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*is paper addresses the constrained multiobjective optimization problem of time-modulated sparse arrays. *e synthesis
objective is to find an optimal element arrangement and associated excitation strategy of sparse arrays, which realize the balance of
radiation power and sideband suppression performance with minimum number of elements, and suppress side lobe level si-
multaneously. A novel hybrid algorithm based on orthogonal perturbation method and convex optimization (OPM-CVX) for the
synthesis of time-modulated sparse antenna array is presented in this paper. In order to satisfy the main lobe beamforming and
side lobe suppression of sparse arrays, the proposed method optimizes element positions with minimum array numbers by
orthogonal perturbation method and optimizes excitations of array element with dynamic range ratio constraint by convex
optimization. Furthermore, a trapezoidal pulse time-modulated switching function is proposed to find the balance of radiation
power and sideband suppression performance. *e numerical results indicate that the proposed algorithm can be an effective
approach for synthesis problems of time-modulated sparse arrays.

1. Introduction

*e antenna arrays have diverse structures and flexible beam
control. It is widely used in radar early warning, meteorology
and hydrology, and wireless communication systems [1–3].
Compared with single antenna, antenna arraysmake it easier
to implement pencil beams, flat top beams, multibeams, and
low side lobe patterns. *e pencil beam can overcome
multipath interference and cochannel interference. Lei [4]
optimized the array element positions through an iterative
convex optimization algorithm and realized pencil beam and
low side lobe in linear and planar arrays. *e shaped beam is
mainly used to meet the requirements of the radiation area
and the intensity of the signal in the specified direction. For
example, the flat top beam can ensure the uniformity of the
power density at the receiving set, which is significant for
improving the reception efficiency and simplifying the de-
sign of the rectifier circuit. Cao [5] andQi [6] synthesized flat
top beam with linear array and rectangular planar array,
respectively. *ey effectively controlled the main beam

ripple and obtained low side lobe level. In addition, Qi also
synthesized a planar array of 10000 (100×100) elements
with half wavelength spacing and verified the applicability of
synthesizing shaped beam of large array. However, the cost
of the antenna system is increased by the half-wavelength
equidistant arrangement.

*e sparse array is an important branch in the field of
antenna arrays. Compared with uniform antenna arrays, the
spacing of array element in sparse array is usually not equal
and greater than half wavelength. Under the same array
aperture, the sparsely distributed array can obtain better
radiation performance with fewer array elements. Morabito
[7] synthesized flat top and cosecant patterns using rect-
angular array with the least number of array elements.
Compared with the array with uniform spacing of half
wavelength, 58% of the array elements were saved. Shen [8]
and Yan [9] both constrained the aperture of sparse array
and synthesized flat top beam and pencil beam. Shen [8]
used the unitary matrix pencil method to solve the excitation
and element position of linear array, which improves the
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matching accuracy of shaped beam and reduces the com-
putational complexity. However, the dynamic range ratio
(DRR) was still greater than 10. Yan [9] adopted the per-
turbed compressive sampling (PCS) algorithm to optimize
the excitation and element position at the same time, which
improves the matching accuracy of pattern and obtains a
large DRR too. A lot of achievements have been made in the
pattern synthesis of sparse arrays. However, the large DRR
will increase the implementation difficulty and hardware
cost of the feeding network.

*e time modulation technology controls the working
state of the array element through the RF switch to obtain
the equivalent excitation coefficient so that the array element
can also obtain good performance of pattern synthesis under
the uniform excitation. Poli [10] synthesized a pencil beam
pattern and suppressed sideband radiation by optimizing the
equivalent excitation of the time-modulated linear array.
Alberto Reyna [11] synthesized rectangular and circular
sparse arrays with the same aperture size and obtained flat
top beam pattern and better feeding network efficiency, but
the sideband level was high. Patra [12] synthesized a flat top
beam pattern in time-modulated sparse linear array. A
combination of static excitation, unequal element spacing,
and time is used to obtain a side lobe level of −40.49 dB and a
sideband level of −26.46 dB. *rough the abovementioned
analysis, in addition to obtaining the target pattern, the time-
modulated array needs to suppress the sideband radiation
caused by the RF switching action. Many scholars have
carried out in-depth research on the optimization algo-
rithms of time-modulated arrays and sparse arrays.

*e pattern synthesis algorithms of sparse array mainly
include evolutionary algorithm, numerical algorithm, and
convex optimization algorithm. *ere are many widely used
evolutionary algorithms. D’Urso [13] proposed simulated
annealing algorithm to optimize the switch-on duration
time, which realized the low side lobe of sparse array with
equal spacing and effectively suppressed the sideband ra-
diation. With the constraint of exactly matching the desired
pattern of main band, Poli [14] applied the pulse shifting
technique to time-modulated arrays and used particle swarm
optimization algorithm to suppress the side lobe level and
sideband level effectively. However, with the increase of the
optimization dimension, the computational complexity of
the evolutionary algorithm increases exponentially, the
optimization efficiency decreases accordingly, and it is easy
to fall into a local optimal solution.

*e deterministic numerical methods are widely used
with stable optimization solutions. Gassab [15] proposed an
efficient mathematical method for pattern synthesis of time-
modulated linear array and obtained lower side lobe and
sideband than the antenna array optimized by differential
evolution algorithm. However, only the switch-on duration
time of array element was optimized, while the position of an
array element was fixed. Yepes [16] proposed a new hybrid
technique to synthesize different shaped beams (narrow
beam, flat top beam, and square cosecant beam) for linear
array. *is technique uses a deterministic algorithm to
optimize the nonuniform amplitude excitation and antenna
element position and then uses an iterative optimization

strategy to calculate the phase of the excitation. Although the
deterministic iterative algorithm has high operational sta-
bility, its optimization effect largely depends on the initial
state of the array. *erefore, joint optimization of param-
eters such as the position and excitation of an array element
can usually achieve better optimization result.

Convex optimization algorithm is applied to pattern
synthesis with the advantages of its efficient optimization
process and the global optimal result. Echeveste [17] pro-
posed a flat top beam synthesis methodology for planar array
by transforming a nonconvex synthesis problem to a convex
optimization scheme with conjugate symmetric excitation
weights. Under the constraint of the minimum spacing of
array elements, Yan [18] proposed a hybrid algorithm of PCS
and convex optimization to synthesis a flat top beam of
planar array. *is method solved the problems of the small
element spacing using PCS algorithm and the long or even
invalid solving time for the large-scale array using convex
optimization algorithm. *e above studies all involved
transforming a nonconvex problem to a convex problem.
*is is the key to the application of convex optimization
algorithm to pattern synthesis.

Combined with the abovementioned analysis, this paper
uses the hybrid algorithm of OPM-CVX to minimize the
number of array elements and suppress side lobe and
sideband.*is algorithm achieves joint optimization of array
element excitation and position under the constraint of
desired pattern. However, multivariate optimization is a
multiobjective multiconstrained nonlinear optimization
problem [19]. Taking this issue into consideration, the op-
timization model is disassembled into linear optimization
problems about the number of elements, shaped beam, side
lobe, and the balance between sideband and power. *e
iterative strategy is adopted to achieve the above objectives
step by step.

*is paper consists of five sections. Some key studies in
the field of time-modulated sparse arrays are reviewed in
Section 1 and the problem to be addressed by the present
study is pointed out. In Section 2, the formula deduction of
Fourier coefficient of trapezoidal pulse switching function
and themodel of optimization are provided. Section 3 gives a
step by step solution to the optimization model and de-
scribes the optimization process. In Section 4, the effec-
tiveness of this hybrid algorithm is shown by detailed
simulation results. Finally, Section 5 presents the
conclusions.

2. Shaped Beam Pattern Synthesis of Time-
Modulated Sparse Antenna Array

2.1. Time-Modulated Sparse Antenna Array. For planar
antenna arrays with N identical array elements, as shown in
Figure 1, the electric field intensity of far field [20] is given by

E(θ, φ) � 􏽘
N

n�1
Ine

jk xnu+ynv( )e
j2πf0t

, (1)

where In is the excitation coefficient of the nthelement lo-
cated at (xn, yn) and θn and φn are pitch and azimuth angle,
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respectively. *e radiation direction of the array is (θ,φ),
u � sin θ cosφ, and v � sin θ sinφ. k � (2π/λ) � (2πf0/c) is
the propagation coefficient of the free space with the
wavelength λ, where f0 is the carrier frequency.

In time-modulated antenna arrays [21], the nth array
element is only controlled by Un(t), which is the function of
the high speed RF switches. *e electric field intensity is
redefined as

E(θ,φ) � 􏽘

N

n�1
InUn(t)e

j2πf0t
e

jk xnu+ynv( ). (2)

*e expansion form of time-modulated switching
function Un(t) in frequency domain can be expressed as

Un(t) � 􏽘
+∞

m�−∞
amne

j2πmfnt
, m � 0, ±1, ±2, . . . , (3)

where fn � (1/Tn), Tn are the time-modulated fundamental
frequency and period of the array elements separately and
amn is the Fourier coefficient of the mth sideband. Equation
(2) can be rewritten as

E(θ, φ) � 􏽘
N

n�1
􏽘

+∞

m�−∞
Inamne

j2π f0+mfn( )t
e

jk xnu+ynv( ), (4)

where the electric field intensity of the antenna array at the
mth sideband is

Em(θ,φ) � 􏽘
N

n�1
Inamne

j2π f0+mfn( )t
e

jk xnu+ynv( ). (5)

*e power of main band P0 and the total power of
sideband PSR can be expressed as

P0 � 􏽚
2π

2π
􏽚
π

0
E0(θ,φ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 sin θ dθ dφ, (6)

PSR � 􏽘
m�∞

m�−∞,m≠0
􏽚
2π

0
􏽚
π

0
Em(θ,φ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 sin θ dθ dφ, (7)

where E0(θ, φ) is the electric field intensity of main band and
Em(θ, φ) is the electric field intensity of the mth sideband.

*e average power is the sum of the integral of power in
all directions. According to equations (6) and (7), it can be
defined as

Pav �
P0 + PSR

4π
. (8)

*e directivity of time-modulated antenna array can be
expressed as [22]

D �
4πmax E0(θ,φ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼐 􏼑

P0 + PSR

. (9)

2.2. Trapezoidal Pulse Time-Modulated Switching Function.
Under the variable aperture sizes (VAS) modulation mode
[23], the rectangular pulse switching function is usually used
for time-modulated antenna array, as shown in Figure 2(a).

As shown in Figure 2(b), the trapezoidal pulse switching
function is obtained as follows:

Un(t) �

t

τa

, 0< t≤ τa,

1, τa ≤ t≤ τn − τa,

τn − t

τa

, τn − τa ≤ t≤ τn,

0, else.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

*e Fourier coefficient of the trapezoidal pulse switching
function is (for details, see Appendix A)

amn � τn − τa( 􏼁fn sin c πmfnτa( 􏼁sin c πmfn τn − τa( 􏼁􏼂 􏼃

· e
−jπmfnτn , 0< 2τa ≤ τn ≤Tn.

(11)

While the Fourier coefficient of the rectangular pulse

switching function Un
′(t) �

1, 0≤ t≤ τn

0, else􏼨 is

amn
′ � τnfn sin c πmfnτn( 􏼁e− jπmfnτn , 0< τn ≤Tn. (12)

Compared with rectangular pulse switching function,
trapezoidal pulse switching function has better sideband
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Figure 1: Planar arrays with square lattices and square boundaries.
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Figure 2: Time-pulse shaping. (a) Rectangular pulse. (b) Trape-
zoidal pulse.
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suppression performance as its Fourier coefficient amn has an
extra sin c(πmfnτa) component.

A switch has only two state of ON and OFF, so in order
to form trapezoidal pulse in reality, each element can be
equipped with a radio frequency (RF) variable gain amplifier
(VGA). *e periodic trapezoidal pulse of period Tn governs
the digitally controlled VGA instead of RF switches to
transmit signal [24]. Compared with conventional time-
modulated array based on RF switches, the power con-
sumption is acceptable and the complexity of hardware
structure is approximate [25]. Moreover, the VGAs guar-
antees flexibility and advanced dynamic control.

2.3. 3e Mathematical Model of Shaped Beam Pattern
Synthesis. For side lobe and sideband suppression of sparse
arrays based on time-modulated technology, the objective of
this paper is to find an optimal solution for shaped beam
pattern synthesis of sparse array. *at is to optimize the
array element position and excitation coefficient to make the
pattern achieve the following goals: (a) minimize the peak
side lobe level (PSLL) and peak sideband level (PSBL) under
the constraint of main band; (b) minimize the number of
elements; (c) make the dynamic range ratio (DRR) meet the
constraint conditions. *e abovementioned optimization
problem can be expressed as

min max
θ,φ∈Ωs

E0(θ, φ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

max Em(θ,φ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, m≠ 0

N

s.t. E0(θ, φ) − Ed(θ,φ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 < ε1, θ,φ ∈ Ωc

min In � 1, max In ≤ ε2,

(13)

where N is the number of array elements, E0(θ, φ) is the
electric field intensity of main lobe, Ωcand Ωs are the main
lobe area and the side lobe area of main band, respectively,
Em(θ, φ) is the electric field intensity of sideband, Ed(θ,φ) is
the desired shaped beam pattern of main band, ε1 is the
maximum relaxed coefficient of shaped beam pattern, and ε2
is the maximum amplitude of the excitation coefficient.

3. Hybrid Algorithm Based on Orthogonal
Perturbation Method and
Convex Optimization

In order to meet the optimization objective of equation (13),
this section decomposes equation (13) into four problems
and uses different methods to optimize them, respectively:
(a) under the constraints of the side lobe and sideband, the
minimum number of elements is achieved by iteratively
decreasing; (b) the suppression of sideband level is achieved
by nonuniform periodic modulation and trapezoidal pulse
switching function; the nonuniform periodic modulation
can effectively suppress the PSBL, and the trapezoidal pulse
switching function can further reduce the sideband level and
sideband power radiation; (c) the array element position is
optimized by the orthogonal perturbation method [26–28],
and the optimized array realizes the sparse layout; (d) the

equivalent excitation of array element is obtained by the
convex optimization, and the joint optimization of equiv-
alent excitation and position minimizes the PSLL. At the end
of this section, the algorithms above are summarized and
explained, and the general flowchart is given.

3.1. Minimum Number N of Array Elements. According to
the optimization objective of equation (13), the number of
array elements needs to be minimized under the constraints
of the side lobe and sideband. Under the condition that the
array aperture remains invariant, the number of array ele-
ments is initialized toN0, and the spacing of array elements
meets (λ/2). N0 can be written as

N0 � ceil
2Lx

λ
􏼒 􏼓 · ceil

2Ly

λ
􏼠 􏼡, (14)

where (Lx, Ly) is the aperture size of the planar array. In this
paper, the minimum number of array elements is obtained
by gradually reducing the array elements while the side lobe
and sideband still meet the constraints.

3.2. Sideband Suppression Based on Trapezoidal Pulse
SwitchingFunction. According to the optimization objective
of equation (13), the maximum value of the sideband electric
field intensity |Em(θ, φ)|, m≠ 0 of the antenna array is re-
quired to beminimum. From equation (11), the amplitude of
amn decreases with the increase of m in the function sin c(·).
*at is, the sideband level decreases as the sideband order
increases, so the sideband level of the array at m � 1 is the
highest [18]. *is paper uses a nonuniform period time-
modulated method [29], so the sideband energy of the array
elements cannot be superimposed. *erefore, the PSBL of
the array element is the PSBL of the array. Minimizing the
PSBL is equivalent to

min max
n�1,2,...N

a1n. (15)

Under the condition that τn and fn are known, a1n is
only determined by τa in equation (11). According to the
pattern synthesis algorithm of OPM-CVX proposed in
Section 3.3, the best coefficients Ina0n can be obtained under
the constraints of the main lobe and side lobe. *at is,
Ina0n � In(τn − τa)fn is known when m � 0. *e value
range of τa is (0, (τn/2)). When τa � 0, the trapezoidal pulse
switching function becomes the rectangular pulse switching
function. *e sideband suppression performance is the
worst, while the radiated power of sidebands is the largest.
When τa � (τn/2), the trapezoidal pulse switching function
becomes a triangular pulse switching function, the sideband
suppression performance is the best, while the radiated
power of sidebands is the lowest. In this paper, the best rise/
fall time τa of trapezoidal pulse and the best static excitation
In are solved under the constraint of DRR
min In � 1, max In ≤ ε2 in equation (13) so that the radiated
power of the main band and the suppression effect of the
sideband are balanced. Under the constraints of
min In � 1, max In ≤ ε2, this paper initializes the In of the
array element firstly, and then design the value of τa under
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the balance requirement of main band radiated power and
sideband suppression.

3.3. Orthogonal Perturbation Method for Optimal Location.
According to the optimization objective of equation (13), the
mean square error between the main lobe of the actual
pattern and the main lobe of the desired pattern is required
to be less than the set value, which can be expressed as

δ �
1
4π

􏽚
Ωc

􏽚
Ωc

E0(θ, φ) − Ed(θ,φ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 sin θ dθ dφ< ε1,

(16)

where δ is the mean square error.
From equation (4), the electric field intensity of main

band can be rewritten as

E0(θ,φ) � 􏽘
N

n�1
Ina0ne

jk xnu+ynv( ) � W
T
B, (17)

where B � [b1, . . . , bN]T, bn � ejk(xnu+ynv) is the steering
vector of the antenna array, W � [w1, . . . , wN]T, wn � Ina0n

is the excitation vector of the antenna array, and the carrier
frequency common factor ej2πf0t of main band is ignored.

Under the condition that the excitation vector W is
given, this paper uses orthogonal perturbation method to
solve the optimal steering vector Bbest, so as to obtain the
optimal array layout. *e idea is as follows: according to the
total differential equation, when the excitations of array
elements are known and the element position disturbance is
small, the variation of equation (17) can be written as

ΔE � W
TΔB � 􏽘

N

n�1
wnΔB

� 􏽘
N

n�1
wn Δxn

zbn

zxn

+ Δyn

zbn

zyn

􏼠 􏼡

� WeΔS( 􏼁
T
B′,

(18)

where ΔS � (Δx1, . . . ,ΔxN,Δy1, . . . ,ΔyN) is the pertur-
bation of position information, S � (x1, . . . , xN, y1, . . . ,

yN). B′ � ((zb1/zx1), . . . , (zbN/zxN), (zb1/zy1), . . . ,

(zbN/zyN)) is the direction of position perturbation,
We � diag(w1, . . . , wN, w1, . . . , wN), Q is a set of standard
orthogonal basis constructed by using Gram–Schmidt or-
thogonal process, which makes B′ � CQ. C is the coefficient
of orthogonal base, then equation (18) can be rewritten as

ΔE � C
T
WeΔS􏼐 􏼑

T
Q. (19)

Assume ΔSc � CTWeΔS, after the element position
disturbance, and equation (17) is converted to

E0(θ,φ) � W
T
B + ΔE � W

T
B + ΔSc( 􏼁

T
Q. (20)

Define the inner product of any two column vectors x, y

as

x, y􏼊 􏼋 �
1
4π

􏽚
2π

0
􏽚
π

0
x(θ,φ)y

H
(θ, φ)sin θ dθ dφ. (21)

Take equations (20) and (21) into (16), then

δ �
1
4π

􏽚
2π

0
􏽚
π

0
W

T
B − Ed(θ, φ) + ΔSc( 􏼁

T
Q

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
sin θ dθ dφ

� W
T
B − Ed(θ, φ), W

T
B − Ed(θ, φ)􏽄 􏽅

+ W
T
B − Ed(θ, φ), ΔSc( 􏼁

T
Q􏽄 􏽅

+ ΔSc( 􏼁
T
Q, W

T
B − Ed(θ, φ)􏽄 􏽅 + ΔSc( 􏼁

T
Q, ΔSc( 􏼁

T
Q􏽄 􏽅.

(22)

According to the method for calculating the derivative of
scalar function to complex vector [30], the partial derivative
to ΔSc is zero, that is,

zδ
zΔ Sc

� Q,ΔE〈 〉 + ΔSc � 0. (23)

*e iterative process is introduced by the difference ΔEi

so that the actual pattern can constantly approach the de-
sired pattern. According to ΔS � W−1

e C− TΔSc, on the i + 1
iteration, the position is updated to

Si+1 � Si + ΔSi+1 � Si − W
−1
e C

−T
i Qi,ΔEi􏼊 􏼋. (24)

*erefore, when the excitation vector Wis determined,
the optimal element position Sbest can be solved by the
orthogonal perturbation method.

3.4. Convex Optimization for Optimal Excitation Vector.
According to the optimization objective of (13), the maximum
value of the side lobe electric field intensity |E0(θ, φ)|, θ,φ ∈ Ωs

of the antenna array is required to be minimum. For a given
array layout, that is, when the steering vector of antenna array is
known, the problem of solving min(θ, φ ∈ Ωs

max|WTB|) is a
convex problem [31]. *e best excitation vector Wbest can be
solved with an available tool, such as CVX [4].

3.5. 3e Procedure of Proposed Algorithm. For time-modu-
lated sparse planar array, the step by step implementation
method is proposed to achieve the objectives mentioned in
Section 3.1–3.4. *e four objectives are minimizing the
number of array elements, achieving sideband suppression
and radiant power balance design, realizing shaped beam of
main lobe, and suppressing side lobe level, respectively. *is
paper is to find the optimal array layout and excitation and
modulated timing sequence to meet the abovementioned
four objectives. Figure 3 is the flowchart of the proposed
algorithm.

Figure 3 shows the implementation process of the
minimum number of array elements, sideband suppression
and radiant power balance design, shaped beam of main
lobe, and side lobe level constraint.*e optimization process
of the array starts with the initialization of the shaped beam
pattern, the PSLL and PSBL, the initialization of the number
N, position(xn, yn) and the excitation amplitude In of the
array element, the initialization of the switch-on duration
timeτn, the rise/fall timeτa, and the modulation
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frequencyfn. *e initial array layout is distributed at equal
intervals of (λ/2).*e array elements are gradually reduced to
find the minimum number of array elements that meets the
sideband level constraint. *e solving steps of the algorithm
are (1) update the excitation amplitude according to the el-
ement’s equivalent excitation obtained by the optimization of
the main band; (2) update the rise/fall time τa; (3) calculate
the PSBL of the array using the nonuniform period modu-
lation method; (4) reduce the number of array elements it-
eratively andmakeN � N − 1.When the sideband constraint
cannot be satisfied, output the result of N � N + 1.

In Step (1), the OPM-CVX algorithm is used to itera-
tively update the position and equivalent excitation of the
array element. *e specific process is (a) construct or-
thogonal basis by Gram–Schmidt orthogonal process; (b)
update the perturbation location parameters; (c) adopt
convex algorithm to optimize the excitation coefficient and
reduce PSLL with the position information; (d) calculate the
actual electric field intensity according to the updated po-
sition and excitation; (e) loop iteratively until the actual

electric field intensity meets the constraints of the shaped
beam pattern and side lobe.

4. Simulation Results

In this section, a variety of simulations and comparisons are
presented in order to illustrate the advantages of the pro-
posed hybrid algorithm. *e simulations in this paper are
achieved by a PC with CPU model i7-6500U, main fre-
quency 2.5GHz, and RAM of 8.00GB.

4.1. Side Lobe and Sideband Suppression. Under the con-
straint that the main lobe pattern is consistent, two examples
are presented in comparison with the results of pencil beam
and flat top beam pattern obtained in [12, 15] to demonstrate
the effectiveness of the proposed algorithm in suppressing
the PSBL and PSLL. In the first example, A linear array of 9-
element with initial equal spacing of 0.5λ is studied. In the
case that the main lobe pattern is consistent with the one in
[15], the objective is to minimize the PSLL and PSBL. Similar
simulations have been previously carried out by the efficient
mathematical method (EMM) in [15]. *e optimized PSLL
and PSBL were −22 dB and −15.2 dB, respectively. With the
0.2° sampling interval of θ, the optimization process takes 2
iterations and 0.784 seconds. Under the condition that
number of array elements and the array aperture are the
same, the PSLL and PSBL optimized by proposed algorithm
are −22.42 dB and −15.6 dB, respectively, which are lower
than the values in [15]. *e main band and the first sideband
patterns, the histogram of the excitation amplitude of array
elements, are shown in Figures 4 and 5, respectively. Table 1
shows the specific value of values of position and excitation.
Because the positions and excitations of the elements are
centrosymmetric, only 5 sets of data are listed in Table 1.
Table 2 shows the comparison of the parameters optimized
by the proposed algorithm and the EMM in [15].

*e second example studies a linear array of 30 elements
with initial equal spacing of 0.6λ. *e flat top beam pattern
with amain lobe width of 60° is set as the desired pattern.*e
objective is to minimize the PSLL and PSBL. Patra et al. [12]
used DE algorithm to synthesize the same array and ob-
tained the PSLL of −26.46 dB and the PSBL of −40.49 dB,
respectively. In this paper, the PSBL of −26.66 dB and the
PSLL of −47.51 dB are obtained by OPM-CVX algorithm.
*e optimized ripple of flat top beam is 0.965 dB, slightly
higher than 0.7224 dB in [12]. Figure 6 shows the synthesized
pattern by OPM-CVX andDE. Figure 7 shows the amplitude
and position of array elements by OPM-CVX.

With the 0.2° sampling interval of θ, the optimization
process takes 2 iterations and 0.806 seconds.*e spacing of the
two elements closest to the centre of the array is 0.2004λ, and
the spacing of other elements is greater than 0.5λ. *e min-
imum equivalent excitation is 0.011. *e detailed comparison
of parameters is shown in Table 3. By comparison, the pro-
posed algorithm obtains a smaller aperture size and a better flat
top beam under the equal amplitude in-phase excitation.

*e comparison results with the pattern in [12, 15] shows
that the OPM-CVX algorithm with nonuniform period

Initialize the number of antenna
element N

Start

Update position S by OPM

Output the result of N + 1

End

No

Yes

Update equivalent excitation W by
CVX

Yes

No

Side band meets
constraint?

Update rise/fall time τn

Update excitation amplitude In

Initialize element position (xn, yn) ,
excitation amplitude In , switch-on

duration time τn, and rise/fall time τa

Set shaped beam pattern Ed (θ, φ),
side lobe and sideband constraints

N = N – 1

Main lobe and side lobe
meet constraints?

Figure 3: Flowchart of the proposed algorithm.
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time-modulated mode can obtain better effect of pattern
synthesis.

4.2.Minimization of the Number of Array Elements. In order
to demonstrate the effectiveness of the OPM-CVX algorithm
in reducing the number of the array elements, two examples
are presented in comparison with the results in
[18, 21, 32, 33]. *e first example studies a planar array of 100

(10×10) elements with equal spacing of 0.5λ. *e optimi-
zation objective is to reduce the element number and suppress
the PSBL under the side lobe constraint of −20 dB. Similar
simulations have been previously carried out in [21, 32], but
only the array elements with an equal spacing of 0.5λ were
considered. Under the aperture constraint of 5λ × 5λ, the
number of array elements synthesized by the proposed al-
gorithm is 64 (8× 8). *e PSBL is −42.27 dB, lower than
−31.8 dB in [21] and −34.69 dB in [32]. Figure 8 shows the
main band pattern. Figure 9 shows the first sideband pattern,
and it is essentially the first sideband pattern of a certain array
element. Because the array element is isotropic, the electric
field intensity is consistent in the θ and φ directions.

With the 1° and 2° sampling interval of θ and φ, *e
optimization process takes 30 iterations and 449.8 seconds.
Compared with the linear array above, the planar array
increases the number of array elements and the complexity
of the array, so the time consumption and the number of
iterations in the optimization process are increased. *e
comparison of parameters is shown in Table 4. *e element
positions are shown in Figure 10 and listed in Table 5. *e
minimum element spacing of x direction and y direction is
0.6877λ, and the maximum element spacing of x direction
and y direction is 0.7089λ. *e optimized aperture of 8× 8
planar array is 4.9007λ × 4.8986λ.

*e second example studies a planar array with 400
(20× 20) elements. *e elements are arranged with square
lattices and square boundaries. *e optimization objective is
to minimize the number of elements under the side lobe
constraint of −42 dB. Similar simulations have been previ-
ously carried out in [18, 33]. *e comparison of two-di-
mensional pattern between the proposed algorithm and the
PCS-CVX in [18] is shown in Figure 11.*e optimized PSLL
is −43.17 dB, and the optimized element number is 324,
which is 10% less than that in [18].

With the 1° and 2° sampling interval of θ and φ, *e
optimization process takes 12 iterations and 1981.8 seconds.
Compared with the 8× 8 planar array, the increase of array
elements further increases the computational complexity and
time consumption. *e minimum element spacing of x di-
rection and y direction is 0.8446λ, and the maximum element
spacing of x direction and y direction is 0.8507λ. *e opti-
mized aperture of 18×18 planar array is 14.4499λ × 14.4501λ.
*e element positions are shown in Figure 12. *e detailed
comparison of parameters is shown in Table 6.

*rough the experiments compared with [18, 21, 32, 33],
the nonuniform period time-modulated mode and OPM-
CVX algorithm can effectively reduce the element number
and suppress the PSBL, with the constraints of the main lobe
response and the side lobe level.

4.3. Analysis of the Rise/Fall Time, Sideband, and Power.
Two examples are presented to verify the effect of the rise/fall
time of the trapezoidal pulse switching function on the
sideband performance and to achieve the power balance
between sideband and main band under the constraint of
DRR. *e first example shows the relationship between the
sideband level and the rise/fall time. *e same 9-element
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Table 1: Position and excitation of array elements.

Element No. 5 6 7 8 9
Position [λ] 0 0.4829 0.9688 1.4724 2.0000
Excitation 0.9976 1 0.9733 0.5656 0.3546
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linear array as that in Section 4.1 is adopted. From the
synthesis results of the 9-element linear array, the nor-
malized minimum switch-on duration time is τn � 0.3546.
According to the value range τa ∈ (0, (τn/2)), we can get
τa ≤ 0.1773. Figure 13 shows the first 20 sideband curves
corresponding to different τa. *e sideband level in this
figure decreases as τa increases. Table 7 shows the

relationship between the power of the main band and the
sideband level when τa is different. As τa increases, the
sideband level decreases faster. *e power of main band is
obtained by equation (6).

As shown in Figure 14, the higher harmonic reduces
faster when applying trapezoidal pulse and the power re-
duction is higher as τa increase, until the electric field

Table 2: Performance comparison between the designed array and the actual one in [15].

Method Number of Elements PSLL (dB) PSBL (dB) Aperture Size [λ] Time consumed (s)
EMM in [15] 9 −22 −15.2 4 —
OPM-CVX 9 −22.42 −15.6 4 0.784
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Table 3: Performance comparison between the designed array and the actual one in [12].

Algorithm Number of Elements PSLL (dB) PSBL (dB) MAX Ripple (dB) DRR Aperture [λ]

DE in [12] 30 −40.4932 −26.4655 0.7224 6.2289 19.5904
OPM-CVX 30 −47.51 −26.66 0.965 1 17.652
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Table 4: Performance comparison between the designed array and the actual one in [21, 32].

Algorithm PSLL (dB) PSBL (dB) Number of elements Position [λ] Aperture [λ]

PSO in [21] −19.6 −31.8 76 0.5 5× 5
DE in [32] −19.86 −34.69 80 0.5 5× 5
OPM-CVX −19.90 −42.27 64 Table 5 4.9007× 4.8986
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Figure 10: Element position of 8× 8 planar array.
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Table 5: Optimized element position.

y1[λ] y2[λ] y3[λ] y4[λ] y5[λ] y6[λ] y7[λ] y8[λ]

x1[λ] (−2.45 −2.45) (−2.45 −1.75) (−2.45 −1.04) (−2.45 −0.35) (−2.45 0.34) (−2.45 1.04) (−2.45 1.74) (−2.45 2.45)
x2[λ] (−1.74 −2.45) (−1.74 −1.75) (−1.75 −1.06) (−1.75 −0.36) (−1.75 0.34) (−1.75 1.05) (−1.75 1.75) (−1.74 2.45)
x3[λ] (−1.04 −2.45) (−1.04 −1.75) (−1.04 −1.05) (−1.05 −0.35) (−1.05 0.34) (−1.06 1.05) (−1.05 1.75) (−1.04 2.45)
x4[λ] (−0.34 −2.45) (−0.34 −1.74) (−0.34 −1.04) (−0.35 −0.34) (−0.36 0.35) (−0.36 1.05) (−0.36 1.74) (−0.35 2.45)
x5[λ] (0.35 −2.45) (0.36 −1.74) (0.35 −1.04) (0.35 −0.34) (0.35 0.36) (0.34 1.05) (0.35 1.74) (0.34 2.45)
x6[λ] (1.04 −2.45) (1.05 −1.75) (1.05 −1.04) (1.05 −0.34) (1.05 0.35) (1.04 1.05) (1.05 1.75) (1.04 2.45)
x7[λ] (1.74 −2.45) (1.75 −1.75) (1.75 −1.05) (1.75 −0.35) (1.75 0.34) (1.75 1.05) (1.75 1.75) (1.74 2.45)
x8[λ] (2.45 −2.45) (2.45 −1.74) (2.45 −1.04) (2.45 −0.34) (2.45 0.35) (2.45 1.04) (2.45 1.74) (2.45 2.45)
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Figure 12: Element position of 18×18 planar array.

Table 6: Performance comparison between the designed array and the actual one in [18, 33].

Algorithm Gain (dB) Number of elements PSLL (dB) PSBL (dB) dmin [λ] Aperture [λ]

[18] 29.63 358 −42 — 0.6295 15.6×15.6
[33] — 496 −41 — <0.5 10×10
OPM-CVX 32.00 324 −43.17 −49.39 0.847 14.4499×14.4501
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intensity goes to zero. Table 8 shows the power of main band,
the power of the first 8 sidebands and the directivity of 9-
element linear array, which are calculated by equations (6),
(7), and (9), respectively. Comparing τa � 0.16 with τa � 0,
the reduction of the first 8 sideband power turns out to be
around 21.73%.Meanwhile, the decrease of directivity is very
small. *erefore, the increase of τa reduces the power of the
main band but improves the radiation efficiency. According
to reference [22], since the directivity is almost constant in
Table 8, the gain of antenna array is improved.

In the second example, the same 64 (8× 8) elements
planar array as that in Section 4.2 is adopted. From the
synthesis results of the 64 (8× 8) elements planar array, the
normalized minimum switch-on duration time is τn � 0.03.
Under the condition that the power of the main band is
constant, changing the DRR from 1 to 8, then the rise/fall
time τaof the trapezoidal switching function can be set to a
maximum value of 0.12. Figure 15 shows the first 20 side-
bands optimized by the rectangular switching function,
trapezoidal switching function when τa � 0.12. It can be
seen that the sideband suppression effect of the trapezoidal
pulse switching function is better than the rectangular pulse
switching function and the DE algorithm in [32].

As shown in Figure 16 and Table 9, the power variation
trend of the main band and sidebands of the planar array are
the same as that of the linear array. Comparing τa � 0.12 with
τa � 0, the reduction in the first 8 sideband power turns out to
be around 5.35%. According to reference [22], because of the

tiny decrease of directivity and the large increase of main band
radiation efficiency, the gain of antenna array is improved.

According to the simulations of linear array and planar
array, the trapezoidal pulse switching function has better
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Table 7: Relationship between τa, sideband level, and power of main band.

τa Power of main band (dB) 1st SBL (dB) 2nd SBL (dB) 3rd SBL (dB) 4th SBL (dB) 5th SBL (dB) 6th SBL (dB)

0 70.5526 −26.7594 −34.6214 −37.8957 −38.9044 −44.2325 −42.6294
0.04 69.7273 −26.7823 −34.7130 −38.1024 −39.2733 −44.8117 −43.4686
0.08 68.8667 −27.4881 −36.0300 −39.3719 −41.4599 −47.6923 −46.8514
0.12 67.9685 −28.2907 −37.6815 −41.1580 −44.7104 −52.3954 −53.3080
0.16 67.0302 −29.1995 −39.7258 −43.5518 −49.4283 −60.4416 −72.3277
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Figure 14: Power comparison of the main band and the first 8
order sidebands under different τa.
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sideband suppression effect than the rectangular pulse
switching function. *e sideband power decreases faster
than the main band power as τa increases, and the radiation
efficiency of the main band is improved. *erefore, the
increase of τacan effectively suppress the sideband radiation

and improve the radiation efficiency and gain of the main
band. In addition, the power loss of the main band caused by
the increase of τacan be reduced by increasing the DRR.

5. Conclusion

In time-modulated antenna array, the high side lobe will
lower the radiation performance of the main lobe, and the
redundant sideband will reduce the radiation efficiency of
the main band. In order to solve these problems, a hybrid
OPM-CVX algorithm is proposed to suppress the side lobe
of sparse array, and the nonuniform periodic time-modu-
lated mode and trapezoidal pulse switching function are
used to suppress sideband. In addition, under the constraint
of the shaped beam of main lobe, the minimum array ele-
ments, low side lobe, and sideband are realized step by step
in the way of loop iteration strategy. *e simulation results
of linear and planar arrays show that the proposed algorithm
can achieve shaped beam of main lobe and low side lobe with
fewer array elements. *e algorithm can achieve the bal-
anced design of sideband suppression and the main band
power by adjusting the DRR of the antenna array and the
rise/fall time of the trapezoidal pulse switching function.
Compared with other commonly used algorithms, the
proposed algorithm can improve the performance of the
pattern of time-modulated sparse array and have important
research value and practicability.

Appendix

The derivation process of the Fourier
coefficient amn

*eFourier coefficient amn of the trapezoidal pulse switching
function can be derived by differentiating the switching
function. *e periodic piecewise-linear waveforms have the
following characteristics [34]. (1) Any waveform or function
can be written as a linear combination of two or more
functions, so the trapezoidal periodic function can be dis-
assembled into a simple linear combination of square wave
function and saw-tooth wave function. (2) *e Fourier
coefficient of the impulse function is the reciprocal of the

Table 8: Power of the first 8 sidebands and main band under different τa.

τa 0 0.04 0.08 0.12 0.16

Power of main band (dB) 70.55 69.73 68.87 67.97 67.03
Power of first 8 sidebands (dB) 156.74 134.92 100.51 79.33 60.00
Radiation efficiency of main band (%) 31.04 34.07 40.66 46.14 52.77
Directivity 27.19 27.16 27.13 27.10 27.04
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Table 9: Power of the first 8 sideband and main band under
different τa.

τa 0 0.06 0.12

Power of main band (dB) 109.71 108.62 107.53
Power of first 8 sidebands (dB) 546.50 500.22 379.79
Radiation efficiency of main band (%) 16.72 17.84 22.07
Directivity 22.42 22.27 22.07
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Figure 16: Power comparison of the main band and the first 8
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period. (3) *ere is a transformational relation between the
Fourier coefficient of periodic switching functionUn(t) and
the Fourier coefficients of its various derivatives. *e kth
derivative of equation 3 is represented as

dkUn(t)

dtk
� 􏽘

+∞

m�−∞
a

(k)
mne

j2πmfpt
, (A.1)

where amn � (1/(j2πmfp)k)a(k)
mn , a(k)

mn is the Fourier coeffi-
cient of the nth element’s kthderivative of the mth harmonic.
According to the above three properties, the trapezoidal
pulse switch function is differentiated repeatedly until the
first impulse function appears. If the differential function
contains more than just one impulse function, the parts that
are not impulse functions can be differentiated continuously
until all terms are impulse functions.

From the derivative relation of square wave function,
saw-tooth wave function, and impulse function, the square
wave function in Figure 17(b) is the derivative of the saw-
tooth wave function shown in Figure 17(a), and the impulse
function in Figure 17(c) is the derivative of the square wave
function shown in Figure 17(b). *ere is only the impulse
function in Figure 17(c), so the Fourier coefficient of the
second derivative of the trapezoidal wave is
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*en, the Fourier coefficient of the trapezoidal pulse
switching function is

amn �
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(A.3)

In order to keep the power constant, τa ≤ τn needs to be
satisfied when trapezoidal pulse switching function is used
instead of rectangular pulse switching function. *e DRR of
the array can be adjusted appropriately to increase τn when
τn is small so that τa can reach a wider value range.
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