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Finance is the core of modern economy. +e security and stability of the financial system is the key to stable economic and social
development. During the operation of the financial system, financial chaos such as the severe turbulence of the financial market
and the financial crisis occurred due to deterministic instability, which brought a great negative impact on economic growth and
social stability. For the financial chaotic system, an intermittent feedback controller is designed in this paper. By adjusting the
controller parameters, the financial system can be controlled from chaotic to periodic evolution. First, the dynamic equations and
controllers of the financial system are analyzed and the range of values of the controller parameters is theoretically obtained.+en,
the influence of parameters on the system is studied, and the feasibility of the proposedmethod is proved by numerical simulation.
Finally, the practical significance of the controller on the macrocontrol of the financial crisis is discussed. It is theoretically proven
that when the financial crisis comes, the financial system can be stabilized more quickly through appropriate control methods.

1. Introduction

Chaos is a random, seemingly irregular motion produced by
a deterministic nonlinear dynamic system [1]. In the past
two to three decades, approximation methods, numerical
integration methods of nonlinear differential equations, and
especially the rapid development of computer technology
have been provided the possibility for in-depth research on
chaos. +e study of chaos theory has also enabled people to
more fully and thoroughly understand and apply chaos
[2–9]. In recent years, it is a hot issue of the application of
nonlinear dynamics in financial chaos models [10–14], in
view of whose nonlinear evolution occurs in many aspects of
financial markets. In particular, the financial system is in-
terfered by uncertainties in the market environment.
+erefore, it is more feasible to describe the financial chaos
model with random factors.

Chaos economics, also known as nonlinear economics, is
an emerging discipline in the 1980s that applied nonlinear
chaos theory to explain real economic phenomena. Com-
pared with traditional economics, chaotic economics is fully
considered the nonlinear interaction of economic activities

in economic modeling. In the analysis of models, the theory
and method of bifurcation, fractal, and chaos of nonlinear
dynamics are also fully utilized. It is also fully utilized the
theory and method of bifurcation, fractal, and chaos of
nonlinear dynamics. Unlike traditional economics, it is
believed that time is irreversible; with the evolution of time,
the system always has a new state of affairs, never repeated,
whose connection between cause and result is not unique,
but a cyclic causal relationship [15]. In traditional eco-
nomics, unstable fluctuations have always been regarded as
unfavorable phenomena. For a long time, because chaos
means some unpredictable events, chaos is often harmful to
policy makers in the economic field. Due to the initial value
sensitivity of chaotic motion and the unpredictability of
long-term development trend, how to control chaos has
become a key link in the application of chaos in the eco-
nomic field. +e emergence of nonlinear economics, espe-
cially chaotic economics, has led to dramatic changes in the
study of economics. Chaos theory provides us with an
important analytical tool [16–18]. Important dynamics such
as attraction, bifurcation, mutation, and chaos of complex
economic systems can be analyzed by using dynamic
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nonequilibriummethods.+erefore, this can achieve control
of certain chaotic phenomena in the economic field or reveal
certain laws hidden behind complex economic phenomena.

In 1980, the American economist Stutzer [19] first
revealed the chaotic phenomenon of the macroeconomic
system in the Haavelmo economic growth equation, which
made people aware of the limitations of economic models
based on traditional economic theories and to apply chaotic
models to economics at the earliest [20, 21]. In [22], the
global exponential attracting set and synchronization
problem of many financial systems are studied by using the
definitions of the global exponential attracting set and
Lyapunov stability theory. In [23], the global asymptotic
synchronization strategy of three-dimensional chaotic fi-
nancial systems is studied by using Lyapunov stability theory
and Routh–Hurwitz criterion. In [24], numerical simulation
is used to analyze the equilibrium, stability, chaotic attractor,
Lyapunov exponent, and bifurcation of chaotic financial
systems. In [25], the reparameterization model with eval-
uation parameters in macroeconomics is studied, the
method of which is equivalent to the standard.

Since 20th century, the global financial crisis has
erupted. In order to reveal the development law of fi-
nancial markets, people have explored the internal
structure of the financial system through the establishment
of financial mathematical models, revealed the chaotic
state existing in the financial system, and tried to use
various methods to control to restore the financial market
to normal order. Chaos control refers to the control and
induction of the chaotic state, artificially affecting the
chaotic system to develop it into the actual state. In 1996,
J.A.Holyst published “How to Control the Chaos Econ-
omy,” which pioneered the study of economic chaos
control. In recent years, many scholars have proposed a
variety of economic chaos control methods and achieved
certain achievements. Kopel [26] uses the chaotic target
method to control chaos of a monopoly output adjustment
model. Hołyst and Urbanowicz [27] use the delayed
feedback control method (DFC) to control chaos in a
duopoly investment model. Wieland and Westerhoff [28]
applies the OGY method and DFC separately to stabilizing
chaos in an exchange rate dynamic model. In [29], the
method of phase space compression control chaos is ap-
plied to economic systems. In [30], the authors investigate
the stability conditions in a fractional-order financial
system using the fractional Routh–Hurwitz criteria. Fur-
thermore, the fractional Routh–Hurwitz conditions are
used to control chaos in the proposed fractional-order
system to its equilibria via the linear feedback control
method. Kai et al. [31] introduce a new four-dimensional
hyperchaotic financial system on the basis of an estab-
lished three-dimensional nonlinear financial system and a
dynamic model by adding a controller term to consider the
effect of control on the system. In [32], the system of
integer and fractional differential equations is applied to
model the financial system, and the control law is designed
to synchronize two integer-order financial systems and
two fractional-order financial systems.

Stability is the foundation of financial development.
By establishing a mathematical model to analyze the
combination of financial stability, not only can it help the
macrocontrol of the financial system but also help the
mitigation of the financial crisis through the study of the
financial chaotic system control model. In recent years,
significant progress has been made in the field of control
[33–40]. Control algorithms have emerged endlessly,
which have created favorable conditions for financial
chaos control. +is paper designs an intermittent feedback
controller. By adjusting the controller parameters, the
financial system can be evolved from chaos to period. In
Section 2, the paper describes the financial system dy-
namics equation and the intermittent controller. +e
dynamics of the financial chaotic system is analyzed in
Section 3. +en, the influence of the parameter change on
the financial chaotic system is analyzed in Section 4. Fi-
nally, the conclusion is summarized.

2. Mathematical Description of the
Financial System

2.1. Dynamic Equations of the Financial System. Inspired by
the literature [41–44], the financial system consists of four
submodules: production, capital, shares, and labor. +e
system describes the temporal changes of four state vari-
ables: interest ratex, investment needsy, price indexz, and
average profit marginu. +erefore, the following equation is
given for the financial system:

_x � z +(y − a)x + u,

_y � 1 − by − x2,

_z � − x − cz,

_u � − dx y − λu,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where the amount of storage isa, b is the investment growth
rate, and c is the supply and demand coefficient. +e pa-
rameters d and λ are positive coefficients.

2.1.1. &e Existence of Attractors. +e divergence of system
(1) is

∇V �
zx2

zx
+

zy2

zy
+

zz2

zz
+

zy2

zu
� − (a + b + c + λ). (2)

+erefore, whena + b + c + λ> 0, it is known that system
(1) is a dissipative system, and the phase volume of the
system shrinks at an exponential rate dv/dt � e− (a+b+c+λ). As
t⟶∞ changes, the trajectory of the system gradually
evolves into a constant set of attractors, which indicates the
existence of attractors.

2.1.2. &e Balance Point of the System:. When the param-
etersa, b, c, d, and λ sat-
isfy(λb + dc + abcλ − cλ/c(d − k))> 0, system (1) has three
equilibrium points:
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p01 0,
1
b
, 0, 0 ,

p02 c,
λ + acλ
c(λ − d)

, −
c

c
,
dc(1 + ac)

c d − cλ
 ,

p03 − c,
λ + acλ
c(λ − d)

,
c

c
,
dc(1 + ac)

c d − cλ
 ,

(3)

where c �
�������������������
λb + abcλ/c(d − λ) + 1


.

2.2. Description of the Intermittent Controller of the Financial
Chaotic System. +e operation of financial markets is very
complicated. When financial markets are volatile or finan-
cially crises, they must be regulated in a timely manner to
maintain the stability of the financial market. An inter-
mittent controller is designed to meet the regulatory re-
quirements of financial fluctuations in this paper:

_x � z +(y − a)x + u + g,

_y � 1 − by − x2,

_z � − x − cz,

_u � − dx y − λu.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

In this article, g is the controller:

g � 0.5∗ λ∗ sin x − xe( 


 + sin x − xe(  , (5)

where λ adjusts the parameter and also the parameter in
equation (1)fd1 and xe is the equilibrium point. When the
financial system fluctuates and the chaotic state appears,
control begins to play a regulatory role.

In the following, the system stability analysis will be
demonstrated in detail.

Theorem 1. For control model (5), whenλ2 < λ< λ1, system
(4) is a large range of progressive stability at the equilibrium
pointp1(0, 1/b, 0, 0).

Here,

λ1 �
c 1 − b2(  + a2b2c2 + 2ab6c − 2ab5c2 + 2ab3 + b6 + 4b5c2d + 2b5c + b4c2 + 2b3c − 2b2c2 + c2 

1/2
+ b3 + ab3c

2b3c
,

λ2 �
������������������������
ab + a2b2 − 2ab + b2 + 1( ) + 1


/2b.

(6)

Proof. +e balance point of the computational model (4) is
available; when λ0 < λ< λ1,

λ1 �
c 1 − b2(  + a2b2c2 + 2ab6c − 2ab5c2 + 2ab3 + b6 + 4b5c2d + 2b5c + b4c2 + 2b3c − 2b2c2 + c2 

1/2
+ b3 + ab3c

2b3c
,

λ0 �
c 1 − b2(  + a2b2c2 + 2ab6c − 2ab5c2 + 2ab3 + b6 + 4b5c2d + 2b5c + b4c2 + 2b3c − 2b2c2 + c2 

1/2
+ b3 + ab3c

2b3c
.

(7)

It should be noted that due tox⟶ 0, we think that
sinx ≈ x is suitable.

System (4) has a unique equilibriump(0, 1/b, 0, 0).
So, the Jacobi matrix at equilibrium point p(0, 1/b, 0, 0)

is

J �

1
b

− a + λ 0 1 1

0 − b 0 0

− 1 0 − c 0

0 0 0 − λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

According to the Krasovsky rule, there is

− Q(t) � J(t) + J
T
(t). (9)

So, Q(t) can be obtained:

Q(t) �

2
b

+ 2a + 2λ 0 1 1

0 2b 0 0

0 0 2c 0

− 1 0 0 2λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)
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According to the Sylvester criterion, when

Δ1 �

2
b

+ 2a − 2λ 0 − 1 − 1

0 2b 0 0

0 0 2c 0

− 1 0 0 2λ





> 0,

Δ2 �

2b 0 0

0 2c 0

0 0 2λ





> 0,

Δ3 �

2c 0

0 2λ




> 0,

Δ4 � |2λ|> 0,

(11)

the system is gradually stable over a wide range of equi-
librium points.

So, after calculation λ> λ2’λ2 ����������������������
ab + (a2b2 − 2ab + b2 + 1)


+ 1/(2ab).

In summary, when λ2 < λ< λ1, system (4) is a large range
of progressive stability at the equilibrium
pointp1(0, 1/b, 0, 0). □

3. Financial System Dynamics Analysis

After the design of the financial system, mathematical
analysis and numerical simulation are needed to analyze
their dynamic characteristic, which proves that the model is
a chaotic map and at the same time explains the existence of
periodic and chaotic motion in the financial system. At
present, the commonly used chaotic recognition methods

are the phase diagram method, spectrum analysis method,
Poincare mapping method, K-entropy method, and Lya-
punov exponent method. However, these chaotic identifi-
cation methods have certain adaptation scope and
limitations. For example, the phase diagram method is
simple and intuitive, but the accuracy is not high. +e
spectrum analysis method is difficult to distinguish the
motion patterns from the spectrum affected by the noise.
Poincaré mapping method cannot distinguish chaos and
completely random motion; the calculation result of the
largest Lyapunov exponent method is not directly obtained,
and the determination of delay time and embedding di-
mension have certain subjectivity and uncertainty.

Recently, Gottwald G A and Melbourne I [45, 46]
proposed a reliable and efficient binary method for checking
whether a system has chaos, called “0–1 test.” +e method
can determine whether the current system is chaotic by
whether the asynchronous growth rate and the dynamic
system reconstructed by the discrete data are unbounded
motions. +e 0-1 test method is a means that does not
require phase space reconstruction and directly determines
whether the chaos exists by calculating whether the linear
growth rate Kc value of the discrete data transformation
variable approaches 1 or 0.

In this paper, 0-1 test is used for system dynamics
analysis. First, any positive number c ∈ [π/5, 4π/5] is se-
lected, and use the numerical simulation data to form a
discrete set Φ(j) (j � 1, 2, . . . , N); generally take n not
more than 0.1 times the length N of the discrete set and
define a conversion variable of the form:

pc(n) � 
n

i�1
ϕ(i) cos ic, qc(n) � 

n

i�1
ϕ(i) sin ic. (12)

In order to quantify the growth characteristics (such as
diffusion behavior) of the characterization functions pc(n)

andqc(n), the mean square displacements of pc(n) and qc(n)

are defined (Mean Square Displacement, MSD, Mc(n)) as
follows:

Mc(n) � lim
N⟶∞



N

i�1
pc(i + n) − pc(i)

2
  + qc(i + n) + qc(i) 

2⎧⎨

⎩

⎫⎬

⎭ − lim
N⟶∞

1
N



N

i�1
Φ(i)⎡⎣ ⎤⎦

2
1 − cos nc

1 − cos c
. (13)

+e convergence of functions pc(n) and qc(n) can be
measured byMc(n). +e progressive growth rate Kc

ofMc(n), that is, the chaotic characteristic index of the
dynamic system can be obtained by linear regression of
logMc(n) andlog n, or by the correlation coefficient of
both.

+e algorithm steps are as follows:

(1) Use data points of the system to form a discrete
setϕ(N).

(2) Take one data point every 8 data points instead of the
discrete setΦ(N).

(3) Bring Φ(N) into the transformation variable to
obtain pc(n) andqc(n) and display it as the trajectory
image ofpc(n)qc(n).

(4) From pc(n) andqc(n), the image of the mean square
displacement Mc(n) varies with n and the pro-
gressive growth rate Kc of Mc(n).

(5) Take the median of all Kc as the median value ofK.
When K tends to 1, the discrete setΦ(N) exhibits
chaotic characteristics. When K approaches 0, the
discrete set Φ(N) exhibits nonchaotic
characteristics.
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Figure 1: Financial system without the controller: (a) s-p trajectory map, (b) M (n)-n map, and (c) K (c)-c scatter plot.
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Figure 2: Financial system after adding the controller: (a) s-p trajectory map, (b) M (n)-n map, and (c) K (c)-c scatter plot.
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Judgment rule: it can be seen from the literature that if
the graph presents a random Brownian motion pattern,
Mc(n) grows linearly with time and K is close to 1, it is
judged as a chaotic time series; if the pc(n) − qc(n) graph
presents a bounded periodic ring, Mc(n) is bounded, and K

is close to 0, it is judged to be a nonchaotic time series
(periodic or doubling period). Since c may generate fre-
quency resonance with the Fourier decomposition of the
time series during the calculation, the limit c is π/100
random numbers between π/5 and 4π/5. +e final return
value is the median of all Kc.

Before and after the controller is added, the 0-1 test is
used to identify whether the financial system is chaotic, and
the phase diagrammethod is used to analyze the system state
in this paper.

3.1. Financial System before the Controller Is Added.
When a � 0.1, b � 0.1, c � 1.2, andd � 0.1, the 0-1 test of
the uncontrolled financial system (1) shows that the median
K(c) of the four-dimensional system is 0.9923 (confirmed as
“1”), 0.9948 (confirmed as “1”), 0.9961 (confirmed as “1”),
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Figure 3: Lyapunov exponential change graph for parameter λ change.
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Figure 4: Phase diagram of the system when λ � 1: (a) x-t; (b) x-y; (c) x-u; (d) y-z-u.
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and 0.9873 (confirmed as “1”). Figure 1 shows the s − p

trajectory map, M(n) − n, and K(c) − c scatter plots for the
phase diagram of the financial system without the controller.
In this paper, only the second-dimensional data is given.+e
p(t)-motion shown in Figure 1 is an unbounded motion
similar to the Brownian motion. +e M(n) generally in-
creases with the increase of n, and Kc mostly concentrates
around 1. It can be proved. +is system is chaotic.

3.2. Add Controller to the Financial System. When
a � 0.1, b � 0.1, c � 1.2, d � 0.1, and λ � 2.5 and the 0-1 test
of Section 2.2 after the controller is added, the median Kc of
the four-dimensional financial system is − 0.0387 (confirmed
as “0”), 0.0564 (confirmed as “0”), 0.0607 (confirmed as “0”),
and 0.0543 (confirmed as “0”). After adding the controller,
Figure 2 shows the s-p trace map corresponding to the phase
diagram of the financial system and M-n and K-c scatter
plots. In this paper, only the graph of the second-dimen-
sional data is given. It can be seen from Figure 2 that the
motion of p(t) is a bounded periodic loop, M(n) is
bounded, and Kc is mostly concentrated near 0, which
proves that the system is nonchaotic.

4. The Impact of Parameter λ Changes on
the System

In the control system (4), the parameter λ is both a system
coefficient and a controller adjustment parameter, which
plays a key role in system changes. Based on this, in order to
better study the control effect of the controller, a � 0.1, b �

0.1, c � 1.2, andd � 0.1 is maintained in this paper, and the
influence of the change of the controller parameter λ on the
system is mainly studied. Figure 3 shows the Lyapunov
exponent of the parameter λ. It is obvious from the figure
that after adding the controller, as the controller parameter λ
grows, the maximum Lyapunov exponent also changes, and
the system gradually becomes orderly.

4.1.Whenλ � 1. When λ � 1, as the control of the controller
is strengthened, the system completes a periodic state.
Figure 4(a) shows periodic up and down oscillations, the
amplitudes are almost equal and relatively large, and
Figures 4(b)–4(d) show typical periodic motion.

4.2. When λ � 1.53. When λ � 1.53, as the control of the
controller is strengthened, the system completes a periodic
state. Figure 5(a) shows periodic up and down oscillations,
but the amplitude is decreasing, and Figures 5(b)–5(d) show
typical periodic motion.

4.3.When λ � 1.8. When λ � 1.8, as the control force of the
controller is further strengthened, the graph in Figure 6(a)
changes from the periodic up and down oscillation state to
the slow decay state. As can be seen in Figures 6(b)–6(d), the
system gradually converges and finally stabilizes in a small
area.

4.4. When λ � 2.5. As λ � 2.5, as the control is further
enhanced, the attenuation of Figure 7(a) is further evident,
converges to 1 in a very short time, but still shows the period
for Figures 7(b)–7(d) status.

+e abovementioned analysis shows that the controller
proposed in this paper has strong control over system (1),
which can quickly converge and stabilize at a clear value. At
the same time, the system will also tend to be stable.

5. Analysis of System-Added Disturbances

+e operation of financial markets is very complicated.
When financial markets are volatile or financially crises, they
must be regulated in a timely manner to maintain the
stability of the financial market. For example, when the
financial system parameters are a � 0.1, b � 0.1,

c � 1.2, d � 0.1, and λ � 0.15, the system appears chaotic, as
shown in Figure 8, which indicates that financial market
instability or financial crisis may occur andmeasures need to
be taken in time.

5.1. Trend of Change of State Variables after Adding the
Controller System. +emethod of the regulating interest rate
can be used to apply the financial chaotic system inter-
mittent control system (4), which can realize the control of
system chaos and achieve the purpose of stabilizing the fi-
nancial market. It can be seen from the figure that controller
(5) starts working immediately, and chaos can be eliminated
in a very short time, and the system tends to be in a stable
state (Figure 9).

5.2. Change Trend of System StateVariables afterDisturbance.
In the financial market, the storage is a, the investment
growth rate is b, and the supply and demand coefficient c are
not always constant, which have certain volatility, and we
verify the robustness of the designed controller.

Add a disturbance to the system parameters
a � 0.1 − 0.1∗ μ，b � 0.1 + 0.15∗ μ,c � 1.2 − 0.2∗ μ, and
d � 0.1 − 0.1∗ μ, where μ is any number from 0 to 1. When
the system starts, the controller starts working quickly, and
the system state variable interest rate x, investment needs y,
price index z, and so on change with time, as shown in
Figure 10. After the controller starts working, the whole
system can still be stable in a short time, indicated that the
proposed method has certain robustness.

6. Conclusion

In the modern market economy, the role and status of fi-
nance has been becoming increasingly prominent. +e se-
curity and stability of the financial system is the key to stable
economic and social development. However, with financial
liberalization and financial globalization, the financial sys-
tem has become an open and extremely complex nonlinear
system. Uncertainty operation from quantitative change to
qualitative change caused by destabilization of deterministic
operation in the financial system and financial chaos such as
severe financial market turbulence, financial crisis, and
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financial tsunami. +e efficiency of resource allocation has
brought a great negative impact on economic growth and
social stability. According to the basic theory and method of
the dynamical system, this paper proposes an intermittent
control method for the chaotic phenomenon of the financial
system. Firstly, the dynamic analysis of the financial chaotic
model is carried out and the value range of the system
controller parameters is theoretically analyzed. +en, the
influence of parameters on the system is studied, and the
feasibility of the proposed method is proved by numerical
simulation. Finally, the practical significance of the con-
troller on the macrocontrol of financial crisis is discussed.
+erefore, the intermittent controller proposed in this paper
has a simple structure, good self-adaptability, and strong
robustness and anti-interference ability.

Data Availability

+e results in the paper are all implemented by MATLAB
simulation, and the chaotic model used to support the
findings of the study are available within the article.
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