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In this paper, the tensile mechanical behavior of Carbon Fiber Reinforced Plates (CFRP) with central open-holes was studied by
experimental and simulation ways. A correlation model was built by macromechanical analysis and mesodamage analysis to form
a progressive analysis architecture. Composite laminates were disassembled into two kinds: Representative Volume Element
(RVE), which were 3D intralayer orthotropic, and the 2D interlayer cohesive element. +e macromechanical analysis built
connections between external loading cases and RVE stress distribution filed. +e mesodamage analysis aimed to determine
multimode damage initiation and evolution inside RVE. By comparing simulation results with experimental data, the prediction
accuracy on failure mode, ultimate load, and fracture morphology were good enough to show the effectiveness and rationality of
this new model. In addition, this model’s applicability to different material and geometrical parameters was also verified by
simulating the experiment results in the literature.

1. Introduction

+e application of composite materials in aerocrafts has
expanded from secondary load bearing components to
primary load carrying structures. With the growing demand
for composite materials in engineering, the study of its
notched strength has drawn more and more attention.

In recent decades, many experimental or theoretical
investigations have been conducted. Auerbuch and Mad-
hukar [1] classified and summarized eleven semiempirical
models and compared the difference among linear elastic
fracture mechanics, point stress criteria, and average stress
criteria. Yao [2] proposed a stress field intensity model to
theoretically predict the notched strength. In the late 1990s,
with the development of finite element analysis technology,
researchers began to use simulation methods to conduct the
mechanical analysis of notched plates. For example, Tan [3]
used Tsai-Wu criterion [4] to analyze the progressive
damage of composite perforated plates, but this criterion had

difficulty in predicting failure modes. Also, Sleight [5] chose
Hasin criterion [6] and obtained good simulation results.
+en, Chang et al. [7] studied the influences of in-situ
strength and shear nonlinearity on notched strength nu-
merical prediction. In the 21st century, with the improve-
ment of computational science, researchers gradually
extended their investigations from two-dimensional nu-
merical analysis to three-dimensional ones. Hallet and
Wisnom [8] introduced the damage analysis of cohesive
elements into the simulation system. Falzon and Apruzzese
[9] selected Puck criterion [10], a promising phenomeno-
logical model, as failure criterion. Although many kinds of
numerical methods were proposed, there was little synthetic
simulation architecture that could predict the notched
strength of specimens with different material and geomet-
rical parameters. In recent years, based on multiscale
strategy, some valuable investigations have been conducted.
For instance, Nerilli and Vairo [11] developed a nonlinear
computational approach, which was proved to be a very
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effective method for the progressive damage analysis of
composite bolted joints. Marfia and Sacco [12] proposed an
efficient procedure for analyzing the mechanical responses
of elastoplastic and viscoplastic composite materials.

In this paper, a macro-meso correlation model was
proposed to form a general simulation architecture and its
applicability to different material system was verified. Four
groups of NHT specimens with different stacking sequences
were manufactured and tested according to ASTM-D5766
standard [13]. +e numerical progressive analysis was
conducted through a macro-meso correlation model. +e
corresponding prediction results were compared with ex-
perimental data, and the effectiveness of this model was
verified. Moreover, in order to show the applicability of this
model, another numerical validation example was con-
ducted according to the parameters provided by Tian et al.
[14]. Simulation results of this model showed higher pre-
diction accuracy than Tian’s method.

2. Macro-Meso Correlation Model

+e Macro-Meso Correlation Model is a two-phase pro-
gressive damage analysis architecture based on the Repre-
sentative Volume Element (RVE).

+e external phase is macrolevel mechanical analysis:

(I) During the external phase, composite laminates are
equivalent to a homogeneous orthotropic plate,
which is combined by two types of representative
volume elements, i.e., the 3D orthotropic plate el-
ement (noted as RVEA) and the 2D adhesive layer
element (noted as RVEB).

(II) +e purpose of the external phase is to establish the
connection between external loading and the stress
and strain distributions on RVEA and RVEB.

+e internal phase is mesolevel damage analysis:

(I) During the internal phase, RVEA and RVEB are
deconstructed into nonhomogenous fiber rein-
forced matrix and cohesive layers, respectively.

(II) +e purpose of the internal phase is to determine
damage initiation and damage evolution within
RVEA and RVEB.

+e simplified logical framework of macro-meso cor-
relation analysis model is shown in Figure 1.

2.1. Macrolevel Mechanical Analysis. +e main purpose of
the macrolevel analysis is to determine the continuous in-
ternal displacement field and stress distribution under ex-
ternal loading cases. Figure 2 shows the framework of
macrolevel analysis. RVEA are eight-node elements under
3D stress state, which is described by three independent
normal stresses σi(i � 1, 2, 3) and three shear stresses
τj(j � 12, 23, 31). RVEB are four-node elements under 2D
stress state, which is described by interfacial normal stress σn

and two interfacial shear stresses τk(k � s, t).
+e displacement filed determination is the first step for

transmitting external load into RVE stress distribution. For
progressive damage analysis, Newton–Rapson iteration
method or explicit two-order central timing difference
method can be used to determine RVE displacement dis-
tribution. After then, the stress information of RVEA and
RVEB can be obtained by combining the displacement field
with the physical constitutive equation. Equations (1) and
(2a) show two different constitutive equations for RVEB and
RVEA, respectively.
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, (2a)

where, δi(i � n, s, t) are interfacial relative displacements,
εj(j � 11, 22, 33) are normal strains, ck(k � 12, 13, 23) are
shear strains, and Ki(i � n, s, t) are interfacial stiffness pa-
rameters. In addition, Cj(j � 11, 22, 33), Ck(k � 12, 13, 23),
and Cl(l � 44, 55, 66) are intralaminar stiffness parameters,
which could be determined by equation (2b).
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where Ei(i � 1, 2, 3) are elastic modulus parameters,
Gj(j � 12, 13, 23) are shear modulus parameters. In
addition, ]j(j � 12, 13, 23) and ]k(k � 21, 31, 32)

are primary and secondary Poisson ratio, respectively.
+ese parameters satisfy Maxwell–Betti rules (equation
(2c)).

2 Mathematical Problems in Engineering



]21
E2

�
]12
E1

,

]31
E3

�
]13
E1

,

]32
E3

�
]23
E2

.

(2c)

2.2. Mesolevel Damage Analysis. According to stress field
distribution obtained in macrolevel analysis, damage be-
haviors within RVEA and RVEB are analyzed. Figure 3
shows the framework of mesolevel analysis. +e pur-
pose of this internal level analysis is to determine the
damage field and update material properties of RVE. +e
damage field distribution can be divided into damage

initiation and damage evolution. Within RVEA, damage
analysis shall be subdivided into fiber failure and inter
fiber failure. For RVEB, the initiation and evolution of
delamination of adhesive layer shall be discussed in
detail.

2.2.1. Damage Initiation. In this paper, Puck criterion was
used to determine RVEA damage initiation. Puck crite-
rion gives the expression of the damage risk factor fE
according to the relationship between local stress and
local strength at the material point. Damage initiation
occurs when fE is greater than or equal to the critical value.
Equation (3) is divided into equations (3a) and (3b)
according to the location of damage initiation, respec-
tively, corresponding to fiber failure (FF) and inter fiber
failure (IFF).
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where σθn is the normal stress on the potential IFF plane, and
τθj(j � s, t) are the shear stresses on the IFF plane. +eir
determination method is shown in equation (4). Parameters

RA
⊥ψ , RA
⊥⊥, and p

T(C)
⊥ψ can be acquired by using equation (5).

In addition, the value of mean magnification factor mσf is
recommended in Table 1.
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Figure 2: Macrolevel mechanical analysis framework.
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Figure 1: +e correlation between macrolevel and mesolevel analysis.
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In the above formulae, p
T(C)
⊥⊥ and p

T(C)
⊥‖ are inclination

factors, and their values can be determined according to the
recommendation given by Puck in his paper (i.e., refs
[10, 15]).

In addition, for RVEB, the Quadratic Stress (Quads) cri-
terion is used to determine the initiation of Delamination
(DEA) damage, and its specific formula is given in equation (6):
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where Rn is the interfacial normal stress and Rk(k � s, t) are
the interfacial shear stresses.

2.2.2. Damage Evolution. Except for FF damage, both IFF
and DEA damage have a gradual propagation process in
RVEA and RVEB. In this paper, the damage evolution
behavior is supposed to satisfy the linear softening rule.
Linear priori-damage and posterior-damage behaviors
constitute the bilinear constitutive relationship curves

(Figure 4). +e initial point A (or A′) and ending point B (or
B′) of softening evolution law are two characteristic points
for RVEA (or RVEB).

(I) Point A(σ0m, ε0m) and A′(t0, δ0) are determined by
Puck criterion and Quads criterion, respectively.
+ey correspond to the initiation moment of IFF
and DEA damage.

(II) Point B(0, εf
m) and B′(0, δf) are determined by the

area of triangle OAB and OA′B′, respectively. +e
values of these two triangle areas are equal to the
critical strain energy density gc (for RVEA) and
critical strain energy release rate Gc (for RVEB).

When the strain energy density reaches to its critical value
gc or the strain energy release rate reaches Gc, the damage
propagation is completed, which means final failure occurs
within RVEA or RVEB. +e damage variable under different
evolution states can be synthetically represented by equation (7):
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where dIFF and dDEA are damage state variables for IFF and
DEA damage, respectively.

According to equation (7), the damage state variables are
correlated to the strain and displacement field of RVEA and

Table 1: Recommendation values of magnification and inclination
factors [10, 15].

Material mσf pT
⊥⊥ pC

⊥⊥ pT
⊥‖ pC

⊥‖

Carbon-fiber 1.1 0.25 to 0.30 0.25 to 0.30 0.35 0.30
Glass-fiber 1.3 0.20 to 0.25 0.20 to 0.25 0.30 0.25
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Figure 3: Mesolevel damage analysis framework.
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RVEB, respectively. +ese two fields are determined by
corresponding stress distributions that depend on the ex-
ternal loading cases. If the strain and displacement of ref-
erence point (i.e., integration point) within representative
volume elements are lower than ε0m or δ0, the corresponding
damage variables equal to zero, which represents undam-
aged condition of the representative volume elements. If the
strain and displacement of reference point are larger than εf

m

or δf, the corresponding damage variables equal to one,
which represents fully damaged condition.

2.2.3. Damage Characterization. +e damage characteriza-
tion is the data transition module from mesolevel damage
analysis to macrolevel analysis (Figure 5). +rough the
multiplication with damage state variable and initial stiffness
parameters, the influences caused by damage initiation or
evolution of FF, IFF, and DEA can be put on RVEA and
RVEB macromechanical behaviors during macrolevel
analysis. Considering variant damage modes have different

effects on stiffness parameters, the specific damage char-
acterization rules are represented as shown in equation (8):

Kd
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Ed
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According to equation (8), if representative volume
elements are in undamaged conditions, the elements
stiffness parameters maintain their initial value. If the el-
ements are in partially damaged conditions, the elements’
stiffness parameters are reduced by a linear coefficient.
Specially, if the elements are in fully damaged conditions,
the elements’ stiffness parameters are reduced to zero,
which means the elements lose the bearing capacity of
external loading.
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2.3. Progressive Damage Analysis Based on Macro-Meso
Model. By correlating macrolevel and mesolevel analyses, a
progressive damage analysis flow chart can be proposed as
shown in Figure 6. As mentioned in above sections, stress
distribution is the kernel module of macrolevel analysis.
Damage initiation, damage evolution, and damage charac-
terization constitute the mesolevel damage analysis.

3. Validation

3.1. Numerical Implementation. +e Macro-Meso Correla-
tion Model was numerically implemented as shown in
Figure 7. +e macrolevel mechanical analysis can be con-
ducted by common finite element method, where RVEA and
RVEB are represented by 3D stress element and 2D-cohesive
element, respectively. +e mesolevel damage analysis, in-
cluding damage initiation, evolution, and characterization is
realized by operating user-defined material behavior
subroutine.

In order to verify the rationality of the macro-meso
correlation model, we conducted tensile tests and numerical
simulations on U3160/5284 specimens with four types of
stacking sequences. +e corresponding results are shown in
Section 3.2. Moreover, in order to verify the applicability of
the proposed method to other issues with different material
properties and geometric parameters, another simulation
was also carried out in Section 3.3 to predict the experi-
mental results provided by investigator Tian et al. [14]. All
five numerical finite element models were built in ABAQUS
commercial software.

3.2. Experiment and Simulation for U3160/5284 Plates

3.2.1. Specimen and Equipment. +e geometric parameters
of U3160/5284 carbon fiber-reinforced laminates are
shown in Figure 8(a). According to different ply ratios
(Table 2), four groups of specimens were manufactured
and tested. In this paper, the ply ratio is defined as the
quotient obtained when the quantity of plies with a certain
fiber orientation angle is divided by the total quantity of
whole laminated layers. For instance, specimens from
group E totally own twenty plies, including six 0° plies,
twelve ±45° plies, and two 90° plies. Accordingly, for
specimens from group E, the 0° ply ratio is 30%, the ±45°
ply ratio is 60%, and the 90° ply ratio is 10%. All four
groups in Table 2 own the same number of total plies, but
the 0° ply ratio is gradually increased in order to study the
influences of ply ratio on specimens’ notched tensile
strength. In addition, each group contains six specimens to
reduce the dispersion effects of material properties on
experimental results.

+e tensile tests were carried out on the MTS370.10
hydraulic experiment system according to ASTM-D5766
standard [13]. As shown in Figure 8(b), the experiment
system has both a stationary head and a movable head.
During the tensile tests, specimens were clamped between
movable head and stationary head, and the movable head
was controlled at a stable velocity (i.e., 2 mm/min) with
respect to the stationary head. +e tension load was

applied align the long axis of each specimen. Above the
stationary head, there is a force indicator that owns a
maximum measure range of ±100 kN, and it can indicate
the total force being carried by the specimen with ±1%
precision.

3.2.2. Numerical Model. +e finite element model of U3160/
5284 notched plate is shown in Figure 9. +e whole model
was 300mm in length, 36mm in width, 3.34mm in
thickness, and the diameter of the opening hole was 6mm.
Within numerical models, RVEA and RVEB were simulated
by a three-dimensional C3D8Rmesh and a two-dimensional
COH3D8 mesh, respectively. In the thickness direction, the
numerical model was discretized into twenty plies of C3D8R
meshes. Each three-dimensional C3D8R ply was 0.167mm
in thickness. In addition, between two adjacent C3D8R plies
which owned different fiber orientations, there was a two-
dimensional cohesive layer discretized by COH3D8 meshes.
Displacement constraints were applied at the left end and
uniform tension loads were applied at the right end. Table 3
gives the basic material mechanical properties used in nu-
merical models.

3.2.3. Results and Discussions. +rough conducting the
simulation analysis of four numerical models, the initiation
and evolution process of multiple damage modes, including
fiber failure, interfiber failure, and delamination were pre-
dicted. +ese processes show several similar phenomena
which can be illustrated by Figures 10 and 11, where the blue
cells represent undamaged materials and the red ones
represent complete damage:

(I) +e interfiber failure (IFF) on 90° ply was always the
first damage mode that initiated in all four nu-
merical models. Taking E-Groups’ numerical
analysis results for instance (Figure 10), IFF on 90°
ply initiated at 53% fracture load, and it gradually
evolved with increasing load until the final fracture
occurred (Figure 11).

(II) In addition to the evolution of monodamage mode
that mentioned above, the coupling evolution
processes between different damage modes were
also found. Taking E-Groups’ numerical analysis
results for instance (Figure 10), as the matrix crack
caused by the IFF on 90° ply also propagated
alongside the thickness direction, it promoted the
initiation of delamination damage on the adjacent
cohesive layer 90/0. +en, the delamination crack
grew forward and led to the interfiber failure of 0°
ply. Finally, the IFF on 0° ply evolved and caused
localized stress concentration, which resulted in the
fiber failure.

(III) Fiber failure on Layer 0° obviously reduced plates’
axial tensile loading capability. Taking E-Groups’
numerical analysis results for instance (Figure 10),
there was only 1% load increment between fiber
failure of 0° ply and final fracture of whole plates.
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Figure 12 shows four numerical models’ prediction re-
sults on final damage distribution of all plies and cohesive
layers. +e projection image of all damaged elements within
each ply and cohesive layer forms corresponding numerical

models’ fracture morphology. +e experimental records on
fractured specimen of four groups are also shown in Fig-
ure 12. By comparing these figures, two points can be briefly
concluded:
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Figure 6: Progressive damage analysis flow chart based on macro-meso correlation model.
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Figure 9: Numerical mesh of U3160/5284 notched plates.
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Figure 8: Image of notched specimen and tension test machine: (a) U3160/5284 composite notched plates; (b) MTS370 hydraulic ex-
periment system.

Table 2: Ply orientations of different groups’ U3160/5284 notched plates.

Group number Ply ratio [0/±45/90] Stacking sequence Lamina thickness (mm)
E 30/60/10 [45/−45/0/45/90/0/45/0/−45/45]S

0.167F 40/50/10 [45/−45/0/0/90/45/0/0/−45/45]S
G 50/40/10 [45/0/0/−45/90/0/−45/0/0/45]S
H 60/30/10 [45/0/0/90/0/0/−45/0/0/45]S
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Figure 10: Numerical prediction on multiple-modes damage initiation and evolution process.

Table 3: Material properties’ symbols and values of U3160/5284 layer.

Modulus Symbol/unit Value
Longitudinal elastic modulus E1/MPa 116320
Transverse elastic modulus E2, E3/MPa 8400
In-plane shear modulus G12, G13/MPa 4570
Out-plane shear modulus G23/MPa 3075
In-plane Poisson ratio ]12, ]13 0.15
Out-plane Poisson ratio ]23 0.30
Mass density ρkg(mm)− 3 1.6E− 06
Fiber longitudinal modulus E1f/MPa 239000
Fiber in-plane shear modulus ]12f 0.2
Strength Symbol/unit Value
Longitudinal tension strength XT/MPa 1413
Longitudinal compression strength XC/MPa 993
Transverse tension strength YT, ZT/MPa 43
Transverse compression strength YC, ZC/MPa 184
In-plane shear strength S12, S13/MPa 172
Out-plane shear strength S23/MPa 102
Fracture toughness Symbol/Unit Value
Model-I critical energy release rate GIC/N (mm)−1 0.52
Model-II critical energy release rate GIIC/N (mm)−1 0.92
Model-III critical energy release rate GIIIC/N (mm)−1 0.92
Interface Symbol/unit Value
Normal stiffness KN/MPa (mm)−1 120000
Shear stiffness KS, KT/MPa (mm)−1 43000
Normal strength RN/MPa 43
Shear strength RS, RT/MPa 60

Mathematical Problems in Engineering 9



(I) For all four groups, the simulation predictions on
fracture morphology are similar with corresponding
experimental results.

(II) From both experimental and simulation results, we
can find that specimens of four groups own the same
type of fracture morphology. All composite speci-
mens fail in tension at the hole and exhibit multiple
modes of failure in various plies. +is kind of
fracture morphology shown in Figure 12 shall be
denoted as MGM failure, according to the failure
mode definition listed in ASTM-D5766 [13]. +is
notation given by ASTM-D5766 uses the first place
to describe damage type (i.e., Multimode damage),
the second to describe damage area (i.e., Gage of the
specimen), and the last to describe damage location
(i.e., Middle of the gage).

Figure 13 and Table 4 show the experimental data and
numerical prediction on ultimate tensile fracture load. For
all four groups, the standard deviation of experimental ul-
timate load values is small, which shows the reliability of the
whole test system. +e simulation model gives similar ul-
timate fracture load by comparing with the mean experi-
mental value for each group. +e biggest prediction error is
less than 10%, which is a satisfactory performance for the
mechanical numerical analysis of composites. Synthetically

judging from the numerical prediction on damage modes,
fracture morphology, and ultimate tensile load, the effec-
tiveness of this proposed model can be verified.

3.3. Simulation and Comparison with Tian’s Model. Tian
et al. [14] conducted CFRP tensile notched tests and pro-
posed a numerical analysis model. According to geometrical
and material parameters given in reference [14], we con-
ducted another numerical validation model by adopting
macro-meso correlation model. Comparing with experi-
mental data, this model gives better prediction results than
Tian’s model.

3.3.1. Geometrical and Material Parameters. According to
reference [14], the length L of notched plate was 220mm,
the diameterD of central hole was 6.3mm, and the widthW
was 38mm. +e stacking sequence of laminates was [45/0/
−45/90]3S, and the nominal thickness of lamina was
0.1mm. +e corresponding material parameters are listed
in Table 5.

3.3.2. Numerical Results and Discussions. Figures 14 and 15,
respectively, show the stress-strain curves and fracture mode
obtained from the experiment and two simulation models.
Moreover, Table 6 gives the prediction error of ultimate
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Figure 11: Numerical prediction on initiation and evolution process of inter fiber failure on 90° ply.
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tensile strength obtained by comparing numerical predic-
tion results and experimental mean value.

As shown in Figure 14, a deviation band formed with two
gray curves represents the experimental results of five dif-
ferent specimens. Due to the initial light nonlinear behaviors
of experimental data, both simulation models’ prediction
curves locate outside of the deviation band, but in contrast,
this model’s results is closer to experimental band than

Tian’s model. In addition, on the prediction accuracy of
ultimate tensile strength, as shown in Table 6, the relative
error of this model is below 5% while Tian-model’s error is
larger than 10%.Moreover, Figure 15 shows that the fracture
mode predicted by this model is also in good agreement with
the experimental results. From above tables and figures, the
model proposed in this paper performs better in simulating
Tian’s experiments.
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Figure 12: Simulation predictions and experimental records on notched plates’ fracture morphology: (a) group E; (b) group F; (c) group G;
(d) group H.
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Table 4: Relative error calculation of numerical prediction on fracture load.

Group number Simulation result (kN) Experimental data (kN) Relative error (%)
E 33.23 31.46± 2.53 5.62
F 34.23 37.60± 1.39 8.95
G 40.35 42.44± 2.34 4.94
H 43.56 43.07± 3.68 1.15

Table 5: Material Properties used in the calculation of Tian’s Model [14].

Fiber reinforced plate Cohesive
XT/MPa 2806 ]12, ]13 0.34 RN/MPa 43
XC/MPa 1400 ]23 0.43 RS, RT/MPa 60
YT/MPa 60 G12, G13/MPa 5170 KN/MPa (mm)−1 120000
YC/MPa 185 G23/MPa 3980 KS, KT/MPa (mm)−1 43000
S12, S13/MPa 90 E1/MPa 161000 GIC/J (mm)−2 0.293
S23/MPa 90 E2, E3/MPa 11400 GIIC/J (mm)−2 0.631

ρkg(mm)− 3 1.6E− 06 GIIIC/J (mm)−2 0.631
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Figure 14: Tensile responses comparison with Tian’s model.
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4. Conclusion

In this paper, the model proposed builds the correlation
between mesoscopic damage initiation and macroscopic
damage propagation. Four kinds of carbon fiber reinforced
laminates with different stacking sequences were prepared,
and their ultimate notched strength was measured. +e
macro-meso damage model proposed in this paper was
applied to simulate the tensile responses of specimens. +e
ultimate failure load and fracture morphology prediction
results are in good agreement with experimental data,
which shows the effectiveness and rationality of this new
model. Moreover, in order to verify the applicability to
other material and geometrical parameters, another sim-
ulation was conducted and acceptable predictions were also
acquired.
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