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As the un-effectively grounded system fails, the zero-sequence current contains strong noise and nonstationary features. -is
paper proposes a novel faulty line selection method based on modified complete ensemble empirical mode decomposition with
adaptive noise (MCEEMDAN) and Duffing oscillator. Here, based on multiscale permutation entropy, fuzzy c-means clustering,
and general regression neural network for abnormal signal detection, theMCEEMDAN is proposed.-e endpoint mirror method
is used to suppress the endpoint effect problem in the decomposition stage. -e proposed algorithm is able to decompose the
original signal into a series of intrinsic mode functions, which can complete the first filtering. -e research shows that it can
efficiently suppress the mode confusing phenomenon of empirical mode decomposition (EMD) and is also more complete and
orthogonal than ensemble empirical mode decomposition (EEMD) and complementary ensemble empirical mode decomposition
(CEEMD). -e optimal denoising smooth model is established for choosing optimal intrinsic mode functions to complete the
second filtering. It can ensure that the reconstructed filtered signal has better smoothness and similarity. -e optimal denoising
smooth model of MCEEMDAN can not only keep useful details of the original signal but also reduce the noise and smooth signal.
-e bifurcation characteristic of the chaotic oscillator is applied in weak signal detection. -e zero-sequence current’s denoising
result is extracted as the input signal of the Duffing system.-e faulty line could be selected by observing the phase diagram of the
system. -e research results verify the usability and effectiveness of the proposed method.

1. Introduction

-e un-effectively grounded system is used in the distri-
bution network. Data show that 80% of the fault occurring in
the un-effectively grounded system is single-phase
grounding fault. When a single-phase grounding fault oc-
curs, the fault current is pretty small, and the zero-sequence
current is nonstationary and nonlinear [1, 2]. If the faulty
line remains unsolved, it could cause a serious threat to the
insulation of the distribution network. It is important for
stable operation and safe of the distribution network to select
the faulty line accurately [3, 4]. But the adaptability and
accuracy of traditional faulty line selection methods are not
enough due to the weak fault signal and the complex
working condition.

Most existing faulty line selection methods use the
injection signal method, steady-state information
method, or transient information method. -e injection
signal method needs additional signal injection equip-
ment, and its price is high, and its engineering operation is
complex. -e characteristic of a fault signal is weak in the
steady-state information method, and it is greatly affected
by the arc suppression coil, which makes the faulty line
selection unreliable [5]. -e characteristic of the fault
signal in the transient information method is larger than
the steady characteristic, and it is not affected by the arc
suppression coil [6] and it does not require additional
equipment. Liu et al. [7] used wavelet analysis to extract
fault information of the zero-sequence current for faulty
line selection, but the wavelet analysis is easily affected by
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noise, and the fault feature band which is extracted by
wavelet analysis is inefficient, and the method needs to
select appropriate wavelet basis function. Shu et al. [8]
used time-frequency characteristics to the analysis of
transient zero-sequence current for the faulty line se-
lection, but it is invalid while a high-resistance grounding
fault. Fault characteristics as an initial abrupt wave, real
power, and transient are employed in the proposed fusion
method [9], but its calculation amount is large. -e paper
[10] shows that the 5th harmonic fault signal at the exit of
the faulty line is larger than any nonfaulty line 5th har-
monic signal and towards the opposite, but the 5th har-
monic fault signal is very weak, and the fault background
signal interferes with the 5th harmonic fault signal. Zhang
et al. [11] used EMD to decompose the zero-sequence
current, and the first intrinsic mode function is extracted
as the characteristic parameter of the zero-sequence
current. But when the signal contains pulse signal, in-
termittent signal, and noisy signal, the mode mixing of
EMD would arise and cause wrong judgment [12, 13].
Ensemble empirical mode decomposition (EEMD) can
restrain modal aliasing of EMD at a certain level; however,
the calculation amount grows, and the completeness loses
due to residual noise [14, 15]. Complementary ensemble
empirical mode decomposition (CEEMD) can decrease
the reconstruction error by adding white noise to the
target signal and using the ensemble mean to extract
intrinsic mode functions [16, 17]. However, its calculation
speed is slow, and the efficiency is low. Some effective
characteristics will be lost when the high-frequency signal
is filtered, which will affect the denoising effect. Complete
ensemble empirical mode decomposition with adaptive
noise (CEEMDAN) adds adaptive white noise to the
original signal and calculates unique residual signal to
obtain every intrinsic mode function (IMF) [18, 19]. -e
CEEMDAN algorithm can improve computational effi-
ciency and decrease the reconstruction error. But
CEEMDAN still has noise existing in the IMF region, and
some IMFs may appear in hysteretic IMFs.

In order to overcome the above deficiencies, modified
complete ensemble empirical mode decomposition with
adaptive noise (MCEEMDAN) is proposed. -e modified
method based on combing CEEMDAN, general regression
neural network, fuzzy c-means clustering, and multiscale
permutation entropy is established.-e decomposition stage
uses an endpoint mirror method to suppress end effects.
MCEEMDAN, which restrains the mode mixing problem,
has excellent adaptability. -e approach can also sift out the
pseudocomponents generated by the signal decomposition.
It is complete and orthogonal than EEMD and CEEMD.-e
optimal denoising smooth mathematical model, which
weights the contradiction between similarity and smooth-
ness of the filtered signal, is established for completing signal
reconstruction and effectively extracting useful information
from the original signal. -e zero-sequence current in each
line, which is processed by the MCEEMDAN optimal
denoising smooth mathematical model, is extracted as the
periodic external dynamic of the Duffing system. -e tri-
section symmetry phase estimation method is applied for

searching the critical phase, and each input signal is moved
according to the critical phase. -e faulty line could be
selected by observing the phase diagram of the Duffing
system.

2. Multiscale Permutation Entropy

-e permutation entropy (PE) can describe the random and
dynamic behavior of the time series [20]. It is based on a
comparison of neighborhood values that PE measures signal
complexity, and it does not consider the specific value of the
time series. PE includes many advantages, such as simple
algorithms, high computational efficiency, good robustness,
strong anti-interference ability, and so forth. -e PE algo-
rithm is described below. Given a time series {x(i) i� 1, 2, . . .,
N} with the length N, the time series which is constructed by
using the following equation is defined as [21]

X(1) � x(1), x(1 + τ), . . . , x(1 +(m − 1)τ){ }

X(i) � x(i), x(i + τ), . . . , x(i +(m − 1)τ){ }

⋮

X(N − (m − 1)τ) � x(N − (m − 1)τ), x(N{

− (m − 2)τ), . . . , x(N)},

(1)

where τ represents the time delay and m represents the
embedding dimension. -us, X(i) is arranged in ascending
sorting, and the permutation is defined as

x i + j1 − 1( τ( ≤x j + j2 − 1( τ( ≤ · · · ≤x i + i + jm − 1( τ( .

(2)

For x(i + (ji1 − 1)τ) � x(i + (ji2 − 1)τ), the permuta-
tion is ordered as x(i + (ji1 − 1)τ)≤x(i + (ji2 − 1)τ) for
ji1 ≤ ji2. Any vector X(i) has a unique symbol sequence as
follows:

S(g) � j1, j2, . . . , jm , (3)

where g � 1∼k and k≤m!. -e ascending sequence is one of
the m! permutations of m-tuple vector. -e occurrence
frequency of each permutation is defined as Pi(i� 1, 2, . . ., k).
-e PE is defined by the Shannon entropy, which is cal-
culated as follows:

Hp(m) � − 
k

g�1
Pg ln Pg, (4)

where 0≤Hp ≤ ln(m!), and the normalized PE can be de-
fined as

PE �
Hp(m)

ln(m!)
, (5)

where 0≤ PE≤ 1. PE is an effective method for reacting a
slight change in the time series. In order to solve the single-
scale problem of PE, multiscale permutation entropy (MPE)
is proposed by the paper [22]. -e most important step of
calculating MPE is acquiring coarse-grained time series by
using the following equation:
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where s is the scale factor and ys(j) is a coarse-grained time
series. PE of each coarse-grained time series is calculated as
MPE.

Before computing MPE, three important parameters,
including the embedding dimensionm, the time delay τ, and
the scale factor s are needed to set. If the embedding di-
mension m is too small, it is difficult to distinguish the
randomness of the signal.-emethod will be meaningless. If
the m is too large, the algorithm could take a long time to
calculate, and it is difficult to observe the subtle change of the
signal. Zheng et al. [23] suggested that the embedding di-
mensionm is set to 6 in this paper.-e time delay τ is set to 1
in this paper because it has little effect on the permutation
entropy. If the maximal scale factor smax is >10, the MPE can
reflect the important information of the signal [24].-e scale
factor s is set to 12 in this paper.

3. FCM-GRNN Identifies Abnormal Signal

3.1. Fuzzy C-Means Clustering. Many areas, such as data
mining and pattern recognition, use fuzzy c-means clus-
tering (FCM) to solve their problems. FCM, which is an
unsupervised learning, uses a membership degree to

determine the value of each sample objective, which belongs
to a cluster. FCM continuously modifies the cluster centers
and optimizes the cost function by calculating the Euclidean
distance between the data points and the cluster center until
the termination criterion is satisfied. In FCM, membership
values range between 1 and 0. -e label of each sample
objective is based on the maximum coefficient of the
membership. Similar sample objects are assigned to the same
cluster.

X� {x1, x2, . . ., xn} is a data set that is composed of n
samples of dimension. It is divided into C� {c1, c2, . . ., cc}
fuzzy clusters. -e cost function is defined as [25]

J U, c1, ..., cc(  � 

c

i�1


n

j�1
u

m
ij d

2
ij

s.t. 
c

i�1
uij � 1, ∀j � 1, 2, ..., n,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

where m ∈[1, ∞) is the fuzzy weighted exponent, uij is the
membership matrix of the jth sample point to the ith cluster,
and dij is the Euclidean distance between xj and ci. We use
Lagrange multipliers λ� [λ1, λ2, . . ., λn] with the length n to
form a new cost function for equation (7) to reach a
minimum as follows:

J U, c1, . . . , cc, λ1, . . . , λn(  � J U, c1, . . . , cc(  + 
n

j�1
λj 

c

i�1
uij − 1⎛⎝ ⎞⎠ � 

c

i�1


n

j

u
m
ij d

2
ij + 

n

j�1
λj 

c

i�1
uij − 1⎛⎝ ⎞⎠, (8)

where J is a new cost function, and the necessary conditions
for equation (7) to reach its minimum are

ci �


n
j�1 um

ij xj


n
j�1 um

ij

,

uij �
1


c
k�1 dij/dkj 

2/(m− 1)
.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(9)

We repeatedly update equation (9). If either J’s value is
below a certain threshold value or J’s improvement value
minus its previous iteration value is below a certain
threshold, the constraint condition is satisfied, and the cyclic
iteration is stopped. -e cluster to which the individual
belongs is determined by the membership degree of indi-
vidual relative to each cluster center, and each cluster is
labeled for representing the rule degree of the fuzzy cluster
signal.

3.2. General Regression Neural Network. -e generalized
regression neural network (GRNN) is a critical branch of
radial basis function neural network. GRNN includes many
advantages, such as the strong nonlinear mapping ability,
good global convergence, high fault tolerance, fast training

speed, and so forth. -e schematic diagram of the GRNN is
shown in Figure 1.

GRNN consisted of three layers, including the input
layer, radial basis layer, and specific linear layer [26]. -e
input layer is composed of neurons and does not participate
in the operation. It only transfers the input vectors to the
radial basis layer, and the number of layers is equal to the
dimension of the input vector. -e number of radial basis
layers is equal to the number of the learning samples, and the
neuron transfer function is Gaussian function pi as follows:

pi � exp
X − Xi( 

T
X − Xi( 

2δ2
 , i � 1, 2, . . . , n, (10)

where n is the number of radial basic neurons, X is the input
variable, Xi is the sample observation corresponding to the
ith neuron, and δ is the smoothness factor. -e transfer
function of the output layer is a linear function purelin. -e
final network output value is defined as

y � purelin
LW2,1 × a1

suma1
 . (11)

To sum up, the structure of GRNN is simple, and the
smoothness factor δ will affect the execution effect of the
GRNN. If the smoothness factor δ is selected randomly by
hand, it could have greater subjectivity and affect the output
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result of GRNN. In this paper, the fruit fly optimization
algorithm (FOA) [27] is used to select the optimal
smoothness factor δ adaptively.

3.3. FCM-GRNN Identifies Abnormal Signal Model. We
collect 1600 signals. -ese signals include 492 regular signals
and 1108 random signals. -ere are white noise signals,
Gaussian white noise signals, intermittent signals, and other
signals in random signals. -e MPEs of the signals are
clustered by the FCM algorithm. Because these signals have
two states, the clustering center is set to 2. -e weighted
index is set to 2, and the iterative termination tolerance is set
to 10e− 3. -e input is MPE of each signal. -e clustering
center of each cluster and fuzzy membership matrix are
obtained. We calculate the within-class means of two cat-
egories and obtain the distance matrix from all samples in
the corresponding category to within-class mean. -e 100
samples with the smallest distance are, respectively, selected
from the distance matrix of the two categories, and the
corresponding network outputs are set to 1 and 2. -e MPE
of 12× 200 groups of signals is taken as the input of GRNN,
and the output is the corresponding signal category. -e
FOA algorithm optimizes the smoothness factor of GRNN.
-e iteration number is set to 100, and the population size is
set to 50. -e optimization process diagram of FOA-GRNN
is shown in Figure 2. As shown in Figure 2, when the
smoothness factor is 0.1212, the minimum RMSE is 0.0145.

-e smoothness factor 0.1212 is brought into the GRNN,
and the above MPE of 12× 200 sample signals is trained to
obtain the prediction model. -e prediction model is used to
analyze the MPE. -e MPE as the eigenvector cannot be
visualized in a high dimension. In order to show the effect of
the model, the principal component analysis (PCA) algo-
rithm is used to reduce the dimensionality of the 12-di-
mensional MPE and the clustering center vector. Figure 3
shows the 2-dimensional spatial distribution and 2-di-
mensional countermap of the random signals and regular
signals after PCA dimension reduction. -e MPE
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Figure 1: -e schematic diagram of GRNN. P, input vector; Q, number of input vectors; R, number of sample elements per group; KW1,1,
weight matrix of input layer; LW2,1, weight matrix of specific linear layer; ||dist||, distance function; b1, threshold of hidden layer; n1, n2,
each layer output vector; a1, a2, linear transfer function; nprod, weight function of output layer.
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eigenvectors of signals are distributed around the two
clustering centers according to regularity and randomness.
-e distinguishing effect of different types of signals is ideal,
and the characteristics of the same type of signals are closely
related.-is shows that the signal’s MPE as the characteristic
quantity combining with FCM unsupervised clustering and
GRNN tutor learning can complete the random detection of
the signal, and the detection rate is maintained at 100%.-is
method can be used to identify abnormal signals.

4. Modified CEEMDAN Optimal Denoising

4.1. Modified CEEMDAN Algorithm. EEMD and CEMMD
make the distribution of the extreme points of the original
signal more uniform by adding white noise, and the added
noise covers the abnormal signals, such as high frequency,
intermittent, or noise in the original signal. -erefore, the
problem of modal confusion can be reduced. However, the
algorithms need to limit the number of iterations, and the
decomposed components do not necessarily satisfy the
definition of the IMF. From the perspective of the appli-
cation, it is meaningless to sacrifice the accuracy of the
component and the physical meaning of the instantaneous
frequency of the component for the adaptive decomposition.

In fact, after the abnormal signal is decomposed, it is not
necessary to use EMD to decompose the noises completely,
and as long as the decomposition completeness of the added
noise signal can be ensured. In order to solve these problems,
MCEEMDAN is proposed in this paper. -e MCEEMDAN
can avoid unnecessary ensemble mean in EEMD and
CEEMD. It can make the decomposition results satisfy the
definition of inherent mode function. -e proposed method
can reduce the reconstruction error caused by adding white
noise and ensure the completeness of decomposition. -e
key step of MCEEMDAN is the detection of abnormal
signals. Given the advantages of the MPE-FCM-GRNN,
MCEEMDAN can be designed. Here, based on MPE-FCM-
GRNN for abnormal signal detection, the adaptability of
MCEEMDAN also can be improved.

Supposing the operator Ek(·) is the kth intrinsic mode
function, which is decomposed by EMD. IMFq

′ is the qth
intrinsic mode function, which is decomposed by CEEM-
DAN. I(t) is the original signal. ni(t) stands for the ith white
noise with the mean value of zero and the variance of one
(i� 1, 2, . . ., NR, and NR is the times of performing EMD);
βi− 1 stands for adaptive coefficient (i� 1, 2, . . ., NR). EMD
adopts the end point mirror image method during the
decomposition stage. -e steps of MCEEMDAN are de-
scribed as follows:

(1) -e first mode of CEEMDAN is obtained by EMD
NR times to decompose the signal I(t) + β0ni(t) as
follows:

IMF1′ �
1
NR



NR

i�1
E1 I(t) + β0ni(t)( . (12)

(2) -e first residue is as follows:

r1(t) � I(t) − IMF1′ . (13)

(3) -e secondmode of CEEMDAN is obtained by EMD
NR times to decompose the signal r1(t) +E1(ni(t)) as
follows:

IMF2′ �
1
NR



NR

i�1
E1 r1(t) + β1E1 ni(t)( ( . (14)

(4) When k� 2, 3, . . ., N, the kth residue and the (k+ 1)
th mode are as follows:

rk(t) � rk− 1(t) − IMFk
′ ,

IMFk+1′ �
1
NR



NR

i�1
E1 rk(t) + βkE1 ni(t)( ( .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)

(5) Step (4) is repeated until either the mean value of the
upper and lower extreme envelope of the residue is zero
or the difference between the number of the zero points
and the number of the extreme points is less than two.

(6) -e MPE of each intrinsic mode function of
CEEMDAN decomposition is analyzed by using
trained GRNN. When the output classification result
is the same as the random signal, it is considered to be
an abnormal signal and is removed from the original
signal. Supposing the pth mode is an abnormal signal,
then the residue signal R(t) is defined as follows:

R(t) � I(t) − 

p

i�1
IMFi
′ . (16)

(7) -e R(t) is decomposed by EMD to obtain the
MCEEMDAN’s intrinsic mode functions, which are
arranged in the order from high frequency to low
frequency.

-e signal x is composed of sinusoidal signal
x1 � 8sin (2π40t+ π/2), amplitude modulation signal
x2 � (t+ 1) sin (2π10t+ π/3), and intermittent random signal
x3. -e sampling frequency is 1000Hz, and the total time is
2 s. -en, the waveforms of simulation signal and its
components are shown in Figure 4. Because the results of
CEEMD and EEMD are the same, only the result of EEMD
decomposition is given. -e x is, respectively, decomposed
by EMD, EEMD, CEEMDAN, and MCEEMDAN, and the
results are shown in Figure 5. It can be seen from waveform
in Figure 5 that there is an obvious problem of modal ali-
asing in the EMD algorithm. EEMD and CEEMD can re-
strain modal aliasing of EMD at a certain level, but there are
still a lot of pseudocomponents. -e decomposition effect of
the MCEEMDAN algorithm is better. -e noise signal with
strong randomness is filtered out. Both the residual
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component and the pseudocomponents are close to zero.
-e end effect problem can be suppressed. -e decompo-
sition results are regular and stable.

Figure 6 shows the Hilbert–Huang spectrum of four
decomposition methods. As shown in Figure 6, EMD,
EEMD, and CEEMDAN have the problem of instantaneous
frequency instability, but the MCEEMDAN decomposition
method can effectively extract the frequency information of
the signal, and the frequency is more stable. -e quantitative
analysis of the four decomposition methods is based on the
correlation between the components of the original signal
and the intrinsic mode functions of four decomposition
methods as follows:

corr �
C(1, 2)

��������������
C(1, 1)∗C(2, 2)

 ,

C � cov IMFj, xi ,

(17)

where j is the numbering of intrinsic modal function and
i � 1, 2, 3 denotes signal x1, x2, x3, and C is a covariance
matrix. As the correlation degree |corr| is close to 1, the
correlation is high. -e IMF correlation analysis of four
decomposition methods can be known from Tables 1–4.
EMD cannot decompose the effective components of the
original signal. Although x1, x2 can be extracted by EEMD,
both IMF3-IMF4 and x2 have a high correlation, indicating
that there is modal aliasing in EEMD.-e CEEMDAN has a
high correlation in both IMF4-IMF5 and x1, which indicates

that CEEMDAN has the problem of model mixing.
MCEEMDAN can effectively extract x1 and x2 from x, and
the only IMF1 is highly correlated with x1, and the only
IMF2 is highly correlated with x2. As described above,
MCEEMDAN can restrain modal aliasing. -e orthogo-
nality index can evaluate the endpoint effect of the algo-
rithm. -e smaller the orthogonal index is, the better the
orthogonality of each intrinsic modal function is, and the
lower the influence of the endpoint effect on the algorithm
is. Table 5 shows orthogonality indexes for different
methods. As shown in Table 5, the endpoint effect of the
MCEEMDAN decomposition method is effectively
suppressed.

-e simulation results show that the proposed algorithm
has better decomposition results than the existing algo-
rithms. MCEEMDAN can restrain model mixing and
overcome the problem of the endpoint effect. Its frequency
of the Hilbert–Huang spectrum is stable. -e orthogonality
of the intrinsic mode function is good. -ese advantages
provide a good basis for signal reconstruction.

4.2. Optimal Denoising Smooth Model. Different combina-
tions of intrinsic mode functions can construct different
reconstructed signals. -e optimal denoising smooth model
is constructed by the similarity degree and smoothness index
[28–30]. -e standard deviation of the difference between
the reconstructed signal HP(t) and the original signal x(t) is
calculated as the similarity degree as follows:
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X(t) � x(t) − HP(t),

Amse � std(X(t)) �

��������������


N
i�1 (X(i) − X)2

N − 1



,

(18)

where X(t) is the difference between x(t) and HP(t), N is the
number of sampling points, and Amse represents the
standard deviation. -e smaller the Amse is, the closer the
reconstructed signal is to the original signal. When point x1
is on the curve f(x), the left and right curvatures at the point
x1 are as follows:

K
−

�
f− x1( ″




1 + f− x1( ′( 
2

 
3/2,

K
+

�
f+ x1( ″




1 + f+ x1( ′( 
2

 
3/2.

(19)

When f(x) is smooth and differentiable at point x1, the
left and right curvature at point x1 are equal as follows:

K
−

� K
+⟶ f

−
x1( ″


 � f

+
x1( ″


. (20)

-e second derivative is expanded according to the
discrete formula as follows:

f
−

x1( ″ ≈
f x1 − 2h(  − 2f x1 − h(  + f x1( 

h2 ,

f
+

x1( ″ ≈
f x1 + 2h(  − 2f x1 + h(  + f x1( 

h2 ,

(21)

where h is the step length. -en, the smoothness SN|x�x1
of

the curve f(x) at point x1 is defined as
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Figure 6: Hilbert–Huang spectrums of four methods. (a) EMD. (b) EEMD. (c) CEEMDAN. (d) MCEEMDAN.

Table 1: EMD decomposition IMF correlation.

x1 x2 x3
IMF1 0.7449 0.0051 0.0282
IMF2 0.6273 0.1157 0.0416
IMF3 0.0013 0.7748 0.0105
IMF4 0.0003 0.0034 − 0.0055
IMF5 − 0.0006 0.0112 0.0356
IMF6 0.0003 − 0.0124 0.0261
RS7 0.0010 − 0.0143 0.0087
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SN|x�x1
� f x1 + 2h(  − f x1 − 2h( 

− 2 f x1 + h(  − f x1 − h(  .
(22)

Supposing smoothness index Asmse is the standard
deviation of SN of all points excluding the left and right
endpoints in the sample. -e smaller the Asmse is, the
smoother the signal is.

Considering the smoothness of the filtering algorithm
and the error standard deviation between the

reconstruction result and the original signal, a weight
coefficient μ(0 ≤ μ≤1) is set, and then the objective
function is defined as

Aminf � μAmse +(1 − μ)Asmse. (23)

When Aminf is the minimum value, the objective
function obtains the optimal solution. -e algorithm model
corresponding to the optimal solution is the optimal
denoising smooth model.

Table 2: EEMD decomposition IMF correlation.

x1 x2 x3
IMF1 0.0463 0.0084 0.7371
IMF2 0.9994 − 0.0006 − 0.0042
IMF3 0.2515 0.9442 − 0.0401
IMF4 0.0110 0.9545 − 0.0323
IMF5 0.0023 0.5837 − 0.0413
IMF6 0.0008 0.0070 0.0364
IMF7 0.0001 0.0027 − 0.0009
IMF8 0.0006 − 0.0109 − 0.0375
IMF9 0.0001 − 0.0092 − 0.0232
RS10 − 0.0003 − 0.0020 − 0.0180

Table 3: CEEMDAN decomposition IMF correlation.

x1 x2 x3
IMF1 0.0329 0.0086 0.5025
IMF2 0.0566 0.0310 0.1209
IMF3 0.1060 0.0081 0.0323
IMF4 0.9886 − 0.0018 0.0341
IMF5 0.9913 0.0085 0.0234
IMF6 0.0347 0.6953 0.0216
IMF7 0.0010 0.9761 0.0411
IMF8 0.0005 0.1301 0.0049
IMF9 − 0.0006 − 0.0022 0.0055
IMF10 − 0.0009 0.0093 0.0258
IMF11 − 0.0011 0.0153 0.0415
RS12 − 0.0009 0.0192 − 0.0112

Table 4: MCEEMDAN decomposition IMF correlation.

x1 x2 x3
IMF1 0.9990 0.0043 0.0301
IMF2 0.0002 0.9781 0.0066
IMF3 − 0.0001 0.0354 − 0.0061
IMF4 − 0.0012 0.0211 − 0.0091
IMF5 − 0.0010 0.0140 0.0352
RS6 − 0.0009 0.0190 − 0.0194

Table 5: Orthogonality indexes for different methods.

Method type Orthogonality index
EMD 0.0276
EEMD 0.0582
CEEMDAN 0.2459
MCEEMDAN 9.5775e− 4
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5. Detection Principle of Duffing
Oscillator Model

5.1. Duffing Oscillator Model. Duffing equation, which is
widely used in weak signal detection, is a typical mathe-
matical model to describe the chaotic property of the system
[31, 32]. -e chaotic system is sensitive to the periodic
driving force. When the total periodic driving force of the
system changes, the system will show different trajectories.
-e Duffing equation is defined as

x″ + kx′ − x
3

+ x
5

� r cos(ωt), (24)

where k is the damping ratio, r and ω are the amplitude and
the angular frequency of the inner periodic driving force,
respectively, and − x3 + x5 represents the nonlinear restoring
force. Equation (26) is expressed as the differential equation:

x′ � y,

y′ � x3 − x5 − ky + r cos(ωt).

⎧⎨

⎩ (25)

When the damping ratio k and the angular frequency ω
of the system are fixed, the trajectory of the system changes
with the change of driving force. When r exceeds a certain
threshold rc, the trajectory of the system enters the chaotic
state. If r continues increasing over a certain threshold rd, the
trajectory of the system enters the large-scale periodic
motion state [33, 34]. When the signal is detected by the
Duffing oscillator, the amplitude of the inner periodic
driving force is adjusted to rd. -e system is in a critical state
of chaos, and then the cofrequency signal to be tested is
added to the Duffing system as follows:

x″ + kx′ − x
3

+ x
5

� rd cos(ωt) + a cos(ωt + φ), (26)

where acos(ωt+φ) is a signal to be measured. Duffing’s total
driving force F(t) is composed of the internal periodic
driving force and external periodic driving force as follows:

F(t) � rd cos(ωt) + a cos(ωt + φ)

� r cos(ωt + θ).
(27)

-en, the following equations come into existence:

r �
����������������
r2d + 2rda cosφ + a2


,

θ � arctg
a sinφ

rd + a cosφ
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(28)

Multiply the signal to be measured by a detection factor,
and the inequation a≪ rd can be obtained. -e value of θ
will tend to 0, and its impact on the system will be negligible.
At this time, the state of the system is mainly determined by
the value of φ. When the value of φ is in the following range
as

π − arccos
a

2rd

<φ< π + arccos
a

2rd

, (29)

the r < rd and the system does not transition to the large-
scale periodic motion state. If the value of φ is not in this

range, the r >rd and the system can transition to the large-
scale periodic motion state.

After the fault of the distribution power network, the
phases diagram trajectories of the fifth harmonic zero-se-
quence current of the normal line and faulty line are op-
posite, so the faulty line can be selected by the phase diagram
trajectory of the chaotic oscillator.

-e above-discussed case is that the internal power
angular frequency is ω� 1 rad/s. But the frequency of the
signal to be detected is a high-frequency signal in the power
grid, and it is necessary to transform the scale of the Duffing
system as follows:

x(t) � x(ωτ),

x′(t) �
dx(t)

dt
�
1
w

x′(ωτ),

x″(t) �
d2x(t)

dt2
�

1
w2x
″(ωτ).

(30)

-e detection equation can be defined as

1
ω2x
″(ωτ) +

k

ω
x′(ωτ) − x

3
(ωτ) + x

5
(ωτ) � r cos(ωτ).

(31)

Equation (31) is expressed as the differential equation:

x′ � ωy,

x″ � − ωkx′ + ω2 x3 − x5(  + r cos(ωτ)( ,

y′ � ω − ky + x3 − x5 + r cos(ωτ)( .

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(32)

-e above change process is an equal amount of
mathematical transformation, but only the scale of the
chaotic system is different, and the characteristic of the
system equation is not changed. After the change of scale, the
state and change rule of the chaotic oscillator are not
changed. As long as the value of ω is adjusted, the detection
of the high-frequency signal can be completed. Because the
field operation is complex and subject to electromagnetic
interference, the phase diagram trajectory of the chaotic
system will become rough, and excessive noise will affect the
detection of the chaotic system. -e signal needs to be
processed by the optimal denoising smooth model of
MCEEMDAN before it is input to the Duffing system.

5.2. Trisection Symmetry Phase Estimation. -e trisection
symmetry phase estimation is used to determine the phase of
the signal to be measured relative to the internal driving
force [35]. -e phase is divided into three equal parts within
a 2π circle. -e MCEEMAND optimal denoising smooth
model of any line is selected as the signal to be measured.
When the signal is input into the chaotic oscillator by phase
shift at 0, 2π/3, and 4π/3, there must be a phase diagram state
which is different from the other two phase diagram states.
For example, the Duffing system is a periodic state after the
phase shift is 0° and 4π/3, but it is a large-scale periodic
motion state after the phase shift is 2π/3, and then the critical
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phase must be within the (0, 2π/3) or (2π/3, 4π/3). -e
dichotomy is used to reduce the search area of the critical
phase within the (0, 2π/3) and (2π/3, 4π/3) until the critical
phase is searched. -e results of MCEEMDAN optimal
denoising of other lines that are moved according to the
critical phase are input into the chaotic system to complete
the signal detection. When the output state diagram of one
of the lines is different from that of other lines, it is con-
sidered to be the faulty line. When all output state diagrams
are the same, the bus bar is deemed to be the fault.

6. Case Study

MATLAB-SIMULINK is used in this paper to simulate the
un-effectively grounded system. -e simulation model
consists of four lines. -e length of a single line is generally
2 km to 20 km in the un-effectively grounded system. Line l1
is set as 16 km overhead line; line l2 is set as 13 km cable-
overhead line including 5 km overhead line and 8 km cable
line; line l3 is set as 20 km overhead line; line l4 is set as 10 km
cable line. Table 6 shows unit length line parameters. -e
overcompensation method is adopted in the arc suppression
coil. When the compensation degree is set to 8% in this
paper, the inductive reactance of the arc suppression coil is
0.4765H. -e resistance value of the arc suppression coil
takes 2% of the inductive reactance and is calculated to be
2.9943Ω.

Case 1. (low-resistance grounding). We use l3, 0.02 s, and
150Ω to indicate the fault occurrence in line number 3 when
its faulty resistance is 150Ω, and the fault occurs at 0.02 s.
Fault of line l3 occurs at the point 6 km from the bus. In order
to perfectly simulate the actual situation in the field,
Gaussian white noise is artificially added to the zero-se-
quence current in each line, and the noise intensity is
− 20 dBW. Zero-sequence current with noise in each line
while a low-resistance grounding fault is shown in Figure 7.
-e zero-sequence current in each line is analyzed by Fast
Fourier Transform (FFT), and the result is shown in Figure 8.
Figure 8 shows that due to the compensation effect of the arc
suppression coil, the fundamental component of the zero-
sequence current of the fault line is not the largest com-
ponent, and the zero-sequence current fundamental am-
plitude method for faulty line selection fails. In addition, the
fifth harmonic is little affected by the arc suppression coil,
but its content is less and the amplitude is small, which
makes it difficult to select the faulty line. In a word, the
application of FFT is limited.

-e zero-sequence current of four cycles after fault is
decomposed by MCEEMDAN proposed in this paper. Set
the number of adding noise as 100 times, the amplitude of
adding noise as 0.3, and the maximum number of iterations
as 100 times. -e results of MCEEMDAN decomposition in
each line are shown in Figure 9. It can be known from
Figure 9 that the decomposed intrinsic mode functions are
stable, and the noise component is suppressed effectively.

According to the optimal denoising smooth model, the
optimal filtering algorithm is selected. -e results of optimal
denoising smooth model in each line are shown in Figure 10.

It can be known from Figure 10 that the optimal denoising
signal is smooth and consistent with the change of the
original signal. In short, not only can the optimal denoising
smooth model of MCEEMDAN filter out noise but it also
retains the useful information of the original signal.

When the external driving force is not added to the
Duffing system, the chaotic oscillator is adjusted to the
critical state. Set the damping ratio of the chaotic oscillator as
0.3; set the amplitude of internal driving force as 0.464602;
set the angular frequency of internal driving force as
500π rad/s, and the calculated step size is 5×10− 5. When the
amplitude of the external driving force signal is much
smaller than that of the internal driving force of the system,
the θ value of formula (29) can be ignored. -e external
driving force needs to be multiplied by a detection factor
before it is input into the Duffing system. Set the detection
factor as 0.001 by the experiment many times. -e fourth-
order Runge–Kutta method is used to solve the equation of
state of a chaotic system. It can be seen from the critical state
diagram in Figure 11 that the critical state is a chaotic state.

It is first input into the Duffing system that MCEEM-
DAN optimal denoising result of line l4 is multiplied by the
detection factor 0.001. -e critical phase is 0.208π, which is
calculated by the trisection symmetry phase estimation. -e
results of MCEEMDAN optimal denoising of other lines are
moved according to the critical phase, and then they are,
respectively, input into the Duffing system. -e phase dia-
gram trajectory while a low-resistance grounding fault is
shown in Figure 12.

It can be known from Figure 12 that the phase diagram
trajectory of line l3 changes from the chaotic state to the
large-scale periodic motion state, moving around the focal
point (±1, 0) and the saddle point (0, 0). -e phase diagram
trajectories of other lines change slightly relative to the
critical state, but they are still chaotic state. -erefore, it can
be judged that the faulty line is line l3, which is consistent
with the experimental setting.

Case 2. (high-resistance grounding fault). We use l2, 0.02 s,
and 1000Ω to indicate the fault occurrence in line number 2
when its faulty resistance is 1000Ω, and the fault occurs at
0.02 s. Fault of line l2 occurs at the point 2 km from the bus.
In order to perfectly simulate the actual situation in the field,
Gaussian white noise is artificially added to the zero-se-
quence current in each line, and the noise intensity is
− 1 dBW. Zero-sequence current with noise in each line
while a high-resistance grounding fault is shown in Fig-
ure 13. It can be known from Figure 13 that the zero-se-
quence current signal is submerged in noise, and it is difficult
to distinguish the changing trend of the signal.

In order to reflect the performance of MCEEMDAN
optimal denoising, it is compared with the wavelet threshold
noise reductionmethod, which is widely used at present.-e
wavelet function which uses the soft threshold method
adopts db2 wavelet, and the number of decomposition layers
is three.

-e waveforms of different denoising methods are
shown in Figure 14. It can be known from Figure 14 that
there is still noise in wavelet threshold denoising, but the
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Table 6: Unit length line parameters.

Line type Parameters R (Ω/km) L (mH/km) C (μF/km)

Overhead line Positive sequence 0.178 1.25 0.061
Zero sequence 0.25 4.56 0.038

Cable line Positive sequence 0.27 0.256 0.337
Zero sequence 2.7 1.039 0.278
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effect of the MCEEMDAN optimal denoising in this paper is
better, and the noise content is less than the result of wavelet
threshold denoising, and the waveform surface is smooth. It
is calculated that the correlation coefficient between
MCEEMDAN optimal denoising and zero-sequence current
without noise is 0.9932. -ere are still some problems in the
wavelet threshold denoising method, such as the selection of
appropriate wavelet basis function and the number of

decomposition layers. In a word, the method proposed in
this paper has some advantages over the wavelet threshold
noise reduction method. It is first input into the Duffing
system that MCEEMDAN optimal denoising of line l4 is
multiplied by the detection factor 0.001. -e critical phase is
π/3, which is calculated by the trisection symmetry phase
estimation. -e final phase diagram trajectory is shown in
Figure 15. It can be known from Figure 15 that the faulty line
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Figure 12: Phase diagram trajectory while a low-resistance grounding fault. (a) Line l1 diagram phase trajectory. (b) Line l2 diagram phase
trajectory. (c) Line l3 diagram phase trajectory. (d) Line l4 diagram phase trajectory.
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Figure 16: Zero-sequence current with noise in each line while an intermittent arc grounding fault.

–1.5 –1 –0.5 0 0.5 1 1.5

–1

–0.5

0

0.5

1

X(m)

Y 
(m

/s
)

(a)

X(m)
–1.5 –1 –0.5 0 0.5 1 1.5

–1

–0.5

0

0.5

1

Y 
(m

/s
)

(b)

X(m)
–1 –0.5 0 0.5 1

–1

–0.5

0

0.5

1

Y 
(m

/s
)

(c)

X(m)

Y 
(m

/s
)

–1.5 –1 –0.5 0 0.5 1 1.5

–1

–0.5

0

0.5

1

(d)

Figure 17: Phase diagram trajectory while an intermittent arc grounding fault. (a) Line l1 diagram phase trajectory. (b) Line l2 diagram phase
trajectory. (c) Line l3 diagram phase trajectory. (d) Line l4 diagram phase trajectory.
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is line l2, which is consistent with the experimental setting. In
summary, the proposed method is also suitable for high-
resistance grounding fault.

Case 3. (intermittent arc grounding fault). Make the in-
termittent arc grounding fault occur in line number 3. Make
fault of line l3 occur at a point 5 km away from the bus, and
the arc resistance is 10Ω. -e arc burns at 0.02 s, 0.04 s,
0.06 s, and 0.08 s, and the arc goes out at 0.03 s, 0.05 s, 0.07 s,
and 0.09 s. -e noise intensity is − 10 dBW. Zero-sequence
current with noise in each line while an intermittent arc
grounding fault is shown in Figure 16.

It is first input into the Duffing system that the
MCEEMDAN optimal denoising result of line l3 is mul-
tiplied by the detection factor 0.001. -e critical phase is
π/6, which is calculated by the trisection symmetry phase
estimation. -e results of MCEEMDAN optimal denoising
of other lines are moved according to the critical phase, and
then they are, respectively, input into the Duffing system.
-e phase diagram trajectory while an intermittent arc
grounding fault is shown in Figure 17. It can be known
from Figure 17 that the phase diagram trajectory of line l3 is
the chaotic state, but the phase diagram trajectories of other
lines are of the large-scale periodic motion state. -erefore,
it can be judged that the faulty line is line l3, which is
consistent with the experimental setting. In summary, the
proposed method is also suitable for intermittent arc
grounding fault.

Case 4. (fault conditions in different situations). Simulation
experiments are carried out for different fault distance, fault
line, and fault resistance, and the critical phase is determined
by the denoising result of line l3. -e fault line selection
results are shown in Table 7. As can be seen in Table 7, the
method proposed in this paper can accurately select fault
lines under different fault conditions.

7. Conclusion

In this paper, MCEEMDAN, which is based on combining
GRNN, FCM, and MPE, has strong adaptability. -e
MCEEMDAN is more complete and orthogonal than the
commonly used EMD, EEMD, and CEEMDAN in the
adaptive decomposition stage. -e modified method can
also suppress the endpoint effect problem and mode con-
fusing phenomenon at a certain level. Different intrinsic
mode functions are obtained by using the MCEEMDAN
scheme, and a series of filtering algorithms are obtained,
respectively. -e superior filtering algorithm is selected by
the optimal denoising smooth model. Not only can the
optimal denoising smooth model of MCEEMDAN filter out
noise, but it also retains the useful information of the
original signal. In addition, its denoising ability is better than
that of the wavelet threshold denoising method. Duffing
system trisection symmetry phase estimation is used to
detect MCEEMDAN optimal denoising results in each line.
-e faulty line can be selected by observing the trajectory of
the phase diagram. Compared with the traditional faulty line
selection method, the result of this paper is more intuitive. A
large number of experimental studies show that the pro-
posed method can accurately select the faulty line under
different fault situations. -e research results verify the
usability and effectiveness of the proposed method. It has a
good application prospect and engineering value in an un-
effectively grounded system single-phase grounding pro-
tection that this paper proposes the faulty line selection
method.

Abbreviations

MCEEMDAN: Modified complete ensemble empirical
mode decomposition with adaptive noise

GRNN: Generalized regression neural network
FCM: Fuzzy c-means

Table 7: Fault line selection results as each line has different faults.

Fault situation Line l1 Line l2 Line l3 Line l4 Judgment result
(Line l1, 20Ω, 3 km) Periodical Chaotic Chaotic Chaotic Line l1 fault
(Line l1, 50Ω, 5 km) Periodical Chaotic Chaotic Chaotic Line l1 fault
(Line l1, 200Ω, 10 km) Periodical Chaotic Chaotic Chaotic Line l1 fault
(Line l1, 500Ω, 12 km) Periodical Chaotic Chaotic Chaotic Line l1 fault
(Line l2, 1Ω, 1 km) Chaotic Periodical Chaotic Chaotic Line l2 fault
(Line l2, 10Ω, 6 km) Chaotic Periodical Chaotic Chaotic Line l2 fault
(Line l2, 100Ω, 9 km) Chaotic Periodical Chaotic Chaotic Line l2 fault
(Line l2, 600Ω, 3 km) Chaotic Periodical Chaotic Chaotic Line l2 fault
(Line l3, 8Ω, 5 km) Periodical Periodical Chaotic Periodical Line l3 fault
(Line l3, 10Ω, 12 km) Periodical Periodical Chaotic Periodical Line l3 fault
(Line l3, 100Ω, 8 km) Periodical Periodical Chaotic Periodical Line l3 fault
(Line l3, 200Ω, 16 km) Periodical Periodical Chaotic Periodical Line l3 fault
(Line l4, 6Ω, 5 km) Chaotic Chaotic Chaotic Periodical Line l4 fault
(Line l4, 8Ω, 3 km) Chaotic Chaotic Chaotic Periodical Line l4 fault
(Line l4, 50Ω, 8 km) Chaotic Chaotic Chaotic Periodical Line l4 fault
(Line l4, 100Ω, 2 km) Chaotic Chaotic Chaotic Periodical Line l4 fault
(Bus bar, 10Ω) Chaotic Chaotic Chaotic Chaotic Bus bar fault
(Bus bar, 100Ω) Chaotic Chaotic Chaotic Chaotic Bus bar fault
(Bus bar, 200Ω) Chaotic Chaotic Chaotic Chaotic Bus bar fault
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MPE: Multiscale permutation entropy
EMD: Empirical mode decomposition
EEMD: Ensemble empirical mode decomposition
CEEMDAN: Complete ensemble empirical mode

decomposition with adaptive noise
CEEMD: Complementary ensemble empirical mode

decomposition
PE: Permutation entropy
PCA: Principal component analysis
IMF: Intrinsic mode function
FOA: Fruit fly optimization algorithm.
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