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Exoskeleton robot is a typical application to assist the motion of lower limbs. To make the lower extremity exoskeleton more
flexible, it is necessary to identify various motion intentions of the lower limbs of the human body. Although more sEMG sensors
can be used to identify more lower limbmotion intention, with the increase in the number of sensors, more andmore data need to
be processed. In the process of human motion, the collected sEMG signal is easy to be interfered with noise. To improve the
practicality of the lower extremity exoskeleton robot, this paper proposed a wavelet packet transform- (WPT-) based sliding
window difference average filtering feature extract algorithm and the unscented Kalman neural network (UKFNN) recognition
algorithm. We established an sEMG energy feature model, using a sliding window difference average filtering method to suppress
noise interference and extracted stable feature values and using UKF filtering to optimize the neural network weights to improve
the adaptability and accuracy of the recognitionmodel. In this paper, we collected the sEMG signals of three muscles to identify six
lower limb motion intentions. +e average accuracy of 94.83% is proposed in this paper. Experiments show that the algorithm
improves the accuracy and anti-interference of motion intention recognition of lower limb sEMG signals. +e algorithm is
superior to the backpropagation neural network (BPNN) recognition algorithm in the lower limb motion intention recognition
and proves the effectiveness, novelty, and reliability of the method in this paper.

1. Introduction

Surface electromyography (sEMG) signals are bioelectrical
signals recorded from the surface of the muscle through the
electrode. It has the advantages of mature acquisition
technology, high temporal resolution, and noninvasive re-
cording [1–3]. In addition to some significant achievements
in medical rehabilitation training, relevant research appli-
cations have gradually developed into a wider range of lower
limb motion assist areas [4]. +e most common lower ex-
tremity exoskeleton robots currently include HAL exo-
skeleton robot [5], MIT exoskeleton system [6], BLEEX
lower limb exoskeleton [7], and NTULEE exoskeleton
system [8]. +e robot can walk horizontally, but it has few
motion intention and low flexibility. +erefore, identifying

more lower limb motion intention is beneficial to improve
flexibility and practicability. It can also enhance the user’s
athletic ability and improve people’s quality of life.

Most of the current research is based on sEMG signals to
identify multiple motion intentions in the lower extremities.
Coelho and Lima extracted eight channels of sEMG signals
to identify seven motion intentions for the lower extremities
[9]. Toledo-Pérez et al. collected sEMG signals from four
muscles of the lower extremities and identified ankle dor-
siflexion and flexion [10]. Al-Quraishi et al. extracted the
sEMG signal from the four muscles of the lower extremities
and identified four motion intentions of the lower extremity
ankle joint [7]. Tang et al. collected three channels of sEMG
signals and identified three intentions of standing, flexing,
and stretching [11]. Ma et al. collected sEMG signals of the
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rectus femoris (RF), semimembrane (SM), and the sphincter
(SR) and identified two intentions of walking and obstacle
crossing [12]. Li et al. recorded the sEMG signals of seven
muscles of the lower extremities and recognized two motion
intentions of the hip and knee joints of the lower extremities
[13]. Ai et al. combined acceleration and sEMG signals to
identify five motion intentions of the lower extremities [14].
To identify the lower extremity knee, ankle, and hip joint
motions, Tapia et al. extracted sEMG signals from sixteen
muscles of the lower extremities [15]. Zhang et al. extracted
single channel sEMG signals for four motion intention
recognition of lower limb knee joints [16]. +ese studies did
not simultaneously consider accuracy, stability, and real-
time. +erefore, we proposed a method of using three
electromyographic sensors to recognize six kinds of lower
limb motion intention.

+e process of lower limb motion intention recognition
mainly includes feature extraction and motion recognition.
For example, some researchers used RMS [17, 18], mean
absolute value (MAV) [19], autoregressive (AR) [20], vari-
ance, and Willison amplitude method to extract surface
muscle electrical signal features [21, 22]. Some researchers
used peak frequency and median frequency analysis [23, 24]
to convert sEMG signals to the frequency domain and
extracted sEMG features.

However, the sEMG signal is easily disturbed by static
electricity, muscle fatigue, and friction factors. Traditional
feature analysis methods cannot accurately describe the
time-varying process and spectrum distribution of the
sEMG signal, which leads to low reliability of feature ex-
traction. WPT is a common time-frequency analysis
method, which can reflect the energy distribution of the
sEMG signal in each frequency band [25]. Gokgoz et al. used
the WPT method to extract time-frequency information of
myoelectric signals and diagnosed the lower limb neuro-
muscular diseases. Chen et al. proposed a wavelet packet of
local energy (ELF) method to accurately describe the
complexity in the local frequency band of myoelectric signals
[26]. Ji et al. used discrete wavelet transform to construct a
time-invariant multiscale matrix based on wavelet transform
coefficients to identify eight motion intentions of lower
limbs [27]. However, due to noise interference, the feature
extracted by the wavelet packet cannot accurately describe
the motion intention of lower limbs.+erefore, we proposed
a sliding window differential average filtering method, an-
alyzing the feature extracted by wavelet packet transform,
suppressing noise interference, and extracting effective
feature vector.

In the part of the lower extremity motion intent rec-
ognition, SEMG signal has complex nonlinear, strong
coupling, and dynamic time-varying features [28]. In the
aspect of motion intention recognition, researchers mainly
studied the Bayesian network, neural network, multilayer
perceptron, fuzzy approximation, support vector machine,
and neural fuzzy system identification method [29, 30].
Neural network has strong nonlinear approximation ability
and the ability to deal with unknown internal mechanism
problems [31–33]. However, the neural network model
needs iterative learning in the training process [34], the

convergence speed is slow, and the real-time performance
needs to be improved [35, 36]. +e sEMG signal is sus-
ceptible to external environmental influences during the
acquisition process, such as sweating, muscle fatigue, elec-
trode offset, and power frequency noise [37, 38]. +e neural
network model lacks stability when the environment
changes. +erefore, we proposed an unscented Kalman
neural network (UKFNN) method for lower extremity
motion intention recognition. We used the UKF method
[39, 40] to train the weight of the neural network to enhance
the adaptive ability of the recognition model [41]. Our
method improves the reliability, accuracy, and speed of the
model.

We extracted sEMG signals from three channels and
used the WPT method to extract features. We proposed a
sliding window difference averaging filtering method to
analyze the time-frequency domain feature, suppress noise
interference, and extracted effective feature information. We
constructed a UKFNN recognition model to recognize six
lower limb motion intentions. Also, we compared the
proposed recognition algorithm with the error back-
propagation neural network (BPNN) recognition method
[42] and evaluated the recognition accuracy of UKFNN.

+is paper is structured as follows. +e second part
described the acquisition of myoelectric signals. +e third
part introduced the extraction method of sEMG signal
features and explained the basic principle of the wavelet
packet transform. Also, we proposed a feature analysis
method for sliding window difference averaging filtering.
+e fourth part introduced the design of the UKFNNmodel.
+e fifth part gave the experimental results and compared
themwith the traditional BPNNmethod.+e sixth part gives
conclusions and future work.

2. sEMG Acquisition

Surface electromyography is recorded from the surface of
human skeletal muscle through surface electromyography
electrodes and contains many feature information related to
limb motion. By analyzing these features, we can distinguish
the different motion intentions of the limbs. Our goal is to
use three sensors to identify six lower extremity motion
intentions. We chose six common motion intentions of
lower limbs, such as horizontal walking (HW), crossing
obstacles (CO), standing up (SU), downstairs (DS), go-
upstairs (GU), and stop-rest (SR). We analyzed the kine-
matics and biological features of lower limbmuscles [43, 44].
+e medial gastrocnemius (mg) is helpful for walking and
running. +e femoral muscle (VL) and the semitendinosus
(ST) have the function of flexing the knee joint and
stretching the hip joint [45]. +erefore, we selected three
muscles as the source of sEMG signal acquisition initially, as
shown in Figure 1.

We used three sEMG sensors to identify six lower limb
motion intentions.+e six motion intentions were HW, CO,
SU, DS, GU, and SR, as shown in Figure 2.

We used the RMS method to calculate the changing
trend of the sEMG signal of three muscles in six motion
intentions, as shown in Figure 3.
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Figure 1: sEMG signal sensor location. Channel A is located in the thigh semitendinosus, channel B is located in the lateral thigh muscle,
and channel C is located in the calf gastrocnemius.
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Figure 2: Sis intentions of lower limb motion: (a) HW; (b) CO; (c) SU; (d) DS; (e) GU; (f ) SR.
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Figure 3: Continued.
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It can be seen that the selected three muscles have ob-
vious signal changes during the motion of the lower limbs.
+e changing trend of sEMG signals in three channels of a
motion mode is the same. However, the trend of sEMG
signal changes in six motion intentions is different. +is is
helpful to distinguish different motion intentions and fur-
ther verifies the correctness of the selection of sEMG signal
acquisition location.

We used the sEMG sensor developed by Biometrics, UK.
+e sampling frequency is 2000Hz, and the input imped-
ance of the amplifier is more than 10,000,000m ohms. High-
quality signals can be obtained without adding conductive
adhesive to the skin. Simply attach the electrode strip to the
three muscles using medical double-sided tape and record
the surface myoelectric signal. +e experimental computing
platform processor is Intel(R) Core(TM) i7-9750H CPU@
2.60GHz, the memory is 16G, and the data analysis software
is Matlab, 2015b.

We selected five healthy subjects to participate in the
experiment, five men aged 23, 23, 25, 26, and 24 years, with a
body fat rate of 17± 3% and a height of 170± 5 cm. Healthy
subjects circulate in the form of “relaxation-motion-relax-
ation” for each motion, completing six motion intentions.
Each motion is limited to two seconds. We collected sEMG
signals from six intentions of lower extremity motions per
subject.

3. sEMG Feature Extraction Method

+e acquired sEMG signals have nonperiodic, nonstation-
ary, and nonlinear chaotic features. We need to extract stable
eigenvectors from myoelectric signals. +erefore, this paper
used the wavelet packet transform analysis method, to de-
scribe the complex sEMG signal by an energy method. We
proposed a sliding window difference average filtering
method which can suppress the noise interference and ex-
tract the effective sEMG eigenvector.

(1) +e research shows [26] that the sEMG signal should
be decomposed into three layers. +e decomposition
structure is shown in Figure 4.

(2) We used wavelet decomposition coefficients to re-
construct the signal and analyzed all nodes in the
third layer. +e raw signal can be restored to

S � AAA3 + DAA3 + ADA3 + DDA3 + AAD3 + DAD3

+ ADD3 + DDD3.

(1)

(3) Define wavelet packet energy as Ei
j, the coefficients of

wavelet packet decomposition as fi
j(t), and the

constructed feature vector as [Ej, Ej−1, ..., E1]:

E
i
j � 􏽚

+∞

−∞
f

i
j(t)

2dt, (2)

where i � 3 represents the scale and j � 8 represents
the node.

(4) Normalizing the energy of eight nodes:

Etot � 􏽘
2j

i�1
E

i
j, (3)

Pi �
Ei

j

Etot
. (4)

3.1.Wavelet PacketTransform. +e energy value ofWPTcan
represent the changing trend of complex sEMG signals. +e
steps of the wavelet packet energy feature extraction algo-
rithm are as follows.

S

DA2 AD2

AAA3 DAA3 ADA3 DDA3 AAD3 DAD3 ADD3 DDD3

AA2 DD2

A1 D1

Figure 4: +ree-layer wavelet packet decomposition tree, where S is
the raw signal, A represents a low-frequency signal, and D represents
a high-frequency signal. +e number indicates the number of layers
of the wavelet decomposition. We extracted the signal features of the
third layer, a total of eight frequency components.
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Figure 3: RMS features of three muscles in six motion intentions: (a) CO; (b) HW; (c) SR; (d) GU; (e) DS; (f ) SU.
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3.2. Mother Wave Function Selection. Selecting different
wavelet packet basis functions will get different eigenvalues,
which will directly affect the recognition accuracy of lower
limb motion intention. It is very important to select the
appropriate basis function for extracting features. +e en-
ergy feature values obtained by the wavelet packet transform
should contain enough information on the raw signal to
ensure the recognition accuracy. +e larger the wavelet
coefficient is, the similar the base function waveform is to the
raw signal. Hence, selecting a basis function with high
similarity to the raw signal contributes to the extraction of
features. As shown in Figure 5, the raw signal is nonsta-
tionary and nonperiodic, with strong tightness.

We observed the wavelet packet basis function waveform
in Figure 6. We can see the waveforms of sym3, sym5,
cmor1-1.5, and the waveform of the myoelectric signal are
different, and local performance is poor. +e Harr wavelet is
not continuous in the time domain and is not suitable for
sEMG signal feature extraction. +e attenuation rate of db8,
db10, coif3, and fk22 is slow. It is easy to ignore the small
change information in the raw sEMG signal [46]. +e
waveform of the dmey wavelet is similar to the raw sEMG
signal, which has strong compactness and fast attenuation
performance. +erefore, using the dmey wavelet to extract
feature values is beneficial to improve the recognition ac-
curacy of motion intention.

To extract the raw signal features of sEMG accurately, the
wavelet packet basis function is with the maximum energy
value in all motions. As shown in Figure 7, the average
energy value of the dmey wavelet packet basis function is the
highest, which further verifies the correctness of the wavelet
packet basis function selection.

3.3. sEMGFeature Selection. At present, most studies choose
the maximum absolute value of wavelet coefficients as the
eigenvector of sEMG signals [25, 26]. However, in different
motion intentions, the amplitude of the sEMG signal on the
same muscle is different. Choosing wavelet coefficients as
eigenvalues cannot accurately reflect the motion intention.
We used the wavelet packet to decompose the sEMG signal,
normalizing the complex sEMG signal to different frequency
bands, and analyzed the energy values of the projection
sequences in each band. We used a three-layer wavelet
packet to decompose the sEMG signal of the gastrocnemius,
as shown in Figure 8. Also, we calculated the sEMG signal
energy eigenvalues of three muscles in six motions, as shown
in Table 1.

Observing the wavelet packet energy values of each node
in Table 1, we analyzed the energy distribution of six motion
intentions of the same muscle and the energy distribution of
three muscles in the same motion mode. It can be concluded
that the energy values of AAA0, DAA1, ADA2, and DDA3
are significantly different from those of other frequency
bands, as shown in Figure 9. +erefore, we chose four
subband energy values as eigenvectors. +e eigenvector for
eachmotion is twelve dimensions. We have extracted the 12-
dimensional eigenvectors and built a feature model to an-
alyze the eigenvectors, as shown in Figure 10.

Considering that sEMG signals are susceptible to noise
interference during motion, such as sweating, friction, and
electrode deflection, as shown in Figure 11, the sEMG signals
of different muscles fluctuate aperiodically [37, 38].

We have built a feature model containing the interfering
signals, as shown in Figure 12.

It can be seen from Figure 12 that the feature model of
different motion intentions including interference signals is
a periodic signal. But they have different peaks and troughs
in the same period. We calculated the eigenvector to sup-
press the interference of noise. As shown in Figure 13, we set
the width of the sliding window asM� 2 and the sliding step
size asD� 4. Get three window feature values. We calculated
the difference between the maximum value and the mini-
mum value of the energy feature in each window and cal-
culated the average values of the three differences.

We calculated and analyzed the difference average for
each motion, as shown in Table 2.

+rough the proposed sliding window difference average
filtering algorithm, we calculated the eigenvalue in Figure 12
and analyzed the results of different noise interferences, as
shown in Table 3. +erefore, we can set a threshold. If the
difference average of eigenvalues is greater than 90, it can be
judged that the sEMG is interfered with noise. We extracted
feature vector by judging the threshold and removed the
disturbing feature vector.

Our proposed sliding window difference average filtering
method suppresses the interference of noise and extracts a
stable feature vector.+e 12-dimensional feature vector filtered
by the slidingwindow difference average can be the input of the
UKFNN to improve the reliability of the recognition model.

4. Recognition Using UKFNN

In the lower limb motion intent recognition algorithm,
because the neural network has a strong nonlinear fitting
ability, it is widely used in the modeling and optimization of
the motion intention recognition process [33]. However, the
lower limb sEMG signal has complex nonlinearity, strong
coupling, and dynamic time-varying features duringmotion.
+e signal is susceptible to noise such as sweating, electrode
offset, and power frequency interference [37, 38]. +is leads
to a lack of stability in the neural network model. Using UKF
filtering for neural network learning can enhance the
adaptive ability of the model and raise the accuracy of the
model. Especially when the number of samples is increasing,
it can speed up the convergence of the model [40].+erefore,
we used the UKFNN algorithm [41, 47–49] to recognize the
motion intention of lower limbs. We used the UKF algo-
rithm to optimize the weight of the neural network, which
can adapt to noise interference.

As shown in Figure 14, the UKFNN structure is a three-
layer neural network.

+e input of UKFNN is an N-dimensional eigenvector,
and the input in Figure 14 is defined as X:

X � x1, x2, x3, . . . , xn􏼂 􏼃. (5)

+e output of the UKFNN network in Figure 14 is
defined as Y:

Mathematical Problems in Engineering 5



Y � y1, y2, y3, . . . , ym􏼂 􏼃. (6)

We calculated the number of intermediate layers in
Figure 14 from the following equation:

p �
�����
n + m

√
+ l, (7)

where n represents the number of network input nodes. +e
extracted sEMG signal feature vector is n � 12, where m

represents the six motion intention output prediction results
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Figure 5: sEMG signals of three muscles in the walking mode.
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of the lower limbs and l is a constant greater than 1 and less
than 10.

We used the UKF filtering algorithm to correct the three-
layer neural network connection weights. +e input to the
neural network is X, constructing the state equation of the
UKF filtering algorithm with the weight of the neural net-
work. +e output of the neural network is taken as its
measurement equation. +erefore, the state equation and
measurement equation of the UKF algorithm are as follows:

wk+1 � wk + ωk, (8)

yk � fk wk, xk( 􏼁 + vk, (9)

wherewk is the weight, xk is the input vector, yk is the output
of the neural network, and fk is the transfer function of the
neural network. And ωk and vk are the input noise and
measurement noise of the neural network. All obey the mean
value of 0, and the variance is the normal distribution of
RW andRV.

5. Experiment Results and Discussion

In the process of extracting the features of the sEMG signal
on the lower limb surface, we used the WPT algorithm and
selected the best mother wave to extract the sEMG signal
features. We analyzed the obtained distribution of features
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Figure 7: Nine energy box graphs of the wavelet packet basis functions are drawn in six motion intentions.
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Figure 8: Using WPT to decompose the sEMG signal of the gastrocnemius: (a) S; (b) AAA3; (c) DAA3; (d) ADA3; (e) DDA3; (f ) AAD3;
(g) DAD3; (h) ADD3; (i) DDD3.

Mathematical Problems in Engineering 7



and determined the eigenvectors as AAA3, DAA3, ADA3,
and DDA3. We established a feature model for different
motion intentions, as shown in Figure 10. Considering that
during the motion of the lower limbs of the human body, the
sEMG signal will be affected by noise. +e extracted features
containing noise interference are different from the features
in the motion, as shown in Figure 12. +erefore, this paper
proposed a sliding window difference averaging filtering
method, verifying the feature model to extract stable ei-
genvectors, as shown in Figure 13.

In the recognition of lower limb motion intention, this
paper designed the UKFNN algorithm, using the UKF fil-
tering algorithm to establish a neural network state-space
model and measurement model, optimizing the neural
network weight vector, and solving the problem that the
neural network has slow convergence speed and poor

Table 1: Wavelet packet energy eigenvalues.

Motion Channel AAA3 DAA3 ADA3 DDA3 AAD3 DAD3 ADD3 DDD3

HW CH.A 81 13 0.5 3.5 0.1 0.1 0.2 0.2
CO CH.A 59 27 2.4 8.6 0.1 0.4 0.8 1.2
SU CH.A 90 7.3 0.5 1.5 0.1 0.1 0.2 0.2
DS CH.A 88 8.9 0.4 1.2 0.1 0.1 0.2 0.1
GU CH.A 91 6.5 0.4 1.1 0.1 0.1 0.1 0.1
SR CH.A 91 2.9 1.5 1.9 0.3 0.4 1.0 0.7
HW CH.B 74 19 0.9 4.4 0.1 0.1 0.1 0.3
CO CH.B 90 7.6 0.3 1.2 0.1 0.0 0.1 0.1
SU CH.B 83 12 0.6 2.9 0.1 0.1 0.1 0.2
DS CH.B 76. 18 0.8 3.9 0.1 0.1 0.2 0.2
GU CH.B 78 14 0.5 5.3 0.1 0.2 0.1 0.2
SR CH.B 68 17 2.6 8.5 0.3 0.4 1.2 0.9
HW CH.C 64 22 1.9 9.8 0.1 0.2 0.6 0.9
CO CH.C 89 7.2 0.6 1.7 0.1 0.1 0.2 0.4
SU CH.C 69 22 1.3 5.6 0.0 0.2 0.5 0.5
DS CH.C 75 15 1.3 6.3 0.0 0.1 0.3 0.3
GU CH.C 68 23 1.3 5.3 0.0 0.1 0.3 0.3
SR CH.C 86 5.8 1.8 2.8 0.6 0.4 0.9 0.6
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Figure 9: Energy feature distribution: (a) energy distribution of different motion intentions in CH.A channel; (b) energy distribution of
different channels in the HW mode.
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Figure 10: sEMG signal eigenvector model map of six motion
intentions of lower limbs.
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Figure 12: Continued.
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Figure 11: SEMG signal including three kinds of interference noise: (a) SEMG signal of semitendinosus with friction interference; (b)
SEMG signal of lateral femoris with friction interference; (c) SEMG signal of medial gastrocnemius with friction interference; (d) SEMG
signal of semitendinosus with sweat interference; (e) SEMG signal of lateral femoris with sweat interference; (f ) SEMG signal of medial
gastrocnemius with sweat interference; (g) SEMG signal of semitendinosus including friction and sweat interference; (h) SEMG signal of
lateral femoris including friction and sweat interference; (i) SEMG signal of medial gastrocnemius including friction and sweat interference.

Mathematical Problems in Engineering 9



adaptability to noise interference in the model training
process.

+is paper constructed a 3-layer neural network, as
shown in Figure 14. +e input is a twelve-dimensional ei-
genvector, and the output is the predicted result of six
motion intentions. +e transfer function selected by the
hidden layer is a nonlinear unipolar excitation function as
Sigmoi d. +e output layer transfer function selected a
linear function as Purelin, which can output an arbitrary
value. +e number of middle layer neurons is calculated by

formula (7) to be 5≤p≤14. +en, we verified through ex-
periments that the number of middle-tier nodes is 14. +e
dimension of the UKFNN algorithm weight variable is 183.

We collected 600 sets of samples and divided that into
training sets and testing sets, respectively, 480 sets and 120
sets. Both training sets and testing sets contain six motion
data for five subjects. We trained the model with 480 sets of
data. We selected each subject’s own 24 testing sets to
verify the accuracy of six lower extremity motion inten-
tion. We verified a total of five subjects. +e lower limb
motion recognition accuracy was defined as the ratio of the
number of correct recognition results of each move to the
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Figure 12: Energy eigenvalue model containing (a) friction noise interference, (b) sweat noise interference, and (c) friction and sweat noise
interference. NS stands for noise interference.
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Figure 13: Extraction of eigenvalues by difference average filtering
of sliding window.

Table 2: Sliding window difference average calculation analysis
result.

Motion mode Window 1 Window 2 Window 3 Difference
average

HW 90 79 79 82
CO 77 79 92 82
SU 63 89 79 78
DS 69 94 86 83
GU 76 96 74 82
SR 80 44 90 70

Table 3: Noise interference energy difference average calculation
analysis result.

Noise type Window 1 Window 2 Window 3 Difference
average

Interference 1 89 94 91 92
Interference 2 88 92 93 91
Interference 3 96 97 95 96
Interference 1, sweating; interference 2, friction; interference 3, friction and
sweating.
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Figure 14: +ree-layer UKF neural network structure.

10 Mathematical Problems in Engineering



number of corresponding motion in the testing sets. +e
recognition accuracy is shown in Figure 15. +e average
accuracy of the UKFNN model is 94.83%. +e average
accuracy of the BPNN model is 90.8%. +e minimum
accuracy of the UKFNN model is 91.33%, and the accuracy
of the BPNN model is 88.16%. It is concluded that the
average accuracy of the UKFNN model is higher than the
BPNN model.

Also, robustness is one of the important parameters to
evaluate the performance of the algorithm, so we calculated
the standard deviation based on the results of Figure 15 as an
evaluation of robustness. As can be seen from Table 4,
UKFNN is more robust than BPNN.

To graphically describe the distribution of the accuracy, a
box plot is drawn, as shown in Figure 16. According to
Figure 16, the accuracy rate of the UKFNN is higher than
that of the BPNN, and the dispersion of the UKFNN is
smaller than that of the BPNN.

Tables 5 and 6 show the results of motion intention
recognition accuracy of the UKFNN model and the BPNN
model for five subjects with six lower limb motion
intentions.

In the UKFNN algorithm, the highest average accuracy is
the go-upstairs (GU)motion, with 97.8%.+e lowest average
accuracy is stop-rest (SR) motion, with 88.8%. In the BPNN
algorithm, the highest average accuracy is the go-upstairs
(GU) motion, with 94.6%. +e lowest average accuracy is
horizontal walking (HW) motion, with 87%. Experiments
show that the accuracy of the UKFNN model is more stable
than the BPNN model.

Besides, the anti-interference of the model is an im-
portant factor affecting the control performance of the lower
extremity exoskeleton. Considering that the sEMG signal is
susceptible to noise interference, we tested the collected
noise sEMG signals (interference 1, interference 2, and
interference 3) and verified the ability of the UKFNN model
to track sEMG signals. As shown in Figure 17, under dif-
ferent interference conditions, the UKFNN model can still
track the change of features in real-time.

We calculated the root mean square error of the model as
metrics to evaluate the reliability of the model, as shown in
Table 7. It is proved that the UKFNN model has a stronger
anti-interference ability than the BPNN model.

We found that different numbers of sEMG signal feature
samples affect the motion intention recognition accuracy
and real-time. We collected another 600 sets of data for
testing and using different numbers of testing samples,
namely, 100, 200, 400, and 600 samples, to test the UKFNN
model and the BPNN model. +e result is shown in Table 8.

It is proved that the samples increase and the accuracy of
the BPNN and the UKFNN model will also increase. In the
process of sample size change, the UKFNNmodel has higher
accuracy, stability, and real-time performance than the
BPNN model.

When the user is wearing the lower extremity exo-
skeleton, it is necessary to avoid the wrong recognition of
human motion intention by the lower extremity exoskeleton
robots. +e confusion matrix is an important evaluation
method of model accuracy and reliability. It can count the
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Figure 15: UKFNN model and BPNN model accuracy results.

Table 4: UKFNN model for each motion accuracy result.

Recognition algorithm UKFNN BPNN
Average accuracy rate (%) 94.83 90.8
Standard deviation 1.26 1.69
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Figure 16: Box plot of UKFNN and BPNN.

Table 5: UKFNN model for each motion accuracy result.

Subject
Motion intention (%)

HW CO SU GU DS SR
1 96 99 92 98 99 90
2 83 90 96 99 96 90
3 98 99 98 97 95 86
4 93 96 98 96 98 90
5 96 95 100 98 96 88
AC (%) 93.2 95.8 96.6 97.8 96.8 88.8

Table 6: BPNN model for each motion accuracy result.

Subject
Motion intention (%)

HW CO SU GU DS SR
1 86 95 93 99 86 88
2 78 91 90 95 83 92
3 91 92 95 93 86 88
4 86 87 100 90 92 90
5 94 93 95 87 94 98
AC (%) 87 91.6 94.6 92.8 88.2 91.2
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number of errors in the model recognition results and the
correct number and also can analyze the correlation between
different motion intentions of the lower limbs. In this paper,
400 sets of testing samples are selected to calculate the
confusion matrix of six lower limb motion intentions and
verified the accuracy of the method. Table 9 is the confusion
matrix of the UKFNN model. +e stop-rest (SR) motion
intention has the lowest accuracy (88.8%). It is easy to
misjudge the down-stairs (DS) motion intention, and the
false-positive rate is 5.1%. Table 10 is the confusion matrix of
the BPNN model. +e horizontal walking (HW) motion

intention has the lowest average accuracy (87%). It is easy to
misjudge the motion intention of go-upstairs (GU), and the
false-positive rate is 6.5%.

We selected 600 testing sets to verify the sensitivity of the
model. Table 11 shows the sensitivity metrics of the UKFNN
model and the BPNN model. +e UKFNN model has a
higher sensitivity. It is proved that the UKFNN model has a
lower false-positive rate, and accuracy and reliability are
better than the BPNN model.

We used three myoelectric sensors to identify the six
motion intentions of the lower extremities. Also, we
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Figure 17: UKFNNmodel and BPNNmodel recognize the result. UKFNNmodel and BPNNmodel interference test: (a) subject 1 sweating
interference test; (b) subject 1 frictional interference test; (c) subject 1 sweating and frictional interference test; (d) subject 2 sweating
interference test; (e) subject 2 frictional interference test; (f ) subject 2 sweating and frictional interference test; (g) subject 3 sweating
interference test; (h) subject 3 frictional interference test; (i) subject 3 sweating and friction interference test.
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Table 8: Performance test of UKFNN and BPNN models with different sample sizes.

Recognition algorithm
Metrics

Number of samples Recognition accuracy (%) Root mean square error Average running time (S)

UKFNN

100 92.17 0.17 0.194
200 93.45 0.16 0.239
400 91.75 0.08 0.924
600 94.83 0.04 1.041

BPNN

100 81.7 0.21 0.274
200 84.6 0.18 1.483
400 89.6 0.12 3.158
600 90.8 0.09 3.753

Table 9: UKFNN model confusion matrix.

Expected motion
Real motion

HW CO SU GU DS SR
HW (%) 93.2 — — 4.3 — 2.5
CO (%) — 95.8 — 4.1 — 0.1
SU (%) — — 96.6 3.4 — —
GU (%) — 1.9 — 97.8 0.3 —
DS (%) — — 2.1 — 96.8 1.1
SR (%) 0.3 2.1 3.7 — 5.1 88.8

Table 10: BPNN model confusion matrix.

Expected motion
Real motion

HW CO SU GU DS SR
HW (%) 87 — 3.2 6.5 2.4 0.9
CO (%) — 91.6 — 5.4 2.6 0.4
SU (%) — — 94.6 0.6 3.6 1.2
GU (%) — 4.9 0.7 92.8 1.6 —
DS (%) — 3.3 5.5 0.9 88.2 2.1
SR (%) — 0.3 4.1 — 4.4 91.2

Table 7: RMS error statistics of UKFNN and BPNN interference tests.

Type of interference Root mean square error statistics
BPNN UKFNN

Subject 1
Interference 1 0.21 0.17
Interference 2 0.18 0.13
Interference 3 0.12 0.08

Subject 2
Interference 1 0.35 0.24
Interference 2 0.29 0.16
Interference 3 0.18 0.13

Subject 3
Interference 1 0.25 0.14
Interference 2 0.17 0.16
Interference 3 0.11 0.03

Table 11: Sensitivity metrics of the UKFNN model and the BPNN model.

Recognition algorithm
Sensitivity (%)

HW CO SU GU DS SR
UKFNN 92 95 97 98 95 90
BPNN 89 92 91 93 90 89
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compared the results of previous studies to demonstrate the
advancement of our recognition algorithm, as shown in
Table 12. In these studies, most researchers used more sEMG
sensors to identify more lower extremity motions. It can be
seen from Table 12 that at least four muscle sEMG signals
need to be acquired to identify five lower limb motion in-
tentions. However, we only need three sensors to identify six
lower limb motion intentions, and the accuracy reaches
94.83%.

6. Conclusion

We proposed a lower limb motion recognition method
based on improved WPT and UKFNN. We analyzed the
distribution of features and established a feature model.
And we proposed a sliding window difference averaging
filtering method to verify the eigenvalues and suppressed
the interference of noise. +en, we used UKF filtering to
optimize the neural network weights to improve the
adaptability and accuracy of the recognition model, and
we used the UKFNN model to identify the six motion
intentions of the lower limbs. +e results showed that the
method has achieved good results and the average ac-
curacy was 94.83%.+rough the noise interference tests, it
was verified that the model has the anti-interference
ability. Also, under the fluctuation of the sample size, the
UKFNN model has achieved better results in recognition
accuracy and real-time performance. Also, the confusion
matrix calculated that the UFKNN model has a low false-
positive rate and the performance was better than the
BPNN model. It showed that the method was advanced,
reliable, and practical. +erefore, our proposed new
method was suitable for the recognition of complex
motion intentions of lower limbs. It is beneficial to realize
the wide application of the exoskeleton robots to assist the
lower limb motion. In the next step, the paper will increase
the types of lower limb motion intention recognition,
improving the recognition accuracy of lower limb motion
intention.
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[10] D. C. Toledo-Pérez, M. A. Mart́ınez-Prado, R. A. Gómez-
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