the crack surface, when f3 = 0°, i.e., when the crack was
parallel to the horizontal plane, the crack was closed due to
the pressure, and K; was the smallest at this time. As f3
gradually increased, the compressive stress of the crack
provided by the tunnel edge tangential stress gradually
decreased, so K| gradually increased. At § = 90°, the crack
was perpendicular to the horizontal plane, the tangential
stress around the tunnel no longer provided compressive
stress for the crack, and K| was zero. Since K was controlled
by the shear stress parallel to the crack surface, when the
crack inclination angle was f3 = 45°, K|; reached its maxi-
mum value. K; and Ky; were equal in value when the dome
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position was f3 = 45°, which was the dominant structural
plane inclination angle for the crack tip instability growth.
The conclusions of this work were consistent with the nu-
merical damage simulations and similar model test results
reported previously [7]. Thus, when the RPFA software was
used to simulate the numerical damage of a tunnel with a
crack inclination of 8 = 45°, at the top of the arch, a shear
damage area was formed in the crack tip area at the initial
stage of loading. The similar model test results showed that
the compressive strength of the tunnel model was the lowest
when the preset crack inclination was 3 = 45° at the top of
the tunnel arch. When the crack inclination angle was 0° and
90°, the compressive strength of the tunnel model was
greater.

Figure 7(b) shows that at the spandrel (¢ = 60°) and foot
(a = 140°) regions, K reached the maximum when the
crack inclination angle was 8 = 45°, which was consistent
with previously reported numerical simulations and similar
model test results [8, 9]. Thus, the Tresca stress value of the
tunnel numerical model was the largest when the crack
inclination angle was § = 45° at the spandrel and foot. K;; at
the crack tip was also the largest, and the similar model test
results showed that the crack inclination angle was f§ = 45" at
the spandrel and foot. The stress concentration of the tunnel
model was greater, and the strength was lower.

Figure 7(c) shows that when the crack inclination angle
was f = 45°, the crack tip K changed with the crack at dif-
ferent positions of the tunnel boundary. K reached a larger
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value at the spandrel, it reached maximum at the foot, it was
lower in the straight wall area, and it was close to zero in the
top and floor areas. The research conclusions of this work are
consistent with previously reported numerical damage sim-
ulations and the similar model test results [7]. Thus, when the
cracks were located at different locations in the tunnel, the
main form of tunnel failure was the compression and shear
failure at the crack tip, and the wall foot and spandrel were the
weak parts formed by the tunnel crack.

In summary, the mechanical behavior of the crack tip
around the tunnel under confining pressure was mainly
controlled by the type II stress intensity factor Ky, which was
anisotropic with the change of the crack inclination and
position. The relevant parameters of the tunnel calculation
model were substituted into equation (34) to calculate and
plot Ky; for different crack inclination angles and positions
around the tunnel, as shown in Figure 8. The inclination and
position of the cracks around the tunnel affected the value of
K;; and showed an evident pattern. When the crack incli-
nation angle was f§ =45, it was the dominant structural
plane inclination angle for the instability and propagation of
the crack tip around the tunnel, and the K|; value about this
symmetry decreased to zero as the inclination angle
approached § = 0° and § = 90°. The K|; value of the crack at
the same inclination angle around the tunnel changed with
the polar angle « of the tunnel, showing a low and high
double peak shape. Its double peaks corresponded to the
spandrel and foot, and the stress intensity was lower in the
straight wall area and close to zero in the top and floor areas.

4.2. Scoring Parameters of Crack Propagation around Tunnel
and Inclination Angle of Rock Joints. After the excavation of
an underground tunnel or cavern, the surrounding rock
stress is redistributed. The surrounding rock of the tunnel
wall is unloaded in the normal direction, and the tangential
stress is concentrated. The instability and propagation of the
crack tip of the layered joints around the tunnel cause the
surrounding rock to produce radial horizontal tensile cracks
approximately parallel to the excavation unloading surface,
which extend and expand under the action of the bias load.
Due to the cutting action of the structural plane, the tension
cracks form a rock slab, which gradually deform inward
toward the air. With the continuous adjustment of the stress
or the influence of the accumulated blasting disturbance
nearby, the rock slab separates and falls off from the parent
rock from the surface to the inside, finally forming a slab
[30]. Therefore, the existence of layered joints around the
tunnel reduces the stress threshold of the rib spalling.

Because most of the rock was in a mechanical envi-
ronment under multidirectional compression, the singular
stress field at the crack tip was a I-II compound type [31].
According to the theory of maximum circumferential stress,
the crack propagated in the 0 direction corresponding to the
maximum circumferential stress oy,,,,, and when the cir-
cumferential stress in this direction reached a critical value,
the crack started to extend. The expression of the stress
component in the polar coordinates of the crack front is as
follows:
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FIGURE 8: Stress intensity factor Kj; versus tunnel polar angle and
crack inclination angle.

Ogp = N;ZWCOS g [K;(1+cosb) —3Kysinf],  (35)
where 8 is the crack initiation angle, 7 is the distance between
the microunit and the crack tip, and K| and K; are the stress
intensity factors of the type I and II cracks, respectively.

0 in equation (35) is differentiated and set equal to zero
to obtain

K;sin@+K;(3cosf-1) =0. (36)

From this, the initiation angle 6 = 6, of the secondary
crack can be determined. At that time, the composite stress
intensity factor of the crack tip is as follows:

+ 1 0
K" = 0gpax V2711 = 5 cos 30 [K; (1 + cos 6,) — 3Ky sin 6, ].
(37)

When K* > K, the crack begins to extend.

Considering the anisotropy of the stress intensity factor
of the crack tip around the tunnel, equation (34) was
substituted into equation (36) to obtain

sin 0,

1-3cosf, (38)

tanf3, =

When the secondary crack expands along the direction
of the initiation angle 6, and when it is parallel to the
unloading surface of the tunnel excavation, a radial hori-
zontal tension crack parallel to the unloading surface of the
excavation forms under the action of the bias load. Com-
bined with the existing literature on the mechanism of
tunnel rib spalling, 8, in equation (38) is the dominant
expansion angle of the joint plane of the crack tip due to the
instability expansion of the slab. Substituting the geometric
relationship 6, + 180° = a + f3, into equation (38), the re-
lationship between «, f, and 6, is as follows:
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sinf, (1 —4cos6,) +sina = 0. (39)

Based on this, the corresponding relationship between «
and 6, with respect to 3, was plotted, as shown in Figure 9.

To verify the corresponding relationship between the
angles given in Figure 9, the finite element software Abaqus
was used to perform a numerical simulation to calculate the
Tresca stress cloud diagram of the crack tunnel model, as
shown in Figure 10. The elastic modulus of the surrounding
rock of the tunnel was E = 2.95GPa, Poisson’s ratio was
u = 0.25, the vertical stress was o, = 10 MPa, and the hor-
izontal stress was o;, = 2.5 MPa. The cracks in the model
were established using the extended finite element module
XEFM. To better simulate the relative relationship between
the secondary crack and the unloading surface of the tunnel
excavation, the default crack length was 2a = 5m, and the
crack tip was 1 m from the tunnel periphery. The number of
model nodes was 8,796, the number of units was 8,626, and
the unit type was CPS4R.

Figure 10 shows that when 8 = 3, the secondary crack
was parallel to the unloading surface of the corresponding
tunnel, and a shear stress concentration area formed near the
secondary crack. The crack tips at different locations around
the tunnel corresponded to different 3;,. The model simu-
lation results were consistent with the above conclusions.

Equation (39) was substituted into equation (37) to
obtain

. 1
K" = Ecosoé +2/3°KI[1 —cos(a+ )]
(40)
3
~5cos ar [;OKH sin (a0 + f3).

If the fracture toughness K of the jointed rock mass at a
certain position around the tunnel was measured for the
maximum circumferential stress, then K*>K could be
used to judge the possibility of rib spalling when the rock
inclination angle was 8 = 3, at this position.

Considering the anisotropy of the stress intensity factor
of the layered joints around the tunnel, a modified scoring
parameter was proposed for the inclination of the layered
joints around the tunnel in the RMR to further strengthen
the adverse effects of the inclination on the surrounding rock
of the tunnel. As shown in Table 4, the initial value of the
RMR was corrected based on the joint inclination range of
different parts of the tunnel.

4.3. Bias Load and Bolt Supporting Stress around Tunnel.
Based on the existing literature and the above research, it
was determined that the damage to the surrounding rock
of the tunnel caused by the bias load formed by the
layered joints around the tunnel is reflected in the fol-
lowing two aspects: microscopically, the crack tip with
the inclination angle of the dominant expansion joint
plane is expanded, and the secondary crack forms a radial
horizontal tension crack parallel to the excavation
unloading surface. Macroscopically, the fractured rock
mass is sheared and destroyed along the bedding layer,
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causing interlayer slippage around the tunnel. The two
aspects act together to affect the stability of the tunnel-
surrounding rock.

Due to the influences of the excavation unloading and
the blasting disturbance, the cohesive force c¢; of the
jointed rock mass is reduced. If the tunnel boundary in the
layered jointed rock mass does not satisfy the joint plane
stability discriminant given by equation (8), the fractured
rock mass undergoes shear displacement along the joint
plane. At that time, the anchor rod in the surrounding
rock support system is subjected to axial tension, exerting
a normal stress on the joint plane and restricting its
normal separation displacement [32]. At the same time,
the anchor rod makes full use of the shear strength of the
anchored rock mass, and the anchor rod transmits the
tensile force to the surrounding rock through the an-
choring solid [33], thereby suppressing the instability and
propagation of the crack tip. Thus, the anchor rod pro-
vides a support stress to the tunnel-surrounding rock to
balance the bias load:

o, cosﬁsin(ﬁ - goj) —Cjcosg;
sinﬁcos(ﬁ - (p].)

where o, is the tangential stress at any point of the tunnel
boundary, which can be obtained from the polar stress
component oy in the complex plane using equation (2), « is
the polar angle at any point of the tunnel boundary, § is the
inclination angle of the joint, ¢; is the cohesion of the jointed
rock mass, and ¢; is the internal friction angle of the jointed
rock mass. The inequality sign in equation (41) was set to an
equal sign to calculate the anchoring stress p;, at any point on
the side of the tunnel.

The Yangjiaping Tunnel of the Chenglan Railway was
considered as an example [34]. The tunnel was buried at a
depth of 330 m, and it was located in a layered phyllite
formation. The strata strike was parallel to the tunnel axis,
and the strata dip was in the range of 60°-85°. The tunnel
was subjected to the vertical stress o, = 9.56 MPa and a
horizontal stress g, = 13.39 MPa. The jointed rock mass
cohesion was ¢; =0.10MPa, and the internal friction
angle was ¢; = 24°. The tunnel was initially supported by
anchor rods and a steel-framed concrete secondary lin-
ing. The mapping coefficient and the accuracy of the
tunnel section are shown in Table 5. The convergence
condition satisfied the engineering deviation, average
error, and structural failure criteria at the same time.
After substituting different joint inclination angles into
equation (41), the distribution diagram of the bolt sup-
port stress p, was calculated and plotted, as shown in
Figure 11.

The supporting stress distribution of the spandrel, wall,
and foot shown in Figure 11 was consistent with the contact
pressure of the surrounding rock and the initial support at
each monitoring point in the literature [34]. The support
stress was anisotropic under the bias load of the inclined
layered surrounding rock, and the rock inclination angle of
the specific part of the tunnel must be considered when the
support design is carried out.

b= ) (41)
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TaBLE 4: Modified score parameters of joint obliquity.

Very disadvantageous

Joint inclination Very advantageous (VA) Favorable (F) General (G) Unfavorable (UF) (VD)
. . . . Lo o ano 20°-30° 15°-20° o Lpo

Parameters suggested in this article 0°-15 75°-90 60°75° 30°_45° 45°-60

Score value 0 -2 -5 -10 -12

TaBLE 5: Coeflicients and accuracy of the mapping function for the Chenglan tunnel.

C, C, C, C, Cy C;  Maximum absolute error (m) Mapping accuracy 6, (%) Mapping accuracy 6, (%)
—-0.0669 -0.0033 0.0415 -0.0356 0.0093 0.0048 0.0605 0.08 41.22
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5. Conclusions

(1) The barrier function method based on the fmincon
optimization function in MATLAB could achieve a
high-precision mapping of the tunnel section, and
the algorithm was efficient and easy to implement.
Considering the shortcomings of the existing con-
vergence conditions, in this study, the mean value of
the error offset of each sampling point multiplied by
the standard deviation was taken as the structural
failure criterion, and the convergence condition of
the mapping accuracy was established, that is, the
convergence when & >31.74%.

(2) The mechanical behavior of the crack tip of the
tunnel edge under confining pressure was mainly
controlled by the type II stress intensity factor K.
The value of K;; was anisotropic with the change in
the crack inclination and position. When the
crack inclination angle was f§ =45, it was the
dominant structural plane inclination angle for
the instability and propagation of the crack tip
around the tunnel, and the Kj; value about this
symmetry line decreased to zero as the inclination
approached = 0" and 8 = 90°. The K|; value of the
crack at the same inclination angle around the
tunnel changed with the polar angle a of the
tunnel, showing a low and high double peak
shape. The double peaks corresponded to the
spandrel and foot, and the stress intensity was
lower in the straight wall area and close to zero in
the top and floor areas.

(3) When the crack inclination was f = f3;, the sec-
ondary crack was parallel to the unloading surface of
the corresponding tunnel, and a shear stress con-
centration area was formed near the secondary crack.
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The crack tips at different parts of the tunnel side
corresponded to different inclination angles f3, of the
superior expansion joint plane. The existence of
layered joints at the edge of the tunnel reduced the
stress threshold of the failure of the rib spalling.
Based on this, the revised scoring parameters for the
inclination of the layered joints around the tunnel in
the RMR classification were proposed (Table 4) to
turther strengthen the adverse effects of the incli-
nation on the surrounding rock of the tunnel.

(4) The damage to the surrounding rock of the tunnel
caused by the bias load formed by the layered joints
around the tunnel was reflected in the following two
aspects: microscopically, the crack tip with the in-
clination angle of the dominant expansion joint
plane was expanded, and the secondary crack formed
a radial horizontal tension crack parallel to the ex-
cavation unloading surface. Macroscopically, the
fractured rock mass was sheared and destroyed along
the bedding layer, causing interlayer slippage around
the tunnel. Both aspects affected the stability of the
tunnel-surrounding rock. Using the complex func-
tion of the stability of the layered joint plane at any
point of the tunnel boundary, the supporting stress
required for balancing the bias load at each point on
the tunnel boundary could be calculated.
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