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)e black boxmodel of a dynamic system usually consists of just input and output.)ere is no correlation or coupling between the
input and output. )is paper proposes a self-coupling black box model method to realize the coupling between its input and
output by introducing “virtual variables” to the black box model of a dynamic system considering the advantages of artificial
neural network (ANN) in the system. )e ANN is used for black box modeling. )e modeling process of the self-coupling black
box is illustrated through the simulation models and simulation analysis of the particle settlement process and the Unmanned
Undersea Vehicle (UUV) launching process. By comparing its result with the result of the standard black box model, the
advantages and disadvantages of the self-coupling and standard black box models in the calculation of accuracy are analyzed.

1. Introduction

)e black box models are developed by measuring the data
of the system input and output and fitting a mathematical
function to the data. )e development of black box models
does not require the understanding of the system physics,
and they have high accuracy compared to the physics-based
models though they suffer from poor generalization capa-
bilities [1]. A nonlinear black box structure for the dynamic
system is a model structure constructed to describe the
nonlinear dynamics [2]. )e nonlinear structures can be
seen as a concatenation of mapping the observed data to a
regression vector and nonlinear mapping of the regressor
space to the output space [3].

At present, the research on modeling methods of the
black box model mainly focuses on accurately realizing the
mapping relationship between input and output. In order to
solve the specific engineering problems, many scholars have
adopted a variety of methods to build the black box model,
such as autoregressive public model (ARX), transfer func-
tion model (TF), state space model (SS), and output error

model (OE) [4–8]. Research studies on black box modeling
methods mainly focus on accurately realizing the implicit
relationship. )ere is a lack of research on the correlation
between the input and the output. System variables that have
representational meaning are introduced in the black box
model. )ese variables are both input and output (self-
coupling) variables. However, in the calculation of the black
box model, the actual input does not contain this variable. A
variable “virtual” exists in the system that can generate
output as an analysis parameter to observe the operation of
the system.

In general, the study of dynamic system identification is
concerned with its operation law. )e analyzed data is the
time series of the system. As an alternative method of re-
gression analysis, the artificial neural network (ANN) can be
used to identify the parameters of the dynamic system and
build models. ANN, which simulates the human nervous
system, is a powerful method to solve regression and clas-
sification problems [9, 10]. ANN has been successfully
applied for the nonlinear modeling of time series [11–19]. It
has the ability to model complex nonlinear relations in data
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without any prior assumptions about the nature of such
relations [20]. )e nonlinear properties and self-learning
and adaptive abilities of the neural network method ensure
strong approximation in nonlinear mapping. )is method
can accurately simulate the input-output relationship of the
system and provide a reliable and precise model for the
nonlinear system. Moreover, the ANN does not need to
know the characteristics of the relationship between de-
pendent and independent variables, which is in sharp
contrast to regression analysis. In addition, the ANN can be
used for online identification and a more effective real-time
simulation analysis of the system. ANN is widely used in the
fields of pattern classification, function approximation, and
trend prediction as well [21, 22]. )erefore, after selecting
the input and output of the system, this research uses the
ANN as the black box modeling method.

)e remainder of this paper is organized as follows.
Section 2 introduces the principle and modeling process of
the self-coupling black box model. Section 3 lists two specific
application cases. In Section 3.1, the motion modeling and
prediction of the settling process of spherical particles are
introduced. Section 3.2 presents two black box models used
in this study to calculate the velocity of a ballistic body and
torque of the launching pump. )e conclusions drawn from
research work are presented in Section 4.

2. Principle of Self-Coupling Black Box Model
and Modeling Method

2.1. Principle of Self-Coupling Black Box Model. )e system
identification black box modeling requires measurement of
input-output data of the dynamic system, selection of model
structure, and estimation of model parameters. When
building the self-coupling black box model of a dynamic
system, it is necessary to analyze the relationship between the
variables in the system.)e variable with the highest degree of
correlation with other variables is regarded as the key variable.
Consequently, the functional relationship between other
variables and key variables in the system is analyzed to de-
termine whether it contains the differential or integral of key
variables.)e integral or differential quantities are introduced
in the black box model as “virtual quantities.” )e key var-
iables and “virtual quantities” are considered as the output
and input of the model, respectively. In addition, the self-
coupling black box model also includes other necessary input
and output quantities of the system. )e biggest difference
between the self-coupling black box model and the standard
black box model is that more input quantities are involved in
the trained model through virtual quantities, and the ob-
servation data of virtual quantities ignored in the standard
black box model is also involved, which may help to improve
the stability of the self-coupling black box model.

To further illustrate the principle of the self-coupling
black box model, a system with four variables is illustrated
[23] which includes one input variable A1(t) and three
system variables X1(t), X2(t), andX3(t). X1(t) is the key
variable and X2(t) and X3(t) are the integral and differ-
ential quantities of X1(t). )erefore, X2(t) and X3(t) are
virtual quantities, A1(t) is the input, and X1(t) is the output

of the black box model. )e required black box model is
shown in Figure 1. Compared with the self-coupling black
box model, the standard black box model usually has only
A1(t) and X1(t) as input and output, respectively; in model
training process, X2(t) andX3(t) are ignored.

)e simulation model of the self-coupled black box
model is shown in Figure 2.

2.2. Modeling Process. )e modeling process of the self-
coupled black box model is shown in Figure 3, which
consists of five steps:

(1) )e variables of the system are analyzed, and the key
and virtual variables are determined. In addition, to
ensure the accuracy of the model, the input variables
need to be as complete as possible.

(2) )e virtual variables and input variables are used as
input and the key variables contain the output of the
model.

(3) According to the self-coupling black box model,
distinct test results are selected to fit the neural
network model (the learning sample may be adjusted
according to the results in the fourth step, i.e., dif-
ferent test data are adopted). )e fitting method can
also be established by the polynomial method or
other methods and is not limited to ANN.

(4) )e results of self-coupling black box model calcu-
lation are checked to determine if they match the
fitted experimental results. If the result is not precise,
steps 2, 3, and 4 are repeated, whereas if they meet
the requirements, the next step is executed.

(5) Other test data are used to verify the accuracy of the
self-coupling black box model. If the result is not
precise, steps 2, 3, 4, and 5 are repeated, and thus, the
self-coupling black box model is built.

3. The Application Case

3.1. Prediction of Particle Sedimentation Process. Particle
sedimentation is a classic problem in both solid and liquid
phases, which occurs in several industrial fields or nature as
liquid-solid fluidized bed and secondary sedimentation tank.
When high-density spherical particles freely fall from the
initial static state into water, the ball is first accelerated by
gravity. Next, the particle velocity increases, followed by the
falling resistance. )e acceleration gradually decreases and
eventually the gravity, buoyancy, and resistance acting on
the particle attain equilibrium, and the particle moves with
uniform speed. For particles with different diameters,
gravity, buoyancy, and resistance affect each particle dif-
ferently. )erefore, the particle sedimentation process var-
ies. Many scholars have conducted several related research
analyses using CFD (Computational Fluid Dynamics) to
solve the particle sedimentation problems [24–29]. How-
ever, CFD analysis is time consuming, whereas the pre-
diction of results through limited data is time efficient.
)erefore, this paper explains the implementation of the
coupling model using the partially known diameter of steel
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ball to predict the result of particle sedimentation of particles
with different diameters.

First, the settlement process data of steel ball (density
7800 kg/m3) with diameters 2mm, 3mm, 4mm, 5mm,
6mm, 7mm, and 8mm were obtained through CFD
analysis. )e ultimate settlement velocity of spherical par-
ticles with diameters 2mm, 3mm, 4mm, and 5mm was
verified through experiments, and the results are shown in
Table 1. ve is the ultimate settlement velocity obtained by the
experiment and vc is the ultimate settlement velocity cal-
culated through CFD analysis.

Next, the variables related to the settlement process of
steel balls are analyzed and the appropriate key variables and
other input and output variables are selected. )e variables
of the self-coupled black box model include velocity v(t) of
the steel ball and displacement y(t), which is the degree of

free movement in the vertical direction when a high-density
particle falls. )e input variable includes the particle di-
ameter D. Because this variable does not change with time, it
is necessary to take time as input variable. In addition, the
settling velocity and displacement of steel balls with di-
ameters 2, 3, 4, 6, 7, and 8mm are taken as input variables. A
learning sample of neural network is shown in Figure 4.
Compared with the self-coupling black box model, the
standard black box model does not introduce the virtual
quantity y(t). It only takes t, D, and y(t) as learning samples
of the neural network, as shown in Figure 5.

)e neural networks in Figures 4 and 5 adopt the
cascade-forward neural network model with N neurons
(Figure 6). )e values of N are 9, 12, 15, 18, and 21. )e
training method adopts the updated values of weight and
bias according to the Levenberg–Marquardt optimization
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Figure 3: Flow chart of the self-coupling black box model.
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method. Seventy percent of the data is selected as training
data, 15% as model validation data, and the remaining 15%
as test data. )e maximum number of training repetitions
is 10,000, the training accuracy is 1e−7, and the training
speed is 0.5.

After the training of neural network, the neural network
model is put into the simulation model of particle settlement
process (Figures 7 and 8).

)e standard and self-coupling black box models were
used to predict the settlement velocity of spherical particles
with a diameter of 5mm. )e results of the calculation are
shown in Figure 9.

)e average error (AE) and other performance indica-
tors such as the root mean square error (RMSE) and average
absolute relative error (AARE) were determined for the
black box models. )ese performance indicators are listed in
Table 2. According to the error analysis in Table 2, the self-
coupled black box model has higher accuracy and better
stability for calculating different quantities of neurons.

3.2. Interior Ballistic Prediction. UUV (unmanned under-
water vehicle) is widely used in deep-sea exploration and
survival risk such as underwater operation, which can
generally be set in the water or underwater. )e advantages
of underwater release severe sea state can be avoided, but
release of UUV underwater conditions need to rely on the
submarine weapon launch system to achieve. Air turbine
pump (ATP) launch system (Figure 10) is the navy sub-
marine in active service in the world’s most advanced
hydraulic balance type deep-water launcher [30]. With its
large launching depth, small volume, light weight, strong
versatility, high utilization of launching energy, and low
launching noise, the ATP launching system is suitable for
installation on various types of submarines. )e principle
of ATP is that the launcher pump pushes seawater into the
launcher tube to push the projectile body out of the tube,
so the underwater launching process of projectile is a
complex fluid structure interaction (FSI) problem. If a
simple and efficient interior ballistic model can be con-
structed, it will be of great significance to the design of
interior ballistic parameters and the safety analysis of
launching. )erefore, this paper intends to build the in-
terior ballistic simulation model using as few as possible
inputs.

)e ATP launch systems analyzed in this paper are
conducted with the same projectile and the same initial
condition. )erefore, the only difference of the internal
ballistic model is the rotation speed of the launch pump.)e
interior ballistic model of ATP launch systems are estab-
lished by using the self-coupling black box model method
and the standard black box model, respectively (Figure 11).
)e only difference between the two models is that the input
of the self-coupling black box model includes the virtual

Table 1: Comparison between the ultimate settling velocity of
different spherical particles with experimental results.

D (mm) ve (m/s) vc (m/s) Error

2 0.6117 0.6032 −1.39%
3 0.7932 0.7626 −3.86%
4 0.9234 0.9072 −1.75%
5 1.0542 1.093 3.68%
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Figure 4: Schematic diagram of self-coupling black box model
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quantity the projectile displacement x(t). )ere are two
output quantities in both the black boxmodels, where u(t) is
the velocity of the projectile and T(t)is the torque of the
launch pump.

In each interior ballistic model, the neural network
module uses the cascade-forward network. In order to
compare the effects of different number of neurons, the
numbers of neurons N for each model is set as 10 and 20
respectively. Six groups of internal ballistic test data (No. 1 to
No. 6 test data) are used as learning samples in training. )e
training method updates weights and biases according to
Levenberg–Marquardt optimization method. )e data were
split into three parts: 70% is selected as training data; 15% is
used as model validation data; and 15% is used as test data.
)emaximum epoch of training is set as 5000.)e threshold
accuracy is set as 1e-8 and the training rate is chosen as 0.2.
)e modeling process of the black box models can be de-
scribed as a flow chart (Figure 12), where δu(i) and δT(i)

denote the average absolute relative error (AARE) of the
simulation calculation results of projectile velocity and
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Figure 8: Particle settlement process simulation model based on the standard black box model.
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Figure 9: Comparison of settlement velocity curves of spherical particles obtained by different black box models.

Table 2: Overall error performance comparison using different performance indicators.

)e self-coupling black box model
D� 5mm, velocity: v (m/s)

)e standard black box model
D� 5mm, velocity: v (m/s)

AE RMSE AARE AE RMSE AARE
9 −1.64E−05 6.28E−02 1.54E−03 −2.36E−05 5.00E−03 2.21E−03
12 −1.06E−05 6.99E−03 9.92E−04 5.80E−05 5.85E−02 5.44E−03
15 2.71E−06 2.00E−02 2.54E−04 −3.94E−05 2.42E−02 3.70E−03
18 3.94E−05 2.30E−02 3.69E−03 6.12E−05 1.84E−01 5.74E−03
21 4.20E−05 1.53E−02 3.94E−03 6.96E−05 2.27E−02 6.53E−03
Note. )e colored cells correspond to the best values of AE, RMSE, and AARE.

UUVInlet valve

Air turbine

Launching pump

Figure 10: Schematic of the ATP launch system [30].
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launch pump torque, respectively, and i is the number of
interior ballistics.

After several iterations, the AARE of T(t) and u(t) of the
two interior ballistic black box models are less than 0.05, as
shown in Figures 13 and 14.

When N� 10, the simulation results of the self-coupling
black box model and the standard black box model are
compared with available experimental results, as shown in
Figure 15. It can be seen from the calculation results that the
projectile velocity obtained by the two black box models is
close to the experimental results. However, the torques
calculated by the standard black box model from No. 8 to
No. 10 were significantly different from the experimental
results, while the projectile body velocity and launch pump
torque calculated by the self-coupling black box model were
in good agreement with the experimental results.

Figure 16 shows the interior ballistic calculation results
from No. 7 to No. 12 (except the training sample) when
N� 20, and it can be seen that the results obtained by the
standard black box model become significantly worse as the
number of neurons N increases, compared with the self-
coupling black box model, and the results of projectile
velocity still fluctuate more dramatically. In addition, it
should be noted that when N� 20, the torque results ob-
tained by the self-coupling black box model with trajectories
of No. 8, No. 9, No. 10, and No. 11 also become worse. )is
indicates that the number of neurons has a certain influence
on the stability of the results of the two types of interior
ballistic black box models.

In general, when the interior ballistic black box model is
constructed with the same error standard, the interior
ballistic results of the self-coupling black box model are
better than those of the standard black box model, and the
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Figure 11: Schematic diagram of black box model architecture for interior ballistic. (a) )e self-coupling black box model. (b))e standard
black box model.
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Figure 14: AARE for the velocity of the projectile.
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Figure 15: Comparison of the ballistic calculation with different black box models (N� 10).
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Figure 16: Comparison of the ballistic calculation with different black box models (N� 20).
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stability of the self-coupling black box model is better than
that of the standard black box model.

4. Conclusion

)is paper presents a self-coupling black box modeling
method for a dynamic system.)is method first classifies the
system parameters according to the characteristics of the
dynamic system and then manually selects the parameters to
formulate the hypothesis model. Finally, it adopts the ANN
to construct a definite model and verify its result.

In this paper, two application cases are given, which are
motion modeling and prediction of spherical particle set-
tlement process and modeling and trajectory prediction of
the internal ballistic system of the ATP launch system. )e
application results show that this method is simple and
efficient compared with other systems identification
methods and can predict the dynamic system operation
process based on limited data samples. Compared with the
standard black box model method, the self-coupling black
box model method can obtain more accurate and stable
simulation results.
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