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Aiming at the problems of large randomness, slow convergence speed, and deviation of Rapidly-Exploring Random Tree algorithm, a
new node is generated by a cyclic alternating iteration search method and a bidirectional random tree search simultaneously. A vehicle
steering model is established to increase the vehicle turning angle constraint. )e Rapidly-Exploring Random Tree algorithm is
improved and optimized.)e problems of large randomness, slow convergence speed, and deviation of the Rapidly-Exploring Random
Tree algorithm are solved.Node optimization is performed on the generated path, redundant nodes are removed, the length of the path is
shortened, and the feasibility of the path is improved.)e B-spline curve is used to insert the local end point, and the path is smoothed to
make the generated path more in line with the driving conditions of the vehicle. )e feasibility of the improved algorithm is verified in
different scenarios. MATLAB/CarSim is used for joint simulation. Based on the vehicle model, virtual simulation is carried out to track
the planned path, which verifies the correctness of the algorithm.

1. Introduction

In recent years, with the rapid development of smart ve-
hicles, the advantages of smart vehicles themselves have
become increasingly prominent. For example, smart vehicles
can reduce driving pressure, improve the driving safety of
smart vehicles, avoid traffic congestion, and reduce envi-
ronmental pollution [1, 2]. Path planning is the core of
intelligent driving technology and multirobot collaboration
technology [3–6].)e ability to plan for unknown roads is an
important criterion for measuring smart cars. Vehicle path
planning refers to planning a path that does not collide with
obstacles according to certain standards when the starting
position, ending position of vehicles, and the distribution of
obstacles in the environment are known. In recent years,
scholars have done a lot of research on path-planning al-
gorithms, and new path-planning algorithms are constantly
emerging and developing. )e most representative and
common path-planning algorithms in the field of path
planning are mainly divided into map-based path-planning

algorithms, bionics-based path-planning algorithms, and
sampling-based path-planning algorithms [7–9].

Sampling-based search algorithms include probability
map algorithms and Rapidly-Exploring Random Tree al-
gorithms. )e Rapidly-Exploring Random Tree algorithm is
a path-planning algorithm proposed by LaValle [10, 11]. Its
advantages include the following four aspects: first, it does
not need to model the planning space and is a random
sampling algorithm; second, it considers the objective
constraints of unmanned vehicles; third, it is suitable to solve
the path-planning problem under dynamic and multi-
obstacle conditions; and fourth, it can be applied to the path-
planning problem under the high-dimensional environ-
ment. )erefore, it has been widely used [12]. )e basic
Rapidly-Exploring Random Tree algorithm also has the
following disadvantages in path planning: first, the path is
randomly generated, the path is biased; second, the random
tree is nonoriented in the search process; and third, the
convergence speed is slow, and the search efficiency is low
[13, 14].
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Aiming at the shortcomings of the basic Rapidly-Ex-
ploring Random Tree algorithm, researchers at home and
abroad have carried out a lot of improvements. Typical
improvements include the RRT-Connect algorithm, as-
ymptotically-optimal Rapidly-Exploring Random Tree
(RRT∗), asymptotically-optimal bidirectional Rapidly-Ex-
ploring Random Tree (B-RRT∗), and intelligent bidirec-
tional RRT∗ (IB-RRT) [15–19]. RRT-Connect algorithm was
proposed by Kuffner and LaValle in 2000 [15].)e algorithm
improves the speed of path finding by generating two
random trees in parallel. )e Rapidly-Exploring Random
Tree algorithm, which is biased to search and bidirectional
expansion, improves the convergence speed and search
efficiency but does not overcome the randomness when
random trees generate nodes [20, 21]. )e RRT ∗ algorithm
was proposed by Adiyatov and Varol [22]. In 2010, the
proposed algorithm solves the nonoptimal problem of the
path generated by the RRT algorithm, but the efficiency of
path generation is greatly reduced due to the increase in the
amount of calculation during exploration. Jordan borrowed
the idea of the RRT-Connect algorithm. In 2013, a two-way
extended RRT∗ algorithm (B-RRT∗) was proposed. At the
same time, the connection function of the RRT-Connect
algorithm was improved to ensure that the two trees con-
nected by the algorithm could generate an optimal path.
Qureshi proposed the IB-RRT ∗ algorithm in 2015 [19] and
introduced a smart sample insertion function in the B-RRT ∗
algorithm to improve the speed of the algorithm’s conver-
gence to the optimal path. Wang Daowei proposed the
concept of dynamic step size in 2016.)e rapid expansion of
the dynamic step size random tree algorithm improves the
uncertainty of the algorithm and improves the obstacle
avoidance ability, but it is impossible to determine the step
size for different obstacles [23]. Song Xiaolin proposed to
introduce heuristic function into the Rapidly-Exploring
RandomTree algorithm in 2017, whichmakes the search tree
more oriented in the search process, but the algorithm is easy
to fall into a dead cycle in path planning [24].

)is paper proposes an improved intelligent vehicle
path-planning algorithm based on a Rapidly-Exploring
Random Tree, which uses a cyclic alternating iterative search
method to generate new nodes. )e bidirectional random
tree expands simultaneously.)e turning angle constraint of
the vehicle is increased, the generated nodes are optimized,
and the path is smoothened. )e shortcomings of the
Rapidly-Exploring Random Tree algorithm in path planning
are improved.

2. Vehicle Steering Model

In the process of intelligent vehicle driving, ensure not only
the driving safety of the vehicle but also ensure the ride
comfort of the passengers on the vehicle. )erefore, when
the intelligent vehicle is planning the route, it is necessary to
ensure that the vehicle avoids all obstacles and the
smoothness of the planned route.

According to Newton’s second law and the geometric
relationship of steering, the equation of intelligent vehicle’s
steady-state steering can be derived. In order to facilitate the

analysis of the steering state of the intelligent vehicle, a two-
wheel model, as shown in Figure 1, is used.

In Figure 1, δ is the wheel angle of the front wheels.
When the front wheels turn, the body generates centrifugal
force.)e lateral reaction forces on the front and rear wheels
are Fy1 and Fy2, and the corresponding sideslip angles αf

and αr are generated. Assuming that the center of mass and
instant center of rotation of the vehicle are O and P, re-
spectively, the distance R between the two points is the
turning radius. r is the yaw angular velocity, and then the
velocity at the center of mass is vc � rR. β is the sideslip angle
at the center of mass, that is, the angle between the direction
of travel of the vehicle at the center of mass and the X axis.

It is assumed that the vehicle moves only in a plane
direction, and there is no vertical direction and roll and pitch
movement around the X and Y axes.)e speed of the car is a
fixed value, and the effects of air resistance and tangential
force on the vehicle are ignored. )e previous wheel angle
was used as the only input, ignoring the effect of the steering
system on the vehicle and ignoring the changes in tire
characteristics and the effect of returning torque due to load
changes on the left wheel.)e component of vc on the X axis
is

u � vc cos β, (1)

where u is the component of vc on the X axis, vc is the
velocity at the center of mass, and β is the sideslip angle at the
center of mass.

Vehicle’s β during the turn is small, and approximately
cos β ≈ 1 is obtained. )erefore,

u � vc � rR, (2)

where u is the component of vc on the X axis, vc is the
velocity at the center of mass, R is the turning radius, and r is
the yaw angular velocity.

)e component of vc on the Y axis is

v � vc sin β, (3)

where v is the component of vcon the Y axis, vc is the velocity
at the center of mass, and β is the sideslip angle at the center
of mass.

From this, the acceleration ac of the center of mass is

ac � _v +
u2

R
  � _v +

vc
2

R
  � _v + vcr( , (4)

where ac is the acceleration of the center of mass, v is the
component of vc on the Y axis, u is the component of vc on
the X axis, R is the turning radius, r is the yaw angular
velocity, and vc is the velocity at the center of mass.

From the force and moment balance equations, the
differential motion equation can be derived as

Fy1 + Fy2 � mac � m _v + vcr( , (5)

lfFy1 − lrFy2 � Iz _r, (6)

where Fy1 and Fy2 are the lateral reaction forces on the front
and rear wheels, m is the mass of the entire vehicle, Iz is the
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moment of inertia of the vehicle body about Z axis, vc is the
velocity at the center of mass, v is the component of vc on the
Y axis, r is the yaw angular velocity, lf is the distance from
the front wheel to the center of mass, and lr is the distance
from the rear wheel to the center of mass.

Fy1 � Cfαf,

Fy2 � Crαr,
(7)

where Fy1 and Fy2 are the lateral reaction forces on the front
and rear wheels, Cf and Cr are the front and rear tire sideslip
stiffness, and αf and αr are the front and rear wheel sideslip
angles.

)is can be obtained from the geometric relationship

αf � lf
r

vc

+ β − δ,

αr � β − lr
r

vc

,

(8)

where αf and αr are the front and rear wheel sideslip angles,
lf is the distance from the front wheel to the center of mass,
lr is the distance from the rear wheel to the center of mass, r

is the yaw angular velocity, vc is the velocity at the center of
mass, β is the sideslip angle at the center of mass, and δ is the
wheel angle of the front wheels.

Substituting into formula (5) and formula (6), we can get

Cf lf
r

vc

+ β − δ  + Cr β −
lr

vc

  � m _v + vcr( , (9)

lfCf lf
r

vc

+ β − δ  + lrCr β −
lr
vc

  � Izr, (10)

where Cf and Cr are the front and rear tire sideslip stiffness,
lf is the distance from the front wheel to the center of mass,

lr is the distance from the rear wheel to the center of mass, r

is the yaw angular velocity, vc is the velocity at the center of
mass, β is the sideslip angle at the center of mass, δ is the
wheel angle of the front wheel, m is the mass of the entire
vehicle, and Iz is the moment of inertia of the vehicle body
about Z axis.

Get β ≈ sin β � v/vc from formula (3), substitute it into
formulas (9) and (10), and get

m _v + vcr(  � Cfδ −
v

vc

Cf + Cr  −
r

vc

lfCf − lrCr ,

(11)

Iz _r � lfCfδ −
v

vc

lfCf − lrCr  −
r

vc

l
2
fCf + l

2
rCr ,

(12)

wherem is themass of the entire vehicle, vc is the velocity at the
center of mass, r is the yaw angular velocity, Cf and Cr are the
front and rear tire sideslip stiffness, δ is the wheel angle of the
front wheel, v is the component of vc on the Y axis, lf is the
distance from the front wheel to the center of mass, lr is the
distance from the rear wheel to the center of mass, and Iz is the
moment of inertia of the vehicle body about Z axis.

When the front wheel is a step angle input, its response is
a constant velocity circular motion, and the yaw angular
velocity r is constant, _r � 0 and _v � 0, which can be obtained
by substituting into formulas (11) and (12):

mvcr � Cfδ −
v

vc

Cf + Cr  −
r

vc

lfCf − lrCr , (13)

0 � lfCfδ −
v

vc

lfCf − lrCr  −
r

vc

l
2
fCf + l

2
rCr , (14)

where m is the mass of the entire vehicle, vc is the velocity at
the center of mass, r is the yaw angular velocity, Cf and Cr

are the front and rear tire sideslip stiffness, δ is the wheel
angle of the front wheel, v is the component of vc on the Y

axis, lf is the distance from the front wheel to the center of
mass, and lr is the distance from the rear wheel to the center
of mass.

By synchronizing and eliminating the above two types,
we can get

r

δ
�

vc/l
1 + Kv2c

, (15)

where K � m/I2((lf/Cf) − (lr/Cr)) is called the stability
factor and r/δ is called the steady-state yaw rate gain, also
called sensitivity.

From formula (15), we get

δ �
r 1 + Kv2c( 

vc/l
. (16)

)e stability factor is an important index that affects the
steering stability performance. Its value is divided into three
cases (neutral steering, insufficient steering, and excessive
steering) to discuss.

(1) Neutral Steering. At this time, K � 0.)is situation is
equivalent to a state of equilibrium where the lateral
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Figure 1: Two-wheel steering model.
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acceleration at the vehicle’s center of mass is equal to
the sideslip angles produced by the front and rear
wheels. )e yaw rate gain has a linear relationship
with the vehicle speed. )is steering characteristic is
called neutral turning.

(2) Insufficient Steering. At this time, K> 0, as can be
seen from formula (15), the yaw angle speed gain is
smaller than that during neutral steering, r/δ is no
longer linearly related to the vehicle speed, and
(r/δ) − v is a negative second derivative and exists in
a certain speed range )e maximum value curve, the
stable steering characteristic at this time, is called
understeer. )e amount of understeer increases as
the value of K increases, and the yaw rate gain de-
creases. In the case of understeer, the degree of
sideslip of the front wheels caused by the lateral
acceleration at the center of mass will be greater than
that of the rear wheels. In order to keep the radius
unchanged, the front wheel rotation angle needs to
be increased.

(3) Oversteering. At this time, K< 0, the denominator in
formula (15) is less than 1, the yaw rate gain is greater
than the neutral steering, and the second derivative
of the gain curve is greater than zero. )is steering
characteristic is called oversteering.

In neutral steering, when the turning radius is constant,
the steering angle does not change when the speed changes.
)e steering angle depends only on the turning radius and
wheelbase. When the wheelbase is constant, the larger the
turning radius, the smaller the steering angle of the front
wheels of the vehicle, the better the stability of the vehicle,
and the higher the safety factor.

According to the above analysis, the steering angle of
the front wheels of the vehicle is mainly affected by the
turning radius. Regardless of vehicle speed, a vehicle with
a larger turning radius will have a smaller front wheel side
deflection angle, the better the vehicle’s maneuverability
and stability, and the safety factor will be greatly im-
proved. In order to ensure the smooth and smooth
steering, when the RRT is planning the path, the new node
needs to meet certain angular constraints to make the
generated path closer to the vehicle’s motion
requirements.

3. Improved Rapidly-Exploring Random
Tree Algorithm

3.1. Basic Rapidly-Exploring Random Tree Algorithm. )e
expansion diagram of the basic RRT algorithm is shown in
Figure 2. )e basic RRTalgorithm takes the initial point xinit
as the root node of the random tree and selects the random
sampling point xrand by searching for the free space. Choose
a node xnear closest to the random sampling point xrand on
the known random tree and connect node xnear and node
xrand. A new node xnew from xnear is generated with a certain
step size ρ. If there is no collision with the obstacle during the
expansion from xnear to xnew, this new node xnew is added to
the random tree to generate a random tree. When a child

node in a random tree contains a target point xgoal, a path
from the initial point xinit to the target point xgoal can be
generated in the random tree. Conversely, if a collision
occurs, then we discard the expansion.

3.2. Cyclic Alternating Iterative Searching. )e Rapidly-Ex-
ploring Random Tree algorithm is based on sampling, which
has strong randomness. Aiming at the shortcomings of the
basic Rapidly-Exploring Random Tree algorithm such as low
search efficiency, nonoriented search process, and slow
convergence speed, the basic Rapidly-Exploring Random
Tree algorithm is optimized. First, a random sampling point
xrand is generated in a random manner as the growth target
point of the random tree child node, and then the target
point xgoal is used as the growth target point of the random
tree child node. )e two search methods alternately and
iteratively search until a feasible path is found or a set
threshold of the number of iterations is reached, the search is
exited, and the search path fails.

3.3. Bidirectional RRT Algorithm. )e bidirectional RRT
algorithm defines two random trees in the free space, which
select the starting point and the ending point as the random
root node, respectively, expanding in the opposite direction.
)e expansion is ended until the two trees meet. )at is to
say, the search path is found.

When the random tree with the starting point as the root
node searches for the free space to establish the random tree,
the random tree with the ending point as the root node is
also established. )e two random trees generate a new node
by turns and detect whether the Euclidean distance between
the new node and the other random tree node is less than the
set threshold. When the distance between two nodes is less
than the set threshold, the two nodes are connected, that is,
the two random trees are merged into one random tree to
generate a path.

3.4. Increase Angular Constraint. It can be known from the
vehicle’s steering model that the stability factor is an im-
portant index affecting the steering stability performance.
)e value of K is divided into three cases: neutral steering
(K � 0), insufficient steering (K> 0), and excessive steering
(K< 0). Ignoring other influencing factors of the vehicle,
based on neutral steering, it can be obtained from formula
(16) that

xinit
xnearest

xnew

xrand

Figure 2: Extended diagram of the Rapidly-Exploring Random
Tree algorithm.
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δ �
l

R
. (17)

According to the above analysis, the steering angle of
the front wheels of the vehicle is affected by the turning
radius. In order to ensure the smooth and smooth steering
and the driving safety of the vehicle when using the
Rapidly-Exploring Random Tree algorithm for path
planning, the new node needs to meet certain angular
constraints to make the generated path closer to the ve-
hicle’s motion requirements and meet the vehicle’s kine-
matics model.

Assume that the angular constraint of the Rapidly-Ex-
ploring Random Tree in generating new nodes xnew is φ, as
shown in Figure 3; when the angle φ1 between xnew, xnearest,
and xinit is less than the constraint value φ, the generated
new node is discarded. When φ2 is greater than the con-
straint value of φ, the new node is retained and the new node
is added to the random tree.

4. Node Optimization

)e Rapidly-Exploring Random Tree algorithm expands in
the map with a certain step size, the generated path nodes are
too many, and the path has many turning angles, which
cannot meet the actual driving conditions of the vehicle.
)erefore, the feasible points of the generated path are
optimized, redundant nodes are deleted, and the generated
path is optimized.

As shown in Figure 4, array A stores the feasible points of
the accessible path obtained through the Rapidly-Exploring
Random Tree algorithm search. 1 represents the initial point
xinit, n represents the target point xgoal, and 2 ∼ (n − 1)

represents the feasible point from the starting point to the
target point.

)e idea of optimizing nodes is as follows:

(1) Add the initial points xinit to the new array B.
(2) Determine whether there is an obstacle between

node n and node n + 1. If not, skip node n + 1 and
determine whether there is an obstacle between node
n and the next node n + 2. If there is an obstacle, add
this node n + 2 to the array B, search backward with
n + 2 as the new node, and so on.

(3) When the target point xgoal is found, the search is
ended and the target point is added to the array B.

Array B is the optimized node set.

5. Path Smoothing

In this paper, the B-spline curve is selected to smooth the
path generated by Rapidly-Exploring Random Tree
planning.

)e expression of the B-spline curve is

Pi,n(t) � 

n

k�0
Pi+k · Fk,n(t), (18)

Fk,n(t) �
1
n!



n− k

j�0
(− 1)

j
· C

j
n+1 · (t + n − k − j)

n
. (19)

In the formula, 0≤ t≤ 1, i � 0, 1, 2, . . . , m, and
k � 0, 1, 2, . . . , n.

B-spline curves are defined in sections. If m + n + 1
vertices Pi(i � 0, 1, 2, . . . , m + n) are given, then a para-
metric curve of m + 1 order n times can be defined.

)e B-spline curve has the advantages of geometric
invariance, convex hull, convexity, and variation reduction,
and the number of control points has little correlation with
the order of the function. )erefore, it has a good effect on
smoothing the path.

For the feasible path generated by the Rapidly-Exploring
Random Tree search, vertices are generated when each
feasible node is connected. In order to avoid collision be-
tween the path processed by the B-spline curve and the
obstacle, local endpoints are generated at both ends of the
vertices. As shown in Figure 5, An− 1, An, and An+1are feasible
points of the path, and local endpoints Bn1 and Bn2 are
generated at both ends of fold point A2, respectively.

Due to the different angles of the vertices, the local
endpoints Bn1 and Bn2 are selected in an adaptive manner,
and the linear function y(x) is determined by points An− 1
and An:

y(x) � A · x + B, (20)

xinit

xnearest

xnew

xrand

xnew

xrand

φ1
φ2

Figure 3: Expansion schema of Rapidly-Exploring Random Tree
with increased angle constraints.

 

1 2 3 4 5 6 7 ... n

1 4 7 ... n

A:

B:

Yes

No
No

No
No

Yes

Figure 4: Node optimization.
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where A and B are constants.
)e abscissa of Bn1 satisfies

x Bn1(  − x An( 


 �
1
m

x An(  − x An− 1( 


, (21)

where m is the adaptive coefficient.
Substituting the abscissa x(Bn1) of Bn1 into equation (19)

to obtain 2, calculate the coordinates of point Bn1, and then
calculate the coordinates of point Bn2. )e local endpoints
Bn1 and Bn2 are added to the feasible points to smooth the
path.

6. Simulation Experiment Analysis

Whether the improved Rapidly-Exploring Random Tree
algorithm meets the requirements and whether the intelli-
gent vehicle can accurately reach the set target position and
complete the path planning need to be verified and analyzed
by software. )erefore, MATLAB software is used to build a
simulation experiment platform to verify the correctness of
the improved Rapidly-Exploring Random Tree algorithm.
At the same time, it is compared and verified with the basic
Rapidly-Exploring Random Tree algorithm. )e simulation
map is a 500∗500 two-dimensional grid space. )e simu-
lation experiment conditions are shown in Table 1.

6.1. Increased Angular Constraint Simulation Experiment
Results. In a two-dimensional grid space with a simulation
map of 500∗500, a point (250, 250) is used as the root node of
the rapid expansion random tree to generate a random tree
around the two-dimensional map.)e schematic diagram of
random tree expansion without increasing angle constraint
is shown in Figure 6, and the schematic diagram of random
tree expansion with increasing angle constraint is shown in
Figure 7.

Analyzing, Figure 6, the Rapidly-Exploring Random
Tree algorithm without increasing the angle constraint, the
size of the angle between the feasible points generated
cannot be determined, and too small an angle cannot satisfy
the vehicle’s kinematic model. Analyzing, Figure 7, an an-
gular constraint Rapidly-Exploring Random Tree is added,
the angle between feasible points is smoother during the
expansion process. Increasing the angle between feasible
points meets the constraint requirements, and the generated
path is more in line with the actual needs of the vehicle.

6.2. Simulation Results of the Rapidly-Exploring Random Tree
Algorithm. In a two-dimensional grid space with a

simulation map of 500∗500, point (10, 10) is the starting
point and (490, 490) is the target point. Black squares
represent obstacles in the two-dimensional map and are
impassable.

An–1 An+1

An

Bn1 Bn2

Figure 5: Insert local endpoints.

Table 1: Computer parameters.

Name Model
Processor Inter (R) core (TM)
Hard disk 1T
RAM 16.00G
Operating system Windows 10

+

Figure 6: Extended diagram of the Rapidly-Exploring Random
Tree.

+

Figure 7: Expansion diagram of the random tree with increased
angle constraints.
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)e simulation results of the basic Rapidly-Exploring
Random Tree algorithm are shown in Figure 8(a). )e
simulation results of the bidirectional Rapidly-Exploring
Random Tree algorithm are shown in Figure 8(b). )e
simulation results of the heuristic Rapidly-Exploring Ran-
dom Tree algorithm are shown in Figure 8(c).

As shown in Figure 8, red and blue indicate a generated
random tree, and green indicates the Rapidly-Exploring
Random Tree algorithm to search a feasible path generated
in a two-dimensional space. As shown in Figure 8(a), the
basic Rapidly-Exploring Random Tree algorithm is non-
oriented in the search process, randomly generates new

nodes, has large randomness, and generates a large number
of nodes. As shown in Figures 8(b) and 8(c), although the
bidirectional Rapidly-Exploring Random Tree algorithm
and the heuristic Rapidly-Exploring Random Tree algorithm
improve the search efficiency of the algorithm, the generated
path is of poor quality, has bias, and cannot meet the driving
state of the vehicle.

6.3. Simulation Results of the Improved Rapidly-Exploring
Random Tree Algorithm. In a two-dimensional grid space
with a simulation map of 500∗500, point (10, 10) is the

(a) (b)

(c)

Figure 8: Experimental results of the Rapidly-Exploring Random Tree algorithm, (a) basic algorithm, (b) bidirectional algorithm, and (c)
heuristic algorithm.
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starting point and (490, 490) is the target point. Black
squares represent obstacles in the two-dimensional map and
are impassable. )e simulation results of the improved
Rapidly-Exploring Random Tree algorithm are shown in
Figure 9.

As shown in Figure 9, red and blue represent the bi-
directional random tree generated with the starting point
(10, 10) and the target point (490, 490) as the root node,
respectively, and green is the feasible path generated by the
improved Rapidly-Exploring Random Tree algorithm to
search the two-dimensional space. Analyzing Figures 8 and
9, the improved Rapidly-Exploring Random Tree algorithm
uses a cyclic alternating iterative search method, which
greatly improves the randomness of the basic Rapidly-
Exploring Random Tree algorithm. )e number of nodes
generated is significantly reduced, and the number of it-
erations of the algorithm is reduced.

Node optimization is performed on the feasible path
generated in Figure 9, and the node optimization simulation
experiment results are shown in Figure 10.

As shown in Figure 10, blue is the feasible path in the
two-dimensional space after node optimization. In Figure 9,
nodes are not optimized. Although a feasible path is gen-
erated, there are many feasible points, the path length is
large, and the curvature of the path cannot meet the driving
conditions of the vehicle, which is not the optimal path. In
Figure 10, node optimization is added to remove redundant
nodes, greatly reducing the number of feasible path nodes,
reducing the length of the path, improving the feasibility of
the path, and making the generated path more consistent
with the actual running track of the vehicle.

)e smoothness processing is performed on the path
generated in Figure 10, and the result of path smoothing
simulation is shown in Figure 11.

As shown in Figure 11, red is a feasible path in a two-
dimensional space after path smoothing. Analyzing Fig-
ures 10 and 11, inserting local endpoints at both ends of the
vertices makes the path vertices smoother, improves the
accuracy of the Rapidly-Exploring Random Tree algorithm,
greatly improves the quality of the path, and is more in line
with the actual conditions of vehicle driving.

)e improved algorithm, the basic Rapidly-Exploring
Random Tree algorithm, the bidirectional Rapidly-Explor-
ing Random Tree algorithm, and the heuristic Rapidly-
Exploring Random Tree algorithm are simulated 50 times,
respectively, under the premise of the same step size, and the
average running time, average path length, and average
number of iterations of the simulation experiment are
calculated as shown in Figures 12–14 and Table 2.

Analysis of Figures 12–14 and Table 2 shows that
compared with the basic Rapidly-Exploring Random Tree
algorithm, the bidirectional Rapidly-Exploring Random
Tree algorithm, and the heuristic Rapidly-Exploring Ran-
dom Tree algorithm, the algorithm in this paper has shorter
running time, shorter path length, and fewer iterations. )e
randomness of the Rapidly-Exploring Random Tree algo-
rithm is reduced, the number of iterations of the algorithm is
reduced, and the convergence speed of the algorithm is
accelerated. All new nodes grow towards the target point,

avoiding global search, improving the real-time perfor-
mance of unmanned vehicle movement, and easier to obtain
the optimal path, improving the bias of the basic Rapidly-
Exploring Random Tree algorithm.

6.4. Analysis of Simulation Results in Different Environments.
In order to further verify the advantages and disadvantages
of the improved algorithm, simulation analysis is carried out
in different scenarios.

Figure 9: Experimental results of the improved Rapidly-Exploring
Random Tree algorithm.

Figure 10: Experimental results of node optimization.
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Figure 11: Experimental results of path smoothing.
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Figure 13: Path length comparison.
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6.4.1. Scene 1. No obstacles in the environment: when there
is no obstacle in the environment, the simulation results of
the basic Rapidly-Exploring Random Tree algorithm and the
improved algorithm are shown in Figure 15.

6.4.2. Scene 2. Narrow channels in the environment: when
there are narrow channels in the environment, the simu-
lation results of the basic Rapidly-Exploring Random Tree
algorithm and the improved algorithm are shown in
Figure 16.

6.4.3. Scene 3. Complex obstacles in the environment: when
there are complex obstacles in the environment, the sim-
ulation results of the basic Rapidly-Exploring Random Tree
algorithm and the improved algorithm are shown in
Figure 17.

Analysis of Figures 15–17 shows that, in different sce-
narios, based on the vehicle turning model, the improved
algorithm addresses the problem of too many feasible nodes
in the initial path and cannot meet the vehicle’s driving
conditions. )e redundant nodes in the feasible nodes are
removed, which greatly shortens the length of the path.
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Figure 14: Iteration number comparison.

Table 2: Data comparison.

Algorithm Average running time (s) Average path length Average iterations
Improved algorithm 12.41 753.28 487
Basic algorithm 74.04 848.94 1762
Bidirectional algorithm 17.052 841.30 553
Heuristic algorithm 15.52 845.31 533

(a) (b)

Figure 15: Scene 1: (a) original algorithm; (b) improved algorithm.
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Finally, the vertices in the path are smoothed to make the
path vertices smoother, the accuracy of the algorithm is
improved, and the quality of the path is greatly improved.

6.5. Path following Simulation. In order to verify the feasi-
bility of the path, a car model was built using CarSim
simulation software, and the steering controller based on the

pure tracking model was used to track the path planning
results.

In the CarSim environment, the vehicle model param-
eters shown in Figure 18 are established, and some im-
portant parameters are shown in Figure 18.

In the Matlab/CarSim environment, a steering controller
model based on a pure tracking model is built, and the
software interface between CarSim and Matlab is used to

(a) (b)

Figure 16: Scene 2: (a) original algorithm; (b) improved algorithm.

(a) (b)

Figure 17: Scene 3: (a) original algorithm; (b) improved algorithm.
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Figure 20: Extraction of the path, (a) original path, and (b) extracted path.
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integrate the vehicle model and the steering controller
model, as shown in Figure 19.

In order to be able to put the planned path obtained by
the improved algorithm into the joint simulation model, it is
necessary to output the data of the path planning result and
output the planned path in the form of two-dimensional
coordinates. )e output result is shown in Figure 20.

)e path output by the improved algorithm is extracted
and input to the controller simulation model, and the
controller model is allowed to track the path and obtain the
corresponding tracking path.)e tracking result is shown in
Figure 21.

As can be seen from Figure 21, the red path is the
planned path, and the black dotted line is the tracking path.
)e path planned by the improved algorithm differs slightly
from the tracked path, and the curve curvature changes
more smoothly, so the path generated by the improved
algorithm is more in line with the driving characteristics of
the actual vehicle. For intelligent vehicles, the actual steering
controller of the entire vehicle and the steering controller set
by CarSim use the same type of controller, and then the
optimized path will also be more in line with the constraints
of the vehicle. So, for vehicles, the optimized path is easier to
track, and for passengers, riding is more comfortable.

7. Concluding Remarks

In this paper, a new node is generated by cyclic iterative
search, and a two-way random tree is used to search at the
same time. )e basic Rapidly-Exploring Random Tree al-
gorithm is improved and optimized by adding the turning
angle constraint of the vehicle. )e problems of large ran-
domness, slow convergence speed, and deviation of the basic
Rapidly-Exploring Random Tree algorithm are solved. )e
node optimization of the generated path shortens the length
of the path, and the smoothness of the path is processed to

make the generated path more in line with the driving
conditions of the vehicle. However, whether it is a Rapidly-
Exploring Random Tree algorithm, particle swarm algo-
rithm, or an improved Rapidly-Exploring Random Tree
algorithm, they are model-driven and have certain limita-
tions; further research is needed to combine data-driven
path planning and obstacle avoidance for intelligent vehicles
and ultimately make the technology of smart vehicles more
mature.
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Conflicts of Interest

)e authors declare that they have no conflicts of interest.

References

[1] L. F. Zhu, J. F. Yang Ji, Y. Y. Shi, and P. P. Fang, “Research
progress on lateral control strategy of unmanned vehicles,”
World Sci-Tech R & D, vol. 40, no. 5, pp. 506–518, 2018.

[2] I. Noreen, A. Khan, H. Ryu, N. L. Doh, and Z. Habib,
“Optimal path planning in cluttered environment using RRT-
AB,” Intelligent Service Robotics, vol. 11, no. 1, pp. 41–52, 2018.

[3] Z. R. Zhi, S. H. Jiang,W.W. Yuan, and C. H. Shi, “Robot path-
planning based on deep Q-learning,”Measurement & Control
Technology, vol. 38, no. 7, pp. 24–28, 2019.

[4] P. P. Fang, J. F. Yang, Y. Y. Shi, and L. Y. Yu, “Gradient
descent method and improved artificial potential field method
for obstacle avoidance of unmanned vehicle,” Manufacturing
Automation, vol. 40, no. 11, pp. 81–84, 2018.

[5] H. Fazlollahtabar and S. Hassanli, “Hybrid cost and time path
planning for multiple autonomous guided vehicles,” Applied
Intelligence, vol. 48, no. 2, pp. 482–498, 2017.

Figure 21: Path tracking results.

Mathematical Problems in Engineering 13



[6] P. Wang, Q. Y. Wang, M. S. Wan, and N. Chen, “A fractional
derivative-based lateral preview driver model for autonomous
automobile path tracking,” Mathematical Problems in Engi-
neering, vol. 2018, Article ID 7320413, 9 pages, 2018.

[7] A. H. Hasan and A. M. Mosa, “Multi-robot path planning
based on max–min ant colony optimization and D algorithms
in a dynamic environment,” in Proceedings of the 2018 In-
ternational Conference on Advanced Science and Engineering
(ICOASE), pp. 110–115, Duhok, Iraq, October 2018.

[8] Y. Rasekhipour, A. Khajepour, S.-K. Chen, and B. Litkouhi,
“A potential field-based model predictive path-planning
controller for autonomous road vehicles,” IEEE Transactions
on Intelligent Transportation Systems, vol. 18, no. 5,
pp. 1255–1267, 2017.

[9] J. Ballesteros, C. Urdiales, A. B. M. Velasco, and G. Ramos-
Jimenez, “A biomimetical dynamic window approach to
navigation for collaborative control,” IEEE Transactions on
Human-Machine Systems, vol. 47, no. 6, pp. 1123–1133, 2017.

[10] S. M. Lavalle, “Rapidly-exploring random trees:a new tool for
path-planning,” Technical Report 98-11, Computer Science
Department, Iowa State University, Ames, USA, 1998.

[11] S. M. Lavalle and J. J. Kuffner, “Rapidly-exploring random
trees: progress and prospects,” in Algorithmic and Compu-
tational Robotics New Direction, B. Donald, Ed., pp. 293–308,
CRC Press, Boca Raton, FL, USA, 2000.

[12] H. F. Qiao, G. Z. Pan, and Q. Yin, “Research and simulation of
real— time path-planning for mobile robot,” Computer
Simulation, vol. 32, no. 1, pp. 406–410, 2015.

[13] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed
RRT: optimal sampling-based path planning focused via di-
rect sampling of an admissible ellipsoidal heuristic,” in Pro-
ceedings of the 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 2997–3004, Chicago, IL,
USA, September 2014.

[14] A. A. Doshi, A. J. Postula, A. Fletcher, and S. P. N. Singh,
“Development of micro-UAV with integrated motion plan-
ning for open-cut mining surveillance,” Microprocessors and
Microsystems, vol. 39, no. 8, pp. 829–835, 2015.

[15] J. J. Kuffner and S. M. LaValle, “RRT-connect: an efficient
approach to single-query path planning,” in Proceedings of the
2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation. Symposia Proceed-
ings, vol. 2, pp. 995–1001, San Francisco, CA, USA, April 2000.

[16] S. Karaman and E. Frazzoli, “Sampling-based algorithms for
optimal motion planning,” Ce International Journal of Ro-
botics Research, vol. 30, no. 7, pp. 846–894, 2011.

[17] Z. Tahir, A. H. Qureshi, Y. Ayaz, and R. Nawaz, “Potentially
guided bidirectionalized RRT for fast optimal path planning
in cluttered environments,” Robotics and Autonomous
Systems, vol. 108, pp. 13–27, 2018.

[18] M. Jordan andA. Perez, “Optimal bidirectional rapidly-exploring
random trees,” Computer Science and Artificial Intelligence
Laboratory Technical Report, IEEE, Piscataway, NJ, USA, 2013.

[19] A. H. Qureshi and Y. Ayaz, “Intelligent bidirectional rapidly-
exploring random trees for optimal motion planning in
complex cluttered environments,” Robotics and Autonomous
Systems, vol. 68, pp. 1–11, 2015.

[20] K. Shi, J. Denny, and N. M. Amato, “Spark PRM: using RRTs
within PRMs to efficiently explore narrow passages,” in
Proceedings of the 2014 IEEE International Conference on
Robotics and Automation (ICRA), pp. 4659–4666, Hong
Kong, China, June 2014.

[21] J. Denny, M. Morales, S. Rodriguez, and N. M. Amato,
“Adapting RRT growth for heterogeneous environments,” in

Proceedings of the 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 1772–1778, Tokyo, Japan,
November 2013.

[22] O. Adiyatov and H. A. Varol, “A novel RRT-based algorithm
for motion planning in Dynamic environments,” in Pro-
ceedings of the 2017 IEEE International Conference on
Mechatronics and Automation (ICMA), pp. 1416–1421,
Takamatsu, Japan, August 2017.

[23] D. W. Wang, M. F. Zhu, and H. Liu, “Rapidly—exploring
random tree algorithm based on dynamic step,” Computer
Technology and Development, vol. 26, no. 3, pp. 105–107, 2016.

[24] X. L. Song, N. Zhou, Z. Y. Huang, and H. T. Cao, “An im-
proved RRT algorithm of local path-planning for vehicle
collision avoidance,” Journal of Hunan University (Natural
Sciences), vol. 44, no. 4, pp. 30–37, 2017.

14 Mathematical Problems in Engineering


