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Received 4 August 2020; Revised 13 September 2020; Accepted 18 September 2020; Published 9 October 2020

Academic Editor: S. A. Edalatpanah
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Nonlinear partial differential equations (NLPDEs) are an inevitable mathematical tool to explore a large variety of engineering and
physical phenomena. Due to this importance, many mathematical approaches have been established to seek their traveling wave
solutions. In this study, the researchers examine the Gardner equation via two well-known analytical approaches, namely, the
improved tan(Θ(ϑ))-expansion method and the wave ansatz method. We derive the exact bright, dark, singular, and W-shaped
soliton solutions of the Gardner equation. One can see that the methods are relatively easy and efficient to use. To better
understand the characteristics of the theoretical results, several numerical simulations are carried out.

1. Introduction

*e Gardner equation is given as [1–3]

ut + 2αuux + 3βu
2
ux + cuxxx � 0, (1)

where α, β, and (c> 0) are constant values. If the coefficient
β> 0, equation (1) admits two families of solitons and os-
cillating wave packets (called breathers), whereas if β< 0,
only one category of solitons exists [4].

Equation (1) is also called the combined KdV-mKdV
equation. In recent years, partial differential equations have
become one of the most widely used fields of mathematics in
various branches of science and engineering [5–12]. In this
paper, the Gardner equation is examined by using the
improved tan(Θ(ϑ))-expansionmethod and the wave ansatz
method. Recently, the improved tan(Θ(ϑ))-expansion
method (ITEM) [13–16] and the wave ansatz method
[17–21] have been exploited to integrate a variety of non-
linear partial differential evolution equations (NLPDEs). In
the past, several years ago, various methods have been
proposed to obtain the solitary solution of this equation. In
[22, 23], some kind of solutions of equation (1) were

obtained.*e Gardner equation (1) for α> 0, β< 0, and c � 0
has been studied in [24]. In [25], the authors have studied the
attitudes of some solitary solitons for this equation. Many
powerful analytic solution methods for solving nonlinear
equation (1) have appeared in the open literature, such as the
Hirota bilinear method [26], mapping method [25], simi-
larity transformation method [27], generalized exponential
rational function method, Jacobi elliptical solution finder
method [28], fractional homotopy perturbation transform
method [29], Coffey’s series expansion method [30], a
unified method including solitary wave solutions, triangular
periodic solutions, and Jacobi periodic wave solutions, as
well as rational solutions [23], Wadati’s inverse scattering
transform and Hirota methods [31, 32], consistent Riccati
expansion (CRE) [33], planar dynamical systems approach
method [34], Kudryashov method [35], Lie symmetry group
method [36], ill-posedness results [37], classification of
single traveling wave solutions [38], spectral collocation
method [5], the Gardner equation with time-dependent
coefficients and forcing term, have been investigated in
[39, 40]. For more methods, we refer the readers to [22–40]
and the references therein.
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*is paper consists of several sections. In Section 2, a
brief description of the improved tan(Θ(ϑ))-expansion
method is reviewed. With the aid of this method, we will
retrieve several sets of solutions for the Gardner equation in
Section 3. In Section 4, the method of wave ansatz method is
considered and the corresponding solutions in terms of
bright, dark, singular, and W-shaped soliton solutions.
Furthermore, some 3D profiles of acquired solutions are also
depicted in this section. However, to the best of the authors’
knowledge, these two approaches have not been applied for
equation (1) in previous studies. Finally, Section 5 concludes
the paper.

2. The Improved tan(Θ(ϑ))-Expansion Method

In this section, the main algorithm of the improved
tan(Θ(ϑ))-expansion method (ITEM) is explained as
follows:

Step 1: using a new definition of wave variable
(ϑ � μx − θt), a general partial differential equation
(PDE) such as

N u, ux, ut, uxx, · · ·( 􏼁 � 0 (2)

is transformed into an ordinary differential equation
(ODE)

N u, u′, − μu′, u″, μ2u″, · · ·􏼐 􏼑 � 0. (3)

Step 2: suppose that

u(ϑ) � S(Θ) � 􏽘
m

k�0
Ak p + tan

Θ(ϑ)

2
􏼠 􏼡􏼢 􏼣

k

+ 􏽘
m

k�1
Bk p + tan

Θ(ϑ)

2
􏼠 􏼡􏼢 􏼣

− k

(4)

could be constructed as a solution of equation (2),
where (Ak(0≤ k≤m)) and (Bk(1≤ k≤m)) with
Am ≠ 0, Bm ≠ 0 are unknown parameters, so that
Θ � Θ(ϑ)satisfies

Θ′(ϑ) � a sin(ϑ) + b cos(ϑ) + c. (5)

Taking (5) into account, some solutions are as follows:

Category 1: while (a2 + b2 − c2 < 0) and b − c≠ 0, then

Θ(ϑ) � − 2tan− 1
−

a

b − c
+

����������
c
2

− a
2

− b
2

􏽰

b − c
⎡⎣

· tan

����������
c
2

− a
2

− b
2

􏽰

2
(ϑ + C)⎛⎝ ⎞⎠⎤⎥⎥⎦.

(6)

Category 2: while a2 + b2 − c2 > 0 and b − c≠ 0, then

Θ(ϑ) � − 2 tan− 1
−

a

b − c
−

����������
b
2

+ a
2

− c
2

􏽰

b − c
⎡⎣

· tanh

����������
b
2

+ a
2

− c
2

􏽰

2
(ϑ + C)⎛⎝ ⎞⎠⎤⎥⎥⎦.

(7)

Category 3: while (a2 + b2 − c2 > 0), b≠ 0, andc � 0,
then

Θ(ϑ) � 2 tan− 1 a

b
+

������
b
2

+ a
2

􏽰

b
tanh

������
b
2

+ a
2

􏽰

2
(ϑ + C)⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(8)

Category 4: while (a2 + b2 − c2 < 0), c≠ 0, and b � 0,
then

Θ(ϑ) � 2 tan− 1
−

a

c
+

������
c
2

− a
2

􏽰

c
tan

������
c
2

− a
2

􏽰

2
(ϑ + C)⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(9)

Category 5: while (a2 + b2 − c2 > 0, b − c≠ 0) and a � 0,
then

Θ(ϑ) � 2 tan− 1

����

b + c

b − c

􏽳

tanh

������
b
2

− c
2

􏽰

2
(ϑ + C)⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(10)

Category 6: while a � 0 and c � 0, it resulted that

Θ(ϑ) � tan− 1 e
2b(ϑ+C)

− 1
e
2b(ϑ+C)

+ 1
,

2e
b(ϑ+C)

e
2b(ϑ+C)

+ 1
􏼢 􏼣. (11)

Category 7: while b � 0 and c � 0, it resulted that

Θ(ϑ) � tan− 1 2e
a(ϑ+C)

e
2a(ϑ+C)

+ 1
,
e
2a(ϑ+C)

− 1
e
2a(ϑ+C)

+ 1
􏼢 􏼣. (12)

Category 8: while a2 + b2 � c2, it resulted that

Θ(ϑ) � − 2 tan− 1 (b + c)(a(ϑ + C) + 2)

a
2
(ϑ + C)

􏼢 􏼣. (13)

Category 9: while a � b � c � κ, it resulted that

Θ(ϑ) � 2 tan− 1
e
κ(ϑ+C)

− 1􏽨 􏽩. (14)

Category 10: while a � c � κ and b � − κ, it resulted that

Θ(ϑ) � − 2 tan− 1 e
κ(ϑ+C)

− 1 + e
kδ(ϑ+C)

􏼢 􏼣. (15)

Category 11: while c � a, it resulted that

Θ(ϑ) � − 2 tan− 1 (a + b)e
b(ϑ+C)

− 1
(a − b)e

b(ϑ+C)
− 1

􏼢 􏼣. (16)
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Category 12: while a � c, it resulted that

Θ(ϑ) � 2 tan− 1 (b + c)e
b(ϑ+C)

+ 1
(b − c)e

b(ϑ+C)
− 1

􏼢 􏼣. (17)

Category 13: while c � − a, it resulted that

Θ(ϑ) � 2 tan− 1 e
b(ϑ+C)

+ b − a

e
b(ϑ+C)

− b − a
􏼢 􏼣. (18)

Category 14: while b � − c, it resulted that

Θ(ϑ) � − 2tan− 1 ae
a(ϑ+C)

ce
a(ϑ+C)

− 1
􏼢 􏼣. (19)

Category 15: while b � 0 and a � c, it resulted that

Θ(ϑ) � − 2 tan− 1 c(ϑ + C) + 2
c(ϑ + C)

􏼢 􏼣. (20)

Category 16: while a � 0 and b � c, it resulted that

Θ(ϑ) � 2 tan− 1
[c(ϑ + C)]. (21)

Category 17: while a � 0 and b � − c, it resulted that

Θ(ϑ) � − 2 tan− 1 1
c(ϑ + C)

􏼢 􏼣. (22)

Category 18: while a � 0 and b � 0, it resulted that

Θ(ϑ) � cϑ + C. (23)

Category 19: while b � c, it resulted that

Θ(ϑ) � 2 tan− 1 e
a(ϑ+C)

− c

a
􏼢 􏼣, (24)

where (Ak, Bk(k � 1, 2, · · · , m), a, b) and c are the un-
known parameters that need to be calculated. To de-
termine the natural number m, one can use the
homogeneous balance rule.
Step 3: inserting the formal scheme of (4) into equation
(3), and then setting each coefficient of
tan ((Θ(ϑ))/2)k, cot ((Θ(ϑ))/2)k, (k � 0, 1, 2, · · ·) to
zero, we will arrive to a set of nonlinear equations for
(A0, Ak, Bk(k � 1, 2, · · · , m), a, b, c, μ, θ) and p.
Step 4: solving the algebraic equations in Step 3, it
resulted that substituting (A0, A1, B1, · · · , Am,

Bm, μ, θ, p) in (4).

3. Applications of the Gardner
Equation via ITEM

In this section, we will examine ITEM for equation (1). To
find the traveling solutions for equation (1), we define the
wave transformation as u � U(ϑ), where ϑ � μx − θt, μ≠ 0,

and θ≠ 0 to be determined later. Taking u � u(ϑ) into ac-
count allows us to rewrite equation (1) as the following
ordinary differential equation:

− θu′ + 2αμuu′ + 3βμu
2

u′ + cμ3u‴ � 0. (25)

Integrating (25) once with respect to ϑ and neglecting the
resulted integration constants, we obtain

− θu + αμu
2

+ βμu
3

+ cμ3u″ � 0. (26)

Now, we apply the ITEM to obtain traveling wave so-
lutions of the Gardner equation (1). According to this
method, the solution of equation (26) can be written in the
form of equation (4).

Balancing the u″ and u3 in (26), by using homogeneous,
one has

3m � m + 2⟹ m � 1. (27)

Taking p � 0 in (27), the solution structure is formulated
as

u(ϑ) � A0 + A1 tan
Θ(ϑ)

2
􏼠 􏼡􏼢 􏼣 + B1 cot

Θ(ϑ)

2
􏼠 􏼡􏼢 􏼣. (28)

Substituting equation (28) into equation (26) and fol-
lowing the necessary steps of ITEM, we have the following
sets of coefficients for the nontrivial solutions of (1) as
follows:

Set 1:

μ � −

�
2

√
α

3
����
− σβ

􏽰 ����������
a
2

+ b
2

− c
2

􏽰 ,

θ �
2α3

�
2

√

27β
����
− σβ

􏽰 ����������
a
2

+ b
2

− c
2

􏽰 ,

(29)

A0 � −
α
3β

1 + a

����������

b
2

+ a
2

− c
2

􏽱

􏼠 􏼡,

A1 �
α
3β

b − c
����������
b
2

+ a
2

− c
2

􏽰 ,

B1 � 0,

(30)

u(ϑ) � A0 + A1 tan
Θ(ϑ)

2
􏼠 􏼡􏼢 􏼣, (31)

where a, b, and c are optional constants, and

ϑ � −

�
2

√
α

3
����
− βc

􏽰 ����������
b
2

+ a
2

− c
2

􏽰 x −
2

�
2

√
α3

27β
����
− βc

􏽰 ����������
b
2

+ a
2

− c
2

􏽰 t,

(32)

provided that β< 0.
Setting these values in categories 2, 6, 10, and 14 of
Section 2, respectively, we acquire the following
solutions:
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u1(ϑ) �
α
3β

tanh

����������
a
2

+ b
2

− c
2

􏽰

2
ϑ⎛⎝ ⎞⎠ − 1⎛⎝ ⎞⎠, (33)

where a2 + b2 − c2 > 0 and ϑ is given by (32).

u2(ϑ) � −
α
3β

1 + tan 12 tan− 1 e
2bϑ

− 1
e
2bϑ

+ 1
,

2e
bϑ

e
2bϑ

+ 1
􏼠 􏼡􏼠 􏼡􏼢 􏼣,

(34)

where ϑ � − (
�
2

√
α /(3b

����
− βc

􏽰
))x − ((2

�
2

√
α3)/

(27bβ
����
− βc

􏽰
))t.

u3(ϑ) � −
2α
3β

ce
aϑ

ce
aϑ

− 1
, (35)

where ϑ � − (
�
2

√
α /(3b

����
− βc

􏽰
))x − ((2

�
2

√
α3)/

(27bβ
����
− βc

􏽰
))t.

Set 2:

μ � −

�
2

√
α

3
����
− σβ

􏽰 ����������
a
2

+ b
2

− c
2

􏽰 ,

θ �
2α3

�
2

√

27β
����
− σβ

􏽰 ����������
a
2

+ b
2

− c
2

􏽰 ,

(36)

A0 � −
α
3β

1 + a

����������

b
2

+ a
2

− c
2

􏽱

􏼠 􏼡,

A1 � 0,

B1 � −
α
3β

b + c
����������
b
2

+ a
2

− c
2

􏽰 ,

(37)

u(ϑ) � A0 + B1 cot
Θ(ϑ)

2
􏼠 􏼡􏼢 􏼣, (38)

where a, b, and c are optional constants, and

ϑ � −

�
2

√
α

3
����
− βc

􏽰 ����������
b
2

+ a
2

− c
2

􏽰 x −
2

�
2

√
α3

27β
����
− βc

􏽰 ����������
b
2

+ a
2

− c
2

􏽰 t,

(39)

provided that β< 0.
Setting these values in categories 3, 5, and 6 of Section 2,
respectively, we obtain

u4(ϑ) � −
α
3β

1 + tanh
������
a
2

+ b
2

􏽰
/2􏼒 􏼓ϑ􏼒 􏼓􏼒 􏼓

������
a
2

+ b
2

􏽰
+ a􏼒 􏼓

a +
������
a
2

+ b
2

􏽰
tanh

������
a
2

+ b
2

􏽰
/2􏼒 􏼓ϑ􏼒 􏼓

,

(40)

where ϑ � − (
�
2

√
α /(3

����
− βc

􏽰 ������
a2 + b2

√
))x − ((2

�
2

√
α3)/

(27β
����
− βc

􏽰 ������
a2 + b2

√
))t.

u5(ϑ) � −
α
3β

tanh
������
b
2

− c
2

􏽰
􏼒 􏼓/2􏼒 􏼓ϑ􏼒 􏼓 + 1

tanh
������
b
2

− c
2

􏽰
􏼒 􏼓/2􏼒 􏼓ϑ􏼒 􏼓

, (41)

where b2 − c2 > 0 and ϑ � − (
�
2

√
α /(3

����
− βc

􏽰 ������
b2 − c2

√
))

x − (2
�
2

√
α3/(27β

����
− βc

􏽰 ������
b2 − c2

√
))t.

u6(ϑ) � −
α
3β

tan 12 tan− 1
e
2 bϑ

− 1/e2 bϑ
+ 1􏼐 􏼑, 2 e

bϑ/e2 bϑ
+ 1􏼐 􏼑􏼐 􏼑􏼐 􏼑 − 1

tan 12 tan− 1
e
2 bϑ

− 1/e2 bϑ
+ 1􏼐 􏼑, 2 e

bϑ/e2 bϑ
+ 1􏼐 􏼑􏼐 􏼑􏼐 􏼑

,

(42)

where ϑ� − (
�
2

√
α /3b

����
− βc

􏽰
)x − (2

�
2

√
α3/ 27bβ

����
− βc

􏽰
)t.

Set 3:

a � c � 0,

μ �

�
2

√
α

6b
����
− cβ

􏽰 ,

θ � −

�
2

√
α3

27bβ
����
− cβ

􏽰 ,

(43)

A0 � −
α
3β

,

A1 � −
α
6β

,

B1 � −
α
6β

,

(44)

u(ϑ) � A0 + A1 tan
Θ(ϑ)

2
􏼠 􏼡􏼢 􏼣 + B1 cot

Θ(ϑ)

2
􏼠 􏼡􏼢 􏼣, (45)

where b is an optional and β< 0 must be held.
Setting these values in categories 1, 6, and 13 of Section
2, respectively, we obtain

u7 � −
α
6β

(tanh(b/2ϑ) +1)
2

tanh(b2ϑ)
,

u8 � −
α
6β

tan 12tan− 1
e
2bϑ

− 1/e2bϑ
+1􏼐 􏼑,2 e

bϑ/e2bϑ
+1􏼐 􏼑􏼐 􏼑􏼐 􏼑 +1􏼐 􏼑

2

tan 12tan− 1
e
2bϑ

− 1/e2bϑ
+1􏼐 􏼑,2 e

bϑ/e2bϑ
+1􏼐 􏼑􏼐 􏼑􏼐 􏼑

,

u9 � −
2α
3β

e
2bϑ

e
2bϑ

− b
2,

(46)

where

ϑ �

�
2

√
α

6b
����
− cβ

􏽰 +

�
2

√
α3

27bβ
����
− cβ

􏽰 t. (47)
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It is worth to note that one can find some more new
exact solitary solutions from solutions (31), (38), and
(45).

4. Applications of the Wave Ansatz Method

In what follows, and based on the wave ansatz method,
several types of soliton wave solutions for the Gardner
equation (1) are presented which is based on the wave ansatz
method (see the previous study [24]).

4.1. Bright Soliton. To retrieve bright optical solutions of the
Gardner equation, we use the following scheme [41]:

u(x, t) �
A

(D + cosh τ)
n, (48)

where

τ � B(x − ]t), (49)

where A, B, and ] are disposal parameters.
Putting these values of (48) into (1) and some calcula-

tions, one obtains

−
3βA

3
nB sinh τ

(D + cosh τ)
3n+1 −

2αA
2
nB sinh τ

(D + cosh τ)
2n+1

−
AB

3
c n(n + 2)(n + 1) D

2
− 1􏼐 􏼑sinh τ

(D + cosh τ)
n+3

+
AB

3
Dc n(n + 1)(2 n + 1)sinh τ

(D + cosh τ)
n+2

−
ABn B

2
c n

2
− ]􏼐 􏼑sinh τ

(D + cosh τ)
n+1 � 0.

(50)

From (50), equating the exponents 3n + 1 and n + 3
yields

n � 1. (51)

So, solving equation (50) turns to the following equation:

−
AB B

2
c − ]􏼐 􏼑

(D + cosh τ)
2 −

2AB − 3B
2
Dc + Aα􏼐 􏼑

(D + cosh τ)
3

−
3AB A

2β + 2B
2
cD

2
− 2B

2
c􏼐 􏼑

(D + cosh τ)
4 � 0.

(52)

Due to the fact that the functions (1/(D + coshτ)j) for
j � 2, 3, and 4 are linearly independent, equation (52) will
introduce a system of equations for the unknown param-
eters. Solving this system, one gets

] � c B
2
, (53)

A �
3 cB

2
D

α
, (54)

D �
2α

������������

18 β cB
2

+ 4 α2
􏽱 . (55)

Putting (55) into (54) yields

A �
6cB

2
������������

18β c B
2

+ 4 α2
􏽱 . (56)

*us, for an arbitrary constant B, the 1-soliton solution
of (1) is given by

u(x, t) �
6cB

2

2 α +

������������

18 β cB
2

+ 4 α2
􏽱

cosh Bx − cB
3

t􏼐 􏼑

, (57)

provided

9B
2β c + 2 α2 > 0. (58)

4.2. Dark Soliton. To retrieve dark solutions of the equation,
we use the structure [41]

u(x, t) � (A + B tanh τ)
n
, (59)

where

τ � μ(x − ]t), (60)

where A, B, μ, and ] are unknown parameters.
Inserting (59) into (1) gives
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−
3β nμ

B
􏼢 􏼣(A + B tanh τ)

3n+1
+

6β nμA

B
􏼢 􏼣(A + B tanh τ)

3n
−

3β μ n A
2

− B
2

􏼐 􏼑

B
⎡⎣ ⎤⎦

· (A + B tanh τ)
3n− 1

−
2α nμ

B
􏼔 􏼕(A + B tanh τ)

2n+1

+
4α nμA

B
􏼢 􏼣(A + B tanh τ)

2n
−

2α μ n A
2

− B
2

􏼐 􏼑

B
⎡⎣ ⎤⎦(A + B tanh τ)

2n− 1
−

c nμ3(n + 2)(n + 1)

B
3􏼢 􏼣(A + B tanh τ)

n+3

+
6c nμ3A(n + 1)

2

B
3􏼢 􏼣(A + B tanh τ)

n+2
−

μ n 3 c μ2n 5A
2

− B
2

􏼐 􏼑(n + 1) + 2 c μ2 3A
2

− B
2

􏼐 􏼑 − B
2]􏼐 􏼑

B
3

⎡⎣ ⎤⎦(A + B tanh τ)
n+1

+
2Aμ n 2 c μ2n2 5A

2
− 3B

2
􏼐 􏼑 + 2 c μ2 A

2
− B

2
􏼐 􏼑 − B

2]􏼐 􏼑

B
3

⎡⎣ ⎤⎦

· (A + B tanh τ)
n

−
μ n A

2
− B

2
􏼐 􏼑 3 c μ2n 5A

2
− B

2
􏼐 􏼑(n − 1) + 2 c μ2 3A

2
− B

2
􏼐 􏼑 − B

2]􏼐 􏼑

B
3

⎡⎣ ⎤⎦(A + B tanh τ)
n− 1

+
6c nμ3A(n − 1)

2
A
2

− B
2

􏼐 􏼑
2

B
3

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦(A + B tanh τ)
n− 2

−
c nμ3(n − 1)(n − 2) A

2
− B

2
􏼐 􏼑

3

B
3

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦(A + B tanh τ)
n− 3

� 0.

(61)

After some algebra, we conclude that

μ �

�����
− 2 c β

􏽰

c
B, (62)

] �
3B

2β2 − α2

3β
, (63)

A � −
α
3β

. (64)

*e dark soliton solution of equation (1) is obtained as

u(x, t) � (A + B tanh(μ(x − ]t)))
n
, (65)

to exist, from (62), the following restriction is obtained

β< 0. (66)

4.3. Singular Soliton. To extract the singular solitons of the
Gardner equation (1), the following structure is examined by
[41]

u(x, t) �
A

(D + sinhτ)
n, (67)

with τ is defined by (49).
Substituting (67) into (1), we obtain

−
3βA

3
nB cosh τ

(D + sinh τ)
3n+1 −

2αA
2
nB cosh τ

(D + sinh τ)
2n+1

−
AB

3
c n(n + 2)(n + 1) D

2
+ 1􏼐 􏼑cosh τ

(D + sinh τ)
n+3

+
AB

3
Dc n(n + 1)(2 n + 1)cosh τ

(D + sinh τ)
n+2

−
ABn B

2
c n

2
− ]􏼐 􏼑cosh τ

(D + sinh τ)
n+1 � 0.

(68)

Considering the balancing principle indicates (51),
vanishing all the coefficients of (coshτ/[D + sinhτ]j) for j �

2, 3, and 4 to zero in (68), one gets

] � B
2
c, (69)

A �
6B

2
c

�������������

− 18B
2β c − 4 α2

􏽱 , (70)

D �
2α

�������������

− 18B
2β c − 4 α2

􏽱 . (71)

From (70) and (71), one concludes that if

9B
2β c + 2 α2 < 0 (72)

holds, the soliton solution
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u(x, t) �
A

D + sinh Bx − B
3
c t􏼐 􏼑

(73)

is achieved as a singular solution for the Gardner equation
(1). In this solution, A is given by (70), D is shown in (71),
and B is an optional constant chosen in such a way that (72)
holds.

4.4. W-Shaped Soliton. Now, we explore some exact solu-
tions of the Gardner equation in the form of [41]

u(x, t) � A + D sech(τ), (74)

where τ is the same as (49).
Substituting (74) into (1), we, respectively, obtain

− B D sech(τ)tanh(τ) − 6B
2
c + 3D

2β􏼐 􏼑sech2(τ)􏽨

+(6A Dβ + 2D α)sech(τ) + 3A
2β + B

2
c + 2Aα − ]􏽩 � 0.

(75)

Now, equation (75) holds whenever we have

] �
3B

2β c − α2

3β
, (76)

A � −
α
3β

, (77)

D � ±B

��
2c

β

􏽳

, (78)

which will be valid for

β< 0. (79)

Consequently, the solution (74) with sign “+” in equa-
tion (78) is obtained as

u(x, t) � −
α
3β

+ B

��
2c

β

􏽳

sech Bx −
3B

3β c − Bα2

3β
t􏼠 􏼡. (80)

Moreover, for bright soliton pulse and with sign “− ” in
equation (78), we obtain
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Figure 1: *e 3d surface of equation (57) for the values α � β �
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u(x, t) � −
α
3β

− B

��
2c

β

􏽳

sech Bx −
3B

3β c − Bα2

3β
t􏼠 􏼡, (81)

for a W-shaped soliton pulse, where B is an optional
constant.

*e correctness of all given solutions has been confirmed
with Maple by substituting them back into the original
equation.

To better understand the characteristics of the soliton
solution, we plot equations (57), (65), (73) (80), and (81) of
equation (1) by taking different values of parameters
α, β, and c within the interval (x, t) ∈ [− 10, 10] × [− 10, 10]

in Figures 1–7, respectively.

5. Concluding Remarks and Observations

In this research, we exerted the improved tan(Θ(ϑ))-ex-
pansion and wave ansatz method as two useful mathematical
tools to construct solitary solutions for the Gardner equation.
*ese twomethods for equation (1) have not been reported in
the literature so far, to achieve the category of bright, dark,
singular, and W-shaped soliton solutions. For a better un-
derstanding of the solutions, numerical results have also been
included. On the other hand, the results are quite reliable for
solving the Gardner equation. *e results attest to the effi-
ciency of the proposed method. *ese two powerful methods
can also be applied to other nonlinear partial differential
equations with time-dependent coefficients and their systems.
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