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.e heating load forecast provides a basis for saving heating energy. Considering the nonstationary, nonlinear, and large time-
delay characteristics of thermal load, this paper introduces the trajectory tracking stability theory into the field of load forecasting
and proposes a heuristic correction that can ensure the convergence of forecast errors and does not depend on the system
predictionmodel algorithm..e Lyapunovmethod is used to derive an error convergence criterion that has nothing to do with the
prediction model, and a heuristic correction algorithm is designed for the predicted value with error divergence trend to ensure
the error convergence of the load forecast sequence.

1. Introduction

.ermal load forecasting is based on the historical data of
the heating process and to analyze and study the inherent
changes in the thermal load demand which can be combined
with weather, temperature, or holiday types. .e purpose of
studying it is to estimate and speculate the load demand in
advance. It is the basis of thermal scheduling and energy-
saving control [1].

.e heating process is a very complex dynamic system,
and the relationship between energy and material trans-
mission is highly nonlinear. It is difficult to establish a
mathematical model to predict the heating load through a
physical model, so most of the current forecasting methods
are based on historical data. Based on statistical analysis
[2–9], as early as 1984, Werner conducted tests on multiple
district heating systems in Sweden and analyzed the main
factors affecting the heat load, outdoor temperature, natural
wind, and solar radiation. .e results of the study showed
that 60% of the total heat load of the heating network can be
considered. It is affected by the outdoor temperature. .e
influence of natural wind will increase the heat load by 1% to
4%. .e solar radiation heat can reduce the heat load by 1%
to 5%. .e heat consumption of domestic hot water will be

affected by workdays or weekends. Different, the average
domestic hot water load accounts for 30% of the total load,
and the pipe network heat loss accounts for 5% to 8% of the
total load. Wojdyga analyzed the relevant meteorological
factors that affect the heat supply of the central heating
system, including outdoor temperature, solar radiation in-
tensity, and wind speed. Caldera et al. analyzed the rela-
tionship between the buildingʼs volume, shape factor,
window-to-wall ratio, window transmittance, indoor and
outdoor temperature, and other geometric parameters and
thermal physical parameters and the buildingʼs heating
energy consumption. Dotzauer introduced social factors
into the heating load prediction and used the outdoor
temperature–heating load curve to establish a heating load
prediction model. By analyzing outdoor temperature, wind
speed, solar radiation intensity, and other meteorological
factors that affect heat load, Yetemen et al. established an
autoregressive model for heat load forecasting, and Pedersen
et al. established a linear regression model for heat load
forecasting. Popescu and others further introduced factors
such as indoor temperature, circulating water flow, and
water supply temperature at the outlet of the heat exchange
station into the calculation model of building heat con-
sumption and obtained a multiple regression prediction
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model of building heat consumption. Nielsen et al. linked
heat supply with meteorological data and date information
and established a gray box forecast model for heat supply
based on statistics-related theories.

In addition to the abovementioned prediction models
based on classical statistical theory, artificial intelligence
methods represented by neural networks have also been
widely used in heat load forecasting research [10–14].
Aydinalp et al. established a neural network-based building
heating energy consumption and domestic hot water energy
consumption model by inputting the characteristic pa-
rameters of the building, the performance parameters of the
heating system, the average indoor temperature, the number
of heating degree days, and the economic situation of the
family. To predict the energy consumption of residential
buildings in Canada, Kwok et al. used a combination of
models and neural network predictors to predict building
energy and conducted theoretical analysis. Kusiak et al. used
humidity and temperature as inputs and used neural net-
work methods to predict building steam load. Duanmu et al.
proposed a novel HCLFM model to predict the cooling load
of buildings. In addition, in order to meet the actual needs of
small sample modeling, the support vector machine method
is also used for building energy consumption prediction
[15, 16]. Dong et al. used the support vector machinemethod
to predict building energy consumption in tropical areas.
Four commercial buildings in Singapore were randomly
selected as the research object. .e method selected outdoor
monthly average temperature, relative humidity, and sun-
shine as input variables to predict tropical areas. .e relative
error of prediction of building energy consumption is less
than 4%, which verifies the feasibility and adaptability of the
support vector machine method to predict building energy
consumption in tropical areas. Li et al., respectively, used
support vector machines and neural networks to predict
building energy consumption and compared the prediction
results. .ese studies apply intelligent algorithms to heating
load forecasting, but the research is conducted offline,
staying at the laboratory simulation level, and no application
examples of energy-saving control in heating engineering
are given.

.roughout the research status, the current load fore-
casting methods are mostly independent or combined use of
the following methods: regression analysis [17, 18], time
series [19], Kalman filter [20], neural network [21, 22], gray
model, wavelet analysis, support vector machine [23],
combination method [24], fuzzy processing [25], etc.
Among them, regression analysis and time series methods
have high requirements for historical data and large forecast
errors; neural network convergence speed is slow, gener-
alization ability is poor, and training is easy to overfit; gray
systemmodel has better performance when the original data
has an exponential growth trend. High prediction accuracy:
obviously, if you can combine multiple methods for research
and application based on the advantages and disadvantages
of various methods, you will get higher prediction accuracy,
which also makes the idea of combined prediction that have

developed in recent years. In addition, most of the existing
forecasting methods are point forecasting methods, which
cannot determine the range of possible fluctuations in the
forecast results, and does not reflect the uncertain factors in
the system. In these studies, the traditional heating load
forecasting method is difficult to adapt to the heating load
nonlinearity, resulting in low forecast accuracy, poor ac-
curacy, and even failure, which cannot meet the needs of
heating energy saving. .e existing intelligent heating load
forecasting method is researched for offline, staying at the
laboratory simulation level, and no application examples of
energy saving in heating engineering are given, and heating
load forecasting software is not developed, making the
theoretical results unable to be applied to actual projects. .
However, with the continuous improvement of load fore-
casting requirements for heat dispatching and heating en-
ergy-saving control, it is necessary to further study the
accuracy and accuracy of heating load forecasting, while
ensuring the universality and stability of the algorithm.

According to the actual demand of the heating system
for the prediction accuracy of the heat load prediction, this
paper uses the traditional ARMA time series method [26] for
linear load prediction and BP neural network method for
nonlinear load prediction according to the characteristics of
the heating load. In view of the shortcomings of existing
prediction methods, the idea of trajectory tracking control is
introduced into the field of load forecasting [27]. A heuristic
load forecasting algorithm based on trajectory tracking is
proposed, which can ensure the convergence of forecast
errors and does not depend on the system prediction model.
.e final simulation results analyze the performance com-
parison of several algorithms.

2. Classic Thermal Load Forecasting Method

2.1. Time Series Forecasting Method. .e historical data of
the heating load is an ordered collection sampled and
recorded at a certain time interval, so it is a time series. .e
time series method is a more mature algorithm developed in
the current heating system load forecast. According to the
historical data of load, establish a mathematical model de-
scribing the change of the heating load with time, establish
the expression of load prediction on the basis of this model,
and predict the future load.

As a typical representative of the time series model, the
ARMA model is expressed as

Yt � ω1Yt− 1 + ω2Yt− 2 + · · · + ωpYt− p + et − φ1et− 1

− φ2et− 2 − · · · − φqet− q,
(1)

where Yt is the value of the stationary time series at time t, et
is the random interference acting on the time series at time t,
the actual parameters ω1, ω2, . . ., ωp are the autoregressive
coefficients, and the actual parameters φ1, φ2, . . ., φq are the
movements average coefficients.

By performing statistical processing on the above model,
the autocorrelation coefficient can be obtained as
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ρ1 �
1 − ϕ1θ1(  ϕ1 − θ1( 

1 + θ21 − 2ϕ1θ1 
,

ρ2 � ϕ1ρ1,

. . .

ρk � ϕ1ρk− 1.
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

.erefore, the autocorrelation coefficient ρ1 is a function
of θ1 and ϕ1, and the autocorrelation function starts from ρ1
and decays exponentially. If ϕ1 > 0, the exponential decay of
the autocorrelation function is smooth; if ϕ1 < 0, the decay of
the autocorrelation function is alternating and oscillates
between positive and negative values. .e sign of ρ1 is
determined by ϕ1 − θ1, which determines the direction in
which the exponential decay tends to zero. .e initial value
of its partial autocorrelation function is ϕ11 � ρ1, which will
decay exponentially thereafter. If ϕ1 > 0, ϕkk is smooth ex-
ponential decay; if ϕ1 < 0, ϕkk exponential decay is oscil-
lating. .e sign of ϕ11 is the same as ρ1, which is also
determined by ϕ1 − θ1.

.e prediction of the ARMA model requires that the
sequence must be stable and that the influencing factors on
the heating load must be basically the same within the time
frame studied. If the given sequence is not a stationary
sequence, youmust preprocess the given sequence to make it
stable, and then use the ARMA model to model.

.e heat load time series modeling process is shown in
Figure 1. .e main steps are as follows:

Step 1. Preprocess the sequence to determine whether
the time series of heat load is a stationary impure
random sequence. If it is a nonstationary sequence,
process the sequence to meet the conditions of ARMA
model modeling; that is, the processed sequence is a
stationary non–white noise sequence.
Step 2. Calculate the values of the sample autocorre-
lation coefficient (ACF) and sample partial autocor-
relation coefficient (PACF) of the observation
sequence.
Step 3. According to the sample autocorrelation coef-
ficient and partial autocorrelation coefficient, select the
appropriate ARMA model to fit.
Step 4. Estimate the value of unknown parameters in
the model.
Step 5. Test the validity of the model. If the fitting model
fails the test, go to Step 3; reselect the model and then
fit.
Step 6. Model optimization, if the fitting model passes
the test, still turn to Step 2, fully consider various
possibilities, establish multiple fitting models, and select
the optimal model from all the models that pass the test.
Step 7. Use the fitted ARMAmodel to predict the future
trend of the sequence, that is, the load value at the
future moment.

.e advantage of the time series method is that it re-
quires less data, less workload, and faster calculation speed,
which can reflect the continuity of the recent changes in
load. .e disadvantage of the time series method is that the
modeling process is more complicated and requires higher
theoretical knowledge, and the model has higher require-
ments for the stability of the original time series. It is only
suitable for the prediction of relatively uniform load
changes. .ese factors often lead to the model prediction
error being large.

2.2. Neural Network PredictionMethod. .e artificial neural
network method selects the load of the past period as a
training sample, constructs a suitable network structure, and
uses a certain training algorithm to train the network to meet
the accuracy requirements. .is neural network is used as a
load prediction model in neural network prediction. In
general, an optimized BP neural network is selected to es-
tablish a prediction model. .e main work of modeling is as
follows.

2.2.1. Selection of Model Input and Output. .e choice of
predictive model input will have a great influence on the
learning of the network. Regarding the load forecasting
model of BP neural network, the difference mainly lies in the
selection of input elements and the determination of the
number of hidden layers. Since the current neural networkʼs
ability to promote prediction is mainly determined through
experiments, the selection of input variables is also based on
empirical judgment. Generally, the real load data of 24 or 48
points per day in the days before the prediction day is se-
lected as the model input, and the number of nodes in the
input layer of the neural network is determined accordingly.

Distinguish the ARMA model

Estimate unknown parameters
in the model

Make predictions

Predict its accuracy

Optimize the model

Accept the model

Inaccurate

Accurate

Calculate ACF and PACF

Steady the non–white noise sequence

Figure 1: Flowchart of modeling based on time series method.
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In addition, in terms of the output of the model, the output
of the model should be the load of the cycle corresponding to
the predicted day.

2.2.2. Determination of the Number of Network Layers.
When each hidden node adopts the S-type compression
function shown in the following formula, a hidden layer is
enough to realize any decision classification problem, so a
three-layer BP neural network is often used in heating load
prediction:

y �
1

1 + e
− x. (3)

2.2.3. Determination of the Number of Hidden Layers. To
train a three-layer BP network with a single hidden layer, the
number of hidden layer nodes can be selected according to
the following empirical formula:

n1 �
�����
n + m

√
+ a. (4)

In the formula, n is the number of input nodes, m is the
number of output nodes, and a is a constant between 1 and
10. Because the selection of the number of nodes in each
layer in the neural network based on the BP algorithm has a
great influence on the performance of the network, the
number of nodes in the hidden layer needs to be properly
selected. After many times of training the data, and
according to the training results, when the hidden layer node
is about 15, the results obtained are more reasonable.

2.2.4. Normalization Processing of Data. Before the neural
network is trained and tested, in order to meet the network
input and output data requirements and improve the
convergence speed, in order to avoid the saturation of
neurons, the network input data and actual output data need
to be calculated according to equation (5) to [− 1, 1]. In the
interval, after using ANN prediction, the output layer is
converted back to the load value according to equation (6):

y � 2 ×
x − xmin

xmax − xmin
− 1, (5)

x � 0.5(y + 1) xmax − xmin(  + xmin. (6)

In the formula, x and y are the values before and after
normalization of the input sample, and xmin and xmax are the
minimum and maximum values of the load in the sample
collection, respectively.

2.2.5. Weight Initial Value Setting. .e selection of the
initial weight is one of many factors that affect the training of
the network tending to have the smallest acceptable error.
.e initialization of the weight strongly affects the final
solution. Generally, the initial weight of the network is
selected as wmax � 1.0.

.e advantages of artificial neural networks are the
ability to adapt to a large number of unstructured and

nonprecision laws, the characteristics of information
memory, autonomous learning, knowledge reasoning,
and optimized calculation, as well as strong calculation
ability, complex mapping ability, and fault tolerance. And
various intelligent processing capabilities, especially its
learning and adaptive functions, are not available in other
algorithms. .e shortcomings are that the number of
neural network layers and the number of neurons are
mostly determined based on subjective experience, it is
difficult to determine the network structure scientifically,
the learning speed is slow, and there are local minimum
points.

3. Introduction of Trajectory Tracking
Stability Theory

3.1. Trajectory Tracking Error Model. Considering the exis-
tence of a moving target in two-dimensional space, its ideal
trajectory is shown in curve C in Figure 2 in the inertial
coordinate system.

Suppose there is a moving point P(x, y)T to track the
trajectory C, and the angle between the velocity v of point P

and the positive direction of the y-axis is θ; that is,

θ � arctan
_x

_y
. (7)

.en, the position motion model of point P can be
expressed as

_P �
_x

_y
  �

v sin θ

v cos θ
  � R(θ)

0

v
 . (8)

Among them,

R(θ) �
cos θ sin θ

− sin θ cos θ
 . (9)

At any time, the trajectory coordinate system is defined
as follows: taking the desired position of point P (that is, the
true position of the target) Pa � (xa, ya)T as the origin, the
ya-axis is along the tangent of Pa, and the xa-axis is per-
pendicular to ya and pointing to the right, as shown in
Figure 3.

.en, the rotation angle θa of the trajectory coordinate
system relative to the inertial coordinate system is

θa � arctan
_xa

_ya

. (10)

Referring to equation (8), the motion model of the
desired position Pa can be expressed as

_Pa �
_xa

_ya

  �
va sin θa

va cos θa

  � R θa( 
0

va

 . (11)

Among them, va is the desired speed of point P (that is,
the true speed of the target), and the direction is consistent
with the ya-axis, and R(θa) and R(θ) have the same form.

.erefore, the tracking error ε of P and Pa in the tra-
jectory coordinate system is
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ε �
e

s
  �

ΔX cos θa − Δ sin θa

ΔX sin θa + ΔY cos θa

 

�
cos θa sin θa

− sin θa cos θa

 

T ΔX

ΔY
  � R

T θa(  P − Pa( .

(12)

Among them, e and s are the lateral and forward tracking
errors of P and Pa in the trajectory coordinate system, re-
spectively, and ΔX and ΔY are the lateral and longitudinal
tracking errors of P and Pa in the inertial coordinate system,
respectively.

From equation (12), we can know that
εTε � (P − Pa)TRRT(P − Pa) � ‖P − Pa‖2. Obviously, there
is only if ε⟶ 0, so the fundamental goal of P to track the
ideal trajectory is to make ε⟶ 0.

3.2.TrajectoryTracking StabilityCriterion. In control theory,
the Lyapunov criterion [28] described in Lemma 1 is
commonly used to judge the stability of the tracking system
and to check the error convergence trend.

Lemma 1. For continuous nonlinear time-varying systems
_χ � f(χ), t≥ 0, if a scalar function V(χ) with continuous
first-order partial derivatives for χ can be constructed, V(0) �

0 satisfies the condition for all nonzero state points χ in the
state space R: ① V(χ) is positive definite; ②

_V(χ) � (dV(χ)/dt) is negative definite; and ③when
‖χ‖⟶∞, then V(χ)⟶∞. Fen, the system equilibrium
state χ � 0 is asymptotically stable in a large range; that is, χ
asymptotically converges to zero.

Based on the above lemma to analyze the tracking error
convergence, the key is to construct the Lyapunov candidate
function V(χ), and different Lyapunov candidate functions
may obtain different stability criteria. Considering that the
main purpose of this article is to verify the applicability of
the trajectory tracking stability theory in load forecasting, no
special research has been conducted on the selection of
Lyapunov candidate functions, so the most commonly used
Lyapunov function type is directly used:

V �
1
2
εTε. (13)

Then, V derivates t:

_V � εT
_ε � εT _R

T θa(  P − Pa(  + R
T θa(  _P − t _Pa  

� εT 0 − _θa

_θa 0
⎡⎣ ⎤⎦R

T θa(  P − Pa(  + R
T θa(  _P − t _Pa ⎡⎣ ⎤⎦

� εT 0 − _θa

_θa 0
⎡⎣ ⎤⎦ε + εT

R
T θa(  _P − t _Pa 

� εT
R

T θa(  _P − t _Pa .

(14)

.erefore, if equation (14) is negatively set at ε≠ 0, the
tracking error of the moving point P to the target trajectory
will converge to zero asymptotically, which can ensure the
stability of trajectory tracking.

If the actual load sequence is regarded as a trajectory on
the time axis, high-precision load prediction is to realize the
high-precision tracking of the trajectory composed of pre-
dicted points and the actual load trajectory. .erefore, the
convergence analysis of the load forecast error is essentially
equivalent to the convergence analysis of the tracking error
of the predicted point.

4. Process of Heat Load Prediction Algorithm
Based on Trajectory Tracking

4.1. Condition of Error Convergence forHeating Load Forecast

Theorem 1. At any time, if θ＞ θa holds when ΔY> 0, or
θ＜ θa holds when ΔY< 0, the prediction error will converge
to zero asymptotically.

In a two-dimensional coordinate system with the x-axis
as the time and the y-axis as the load value, the load time
series can be regarded as a trajectory. If moving point P �

(x, y)T represents the predicted load value y at time x and
Pa � (xa, ya)T represents the true load value ya at time x,
since both have the same time axis, the lateral error of point
P and its expected position Pa in the inertial coordinate
system must meet ΔX� 0, as shown in Figure 4.

y

O

P

v
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x

θ

Figure 2: Schematic diagram of target trajectory tracking.
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Figure 3: Schematic diagram of coordinated system and tracking
error.
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.erefore, we can further expand equation (14) to obtain

_V � e s 
cos θa − sin θa

sin θa cos θa

 
v sin θ − va sin θa

v cos θ − va cos θa

 

� s v cos θ − θa(  − va  + ev sin θ − θa( 

� sv cos θr + ev sin θr − sva.

(15)

When ΔY� 0, it is known from ΔX� 0 and equation (12)
that ε� 0; that is, the prediction error converges.

When ΔY≠ 0, considering that P and Pa have the same
time axis, there are only two possible geometric relation-
ships; that is, point P is directly above or below point Pa, so
we can solve the prediction error according to the following
two cases..e sufficient condition for the convergence of the
prediction error can be expressed as follows:

Case 1. When P is directly above Pa, that is, ΔY> 0.
From the trajectory coordinate system in Figure 4, the

following geometric features can be obtained intuitively:

① If θa < (π/2), then e< 0, s> 0, as shown in
Figure 4(a).
② If θa > (π/2), then e< 0, s< 0, as shown in
Figure 4(b).
③ For any θa, there are

cos θa �
s

������
s
2

+ e
2

 ,

sin θa �
− e

������
s
2

+ e
2

 .

(16)

.en, by equation (15),
_V � sv cos θr + ev sin θr − sva

� v

������

s
2

+ e
2


s cos θr������
s
2

+ e
2

 −
− e sin θr������

s
2

+ e
2

 −
sva

v
������
s
2

+ e
2

 

� v

������

s
2

+ e
2



cos θ −
sva

v
������
s
2

+ e
2

 .

(17)

In the actual load curve, the real value sequence adds a
data point every time ΔT, and the predicted value sequence
also adds a data point every time ΔT, so v＝ van and v> 0;
that is, in a two-dimensional coordinate system with the x-
axis as the time axis, the actual load value and the predicted
value extend toward the positive direction of the x-axis at the
same speed. From equation (17) and Lemma 1, if and only if
cos θ< (sva/v

������
s2 + e2

√
) � cos θa, that is, when θ> θa, _V< 0,

the prediction error converges to zero.

Case 2. When P is directly below Pa, that is, ΔY< 0.
From the track coordinate system of Figure 4, the fol-

lowing geometric features can also be obtained intuitively:

① If θa < π/2, then e> 0, s< 0, as shown in Figure 4(c).
② If θa > π/2, then e> 0, s＞ 0, as shown in Figure 4(d).

③ For any θa, there are

cos θa �
− s

������
s
2

+ e
2

 ,

sin θa �
e

������
s
2

+ e
2

 .

(18)

.en, by equation (15),
_V � sv cos θr + ev sin θr − sva

� v

������

s
2

+ e
2


s cos θr������
s
2

+ e
2

 +
e sin θr������
s
2

+ e
2

 −
sva

v
������
s
2

+ e
2

 

� v

������

s
2

+ e
2



cos θ +
sva

v
������
s
2

+ e
2

 .

(19)

An analysis similar to Case 1 can be made. .erefore,
from equation (19) and Lemma 1, it can also be seen that, if
and only if cos θ> (− sva/v

������
s2 + e2

√
) � cos θa, that is, when

θ< θa, _V< 0, the prediction error converges to zero.
Noticed that the above analysis process is completely

derived from trajectory tracking and its stability theory and
has nothing to do with the specific prediction model used.
From this, we have obtained the conclusions about the error
convergence conditions that have nothing to do with the
prediction model in this paper.

4.2. Error Correction Strategy for Heating Load Forecast.
At any sampling time x, the historical predicted value y(x)

and the real values ya(x) and ya(x − 1) are known, and the
predicted value y(x + 1) at the next time can be calculated
by any existing prediction model (defined as the prelim-
inary prediction model); then the value Δy, the angle θ
between the ray from point (x, y(x)) to point
(x + 1, y(x + 1)) and the positive direction of the y-axis,
and the angle θa between the ray from point (x − 1, ya(x −

1)) to point (x, ya(x)) and the positive direction of the y-
axis can be calculated..en, according to.eorem 1, it can
be judged whether the prediction error convergence
condition is satisfied.

Obviously, if the error convergence condition is satisfied,
it indicates that the predicted value y(x + 1) solved by the
preliminary prediction model has a tendency to converge to
zero, and no correction is needed at this time; if the error
convergence condition is not satisfied, it indicates that the
predicted value y(x + 1) solved by the preliminary pre-
diction model is implicit. .e trend of error divergence
should be corrected at this time.

For the predicted value with error divergence trend, this
paper further proposes an adaptive correction algorithm for
the predicted value. .e basic idea of the algorithm is to
calculate ΔY and tan θa from known conditions and then use
the monotonic feature of the tangent function to adjust the
value of tan θ based on .eorem 1, so that the predicted
value y(x + 1) at any time meets the error convergence
condition. .e method of recalculating the predicted value
y(x + 1) is as follows:
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① If ΔY> 0 and ya(x) − ya(x − 1) � 0, then

y(x + 1) � k1y(x), 0< k1 < 1. (20)

② If ΔY> 0 and ya(x) − ya(x − 1)> 0, then

y(x + 1) � y(x) + k2 ya(x) − ya(x − 1) , 0< k2 < 1.

(21)

③ If ΔY> 0 and ya(x) − ya(x − 1)< 0, then

y(x + 1) � y(x) + k3 ya(x) − ya(x − 1) , k3 > 1.

(22)

④ If ΔY< 0 and ya(x) − ya(x − 1) � 0, then

y(x + 1) � k4y(x), k4 > 1. (23)

⑤ If ΔY< 0 and ya(x) − ya(x − 1)> 0, then

y(x + 1) � y(x) + k5 ya(x) − ya(x − 1) , k5 > 1.

(24)

⑥ If ΔY< 0 and ya(x) − ya(x − 1)< 0, then

y(x + 1) � y(x) + k6 ya(x) − ya(x − 1) , 0< k6 < 1.

(25)

.e correction coefficients k1–k6 are selected by the user.
.e following theoretically proves the effectiveness of this
revised algorithm.

Proof. Take X> 0 as an example.
When ya(x) − ya(x − 1), then θa � π/2. From equations

(7) and (20), we can get

tan θ �
1

y(x + 1) − y(x)
�

1
k1 − 1( y(x)

. (26)

Since 0< k1 < 1 and y(x)> 0, then tan θ< 0 and θ> π/2,
so θ > θa holds.When ya(x) − ya(x − 1)> 0, from equations
(7) and (10), we can find that equation (7) is equivalent to

tan θa �
1

ya(x) − ya(x − 1)
�

k2

y(x + 1) − y(x)
� k2 tan θ.

(27)
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Figure 4: Convergence analysis of forecasting error. (a) ΔY> 0, θa< π/2; (b) ΔY> 0, θa> π/2; (c) ΔY< 0, θa< π/2; and (d) ΔY< 0, θa> π/2.
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Since 0< k2 < 1 and tan θa > 0, according to the mono-
tonic characteristics of tangent function, θ> θa was
established.

When ya(x) − ya(x − 1)< 0, from equations (7) and
(10), we can find that equation (22) is equivalent to

tan θa �
1

ya(x) − ya(x − 1)
�

k3

y(x + 1) − y(x)
� k3 tan θ.

(28)

Since k3 > 1 and tan θa < 0, so tan θa < tan θ< 0,
according to the monotonic characteristics of tangent
function, θ> θa was established.

In summary, ΔY> 0 holds when θ> θa, and the revised
predicted value y(x + 1) meets the error convergence
condition of .eorem 1. Similarly, it can be proved that
ΔY< 0, so the correction algorithm is theoretically
effective. □

4.3. Full Description Based on Trajectory Tracking.
According to the previous analysis and derivation process,
the load forecasting algorithm proposed in this paper is
described as follows:

Step 1. Choose an existing prediction model (such as
ARMA or BPNN model) to establish a preliminary
prediction model of load time series.
Step 2. At time x, use the preliminary prediction model
to calculate the preliminary prediction value y(x + 1)

at time.
Step 3. From the predicted values y(x) and y(x − 1) at
times x and x + 1, use equation (7) to calculate the angle
θ between the ray from point (x, y(x)) to point (x +

1, y(x + 1)) and the positive direction of the y-axis.
Step 4. From the predicted values ya(x) and ya(x − 1)

at times x and x − 1, use equation (9) to calculate the
angle θa between the ray from point (x − 1, ya(x − 1))

to point (x, ya(x)) and the positive direction of the y-
axis.
Step 5. From the predicted value y(x) and the real value
ya(x) at time x, we can calculate ΔY � y(x) − ya(x).
Step 6. According to .eorem 1 of this paper, judge
whether ΔY, θ, and θa meet the convergence condition
of the prediction error. If it is satisfied, the predicted
value y(x + 1) solved by the preliminary prediction
model is considered valid; otherwise, go to Step 7.
Step 7. According to the prediction value correction
algorithm proposed in this paper, solve the load pre-
diction value y(x + 1) at time x+ 1 again.

From the previous analysis and algorithm description,
this method is actually a heuristic correction algorithm
for the existing prediction model. .e heuristic rules of
the algorithm are derived based on the theory of tra-
jectory tracking stability and have nothing to do with the
specific prediction model selected, so it is a heuristic
correction algorithm that can ensure the convergence of
prediction errors and does not depend on the system

model. In addition, during the iterative process along the
sampling time, the algorithm feeds back the inherent laws
contained in the historical prediction sequence to the
future prediction, which improves the prediction
accuracy.

5. Simulation and Result Analysis

It is of no practical significance to compare this method with
other autonomous prediction algorithms alone. .e effec-
tiveness of this method is reflected in the revision and
improvement of existing prediction models. In the experi-
mental part, the classic autoregressive moving average
(ARMA) model [29] and Back Propagation Neural Network
(BPNN) model [30] are taken as examples to compare and
analyze the correction effect of the method under different
prediction models and prediction field of view conditions.
Use the load sample data GEFCom2012 published by the
Global Energy Forecasting Competition to simulate on the
MATLAB platform. In all experiments, the parameters of the
modified algorithm in this paper are selected as
k1 � k2 � k6 � 0.9, k3 � k4 � k5 � 1.1.

5.1. Comparison Experiment with the ARMA Prediction
Model. Based on the actual measurement of a certain res-
idential area in Jinan on December 9, 2018, the load value
after a single prediction field of view of 0.5 h was predicted
and experimentally measured, using a separate ARMA
model (ARMA method) and based on the ARMA model.
.e error-corrected method (ARMA+EC method) ob-
tained the forecast and measured results at 48 oʼclock on the
day, and a comparative analysis was conducted.

Based on the historical load value of 120 points totaling
60 hours before the current day as the data source, an ARMA
prediction model was established. .e classic (p, q)-order
ARMA prediction model can be expressed by equation (1).

.e main work of modeling with ARMA lies in model
order determination and coefficient estimation. Firstly, use
Autocorrelation Function (ACF) to analyze and remove the
fixed trend items in the original data source. .en, the
Bayesian Information Criterion (BIC), Yule–Walker, and
Newton–Raphson algorithms are used to determine the
model order, autoregressive coefficient, and moving average
coefficient, respectively. In the experiment, the BIC values
corresponding to each order ARMA candidate model are
shown in Table 1.

It can be seen that the ARMA (5, 5) model will get the
minimum BIC value of 5.7496, so ARMA (5, 5) is used as the
prediction model in the experiment. At the same time, the
order coefficients of the ARMA (5, 5) prediction model are
ω1＝ 0.9189, ω2＝ − 0.2617, ω3＝ 0.3394, ω4＝ 0.7065,
ω5＝ 0.2710, φ1＝ − 0.1748, φ2＝ − 0.3256, φ3＝ 0.0260,
φ4＝ − 0.5668, and φ5＝ − 0.7124.

Two methods are used to obtain the forecast result of 48
oʼclock on the day, as shown in Figure 5. Analysis of the data
in the figure shows the following:

① At 8:00, the predicted value is greater than the true
value, that is, ΔY> 0; the ray connected by the true
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value from 7:30 to 8:00 forms an angle θa with the
positive direction of the y-axis; from 8:00 to 8:30, the
ray connected by the predicted value forms an angle θ
with the positive direction of the y-axis. Obviously, at
this time, ΔY> 0 and θ> θa. .eorem 1 shows that the
load value predicted by the classic ARMAmodel at 8:30
already has the error convergence trend, and the
method in this paper does not need to be corrected, so
the prediction results of the two methods are com-
pletely equal.
② At 19:30, the predicted value is less than the true
value; that is, ΔY< 0. .e rays formed by the true value
from 19:00 to 19:30 form an angle θa with the positive
direction of the y-axis, from 19:30 to 20:00 .e rays
formed by the predicted values form an angle θwith the
positive direction of the y-axis. Obviously, ΔY< 0 and
θ> θa at this time. .eorem 1 shows that the load value
predicted by the classic ARMAmodel at 20:00 does not
have the error convergence trend, and it needs to be
recalculated using the revised algorithm in this paper,
so as to obtain the load forecast value at 20:00 with less
error.

Similar predictions can be made at other times. .e
results show that, in the stage where the error of the classic
ARMA prediction model is gradually increasing, the method
in this paper can effectively evaluate the convergence of the
prediction error andmake adaptive corrections to ensure the
convergence of the prediction error and improve the pre-
diction accuracy.

5.2.ComparisonExperimentwith theBPNNPredictionModel.
Taking December 21, 2018 as the forecasting comparison
date, the load value after a single forecast horizon of 0.5 h is
predicted, and the separate BPNN model (BPNN method)
and the error correction method in this paper (BPNN+EC
method) based on the BPNN model are, respectively,
adopted. We can get the forecast result at 48 oʼclock on the
forecast day and make a comparative analysis.

In the past 60 days, a total of 2880 historical load values
were used as data sources to establish a BPNN prediction
model. As a very widely used neural network prediction
model, the main job of BPNN modeling is to determine the
number of nodes in each layer. In the experiment of this
paper, the input layer is designed as 8 nodes, which cor-
respond to the 4 load data closest to the current time and the

load data at the same time in the last 4 days; and according to
Kolmogorovʼs theorem and empirical knowledge, the hid-
den layer is selected as 17 intermediate nodes; Bayesian
regularization (BR) and Levenberg–Marquardt (LM) rules
are used to learn and train the network model, and all input
data during training are normalized to [0, 1].

Two methods are used to obtain the comparison result
between the forecast and actual measurement at 48 oʼclock
on the day, as shown in Figure 6. .e data in the figure is
compared and analyzed using the same method as the
comparison experiment of the ARMA predictionmodel..e
results show that for the BPNN prediction model, the
correction method can also obtain a similar improvement
effect; that is, when the prediction value of the BPNN model
shows an error divergence trend, this method can effectively
evaluate the convergence of the prediction error and per-
form adaptive correction to ensure the error convergence
and improve prediction accuracy.

5.3. Comparative Experiments in Different Prediction Fields.
Starting from November 2nd, 2018, 60 consecutive days as
the comparison period for forecasting and measuring, the
load values after different forecast nodes 0.5 h, 1 h, 2 h, 4 h,
and 8 h are predicted, using separate ARMA method and
ARMA + EC in this paper .e EC method, as well as the
separate BPNN method and the BPNN+EC method in this
article, obtained the comparison results of 60 days of
multipoint prediction and actual measurement for com-
parative analysis.

In order to verify the improvement effect of the algo-
rithm in this paper, the most commonly used statistical
indicators Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) are selected to evaluate the prediction
accuracy, and two new indicators the Reduction Rate of
MAE (RRMAE) and the Reduction Rate of RMSE
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Figure 5: Forecasting result comparison between ARMA method
and ARMA+EC method.

Table 1: BIC values for ARMA model candidate.

Order q � 1 q � 2 q � 3 q � 4 q � 5 q � 6
p � 1 5.95 5.98 5.97 5.99 5.93 5.95
p � 2 5.91 5.95 5.96 6.05 5.95 5.94
p � 3 5.97 5.95 5.99 6.02 5.87 6.00
p � 4 5.96 5.99 5.86 5.89 5.77 5.81
p � 5 5.99 6.04 6.01 5.96 5.75 5.77
p � 6 6.02 6.03 6.00 5.95 5.79 5.80
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(RRRMSE) are defined to evaluate the degree of correction
of the prediction error of this method. .e mathematical
expressions of the indicators are as follows:

MAE �
1
N



N

t�1
y(t) − ya(t)


,

RMSE �

�����������������


N
t�1 y(t) − ya(t)( 

2

N



,

RRMAE �
MAEtypical − MAEproposed

MAEtypical
× 100%,

RRRMSE �
RMSEtypical − RMSEproposed

RMSEtypical
× 100%.

(29)

N is the total prediction points, y(t) and ya(t) are the
predicted value and the true value at the time of t,MAEtypical,
MAEtypical, and RMSEtypical are the MAE and RMSE values
of the existing prediction model, and MAEproposed and
RMSEproposed are the MAE and RMSE values of the model
modified by the method in this paper.

.e above two experimental methods were used to es-
tablish ARMA and BPNN prediction models for different
prediction nodes (0.5 h, 1 h, 2 h, 4 h, and 8 h). For different
prediction nodes, the ARMA method and the ARMA+EC
method are used to obtain the comparison value between the
multipoint prediction and the actual measurement for 60
consecutive days from November 2, 2018 to February 1,
2019; BPNN method and BPNN+EC are used methods to
obtain the comparison value between the multipoint pre-
diction and the actual measurement for 60 consecutive days

Table 2: Comparison between ARMA and ARMA+EC methods with multiple forecasting nodes.

Prediction nodes
MAE (MW)

RRMAE (%)
RMSE (MW)

RRRMSE (%)
ARMA ARMA+EC ARMA ARMA+EC

0.5 22.46 18.72 16.68 25.33 21.48 15.19
1 23.39 19.56 16.35 26.55 22.59 14.89
2 25.40 21.41 15.73 28.81 24.71 14.23
4 29.22 24.98 14.50 33.48 29.12 13.00
8 36.99 32.40 12.39 43.16 38.58 10.60
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Figure 6: Forecasting result comparison between BPNN method and BPNN+EC method.

Table 3: Comparison between BPNN and BPNN+EC method with multiple forecasting nodes.

Prediction nodes (h)
MAE (MW)

RRMAE (%)
RMSE (MW)

RRRMSE (%)
BPNN BPNN+EC BPNN ARMA+EC

0.5 19.39 15.84 18.31 23.28 19.49 16.30
1 20.19 16.53 18.12 24.27 20.38 16.05
2 21.77 17.91 17.72 26.31 22.22 15.55
4 24.95 20.82 16.57 30.30 25.90 14.52
8 31.31 26.61 15.00 38.35 33.48 12.68
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in the same period. Calculating the statistical indicators, the
results are shown in Tables 2 and 3.

Experimental results show the following:

① Compared with the single ARMA and BPNN pre-
diction models, the prediction error of the method in
this paper is significantly reduced. Compared with the
ARMAmodel, the maximum reduction rates of the two
indexes of MAE and RMSE reached 16.6759% and
15.1931%. Compared with the BPNN model, the
maximum reduction rates of the two indexes of MAE
and RMSE reached 18.31149% and 16.2956%.
② For different prediction models and prediction
nodes, the method is independent of the selected
system model, and the improvement of prediction
performance is both effective and robust. In all cases,
MAE and RMSE both have a performance improve-
ment of at least 10%.
③ As the prediction node increases, the load value
fluctuation between two adjacent samples increases,
resulting in the corresponding increase in theMAE and
RMSE indicators of the two algorithms; that is, the
prediction accuracy decreases with the increase of the
prediction field of view, so this method is more suitable
for short-term load forecasting

6. Summary

Starting from the historical load sequence to study how to
reduce the prediction error is an important means to im-
prove the accuracy of heating load prediction. .is paper
proposes a correction method for load prediction error
based on trajectory tracking. .is method is completely
based on the theory of trajectory tracking stability. .ere are
no special requirements for the prediction model itself; that
is, it has nothing to do with the system model, which can
theoretically ensure error convergence, and simulation ex-
periments also show its effectiveness.
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