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*e Euler dynamical equation which describes the attitude motion of a rigid body will exhibit very complex dynamic behaviors
under the action of different external torques. Many special types of new chaotic attractors are presented, including hidden
attractors, double-body-double-core chaotic attractors, and single-body-three-core-tree-wing chaotic attractors. *e position of
equilibrium points in several typical cases of the Euler dynamic equation is solved, and the stability of linearized equation at each
equilibrium point and its influence on the formation of the chaotic attractor are analyzed. An improved nonlinear relay control
law based on Euler angle feedback is developed to stabilize a new chaotic spacecraft attitude motion to an appointed equilibrium
point or a periodic orbit.

1. Introduction

*e detailed exploration of the chaotic attitude motion of
spacecraft and satellites still remains one of the main prob-
lems of rigid body attitude dynamics. A number of investi-
gators have demonstrated that spinning satellite [1], dual-spin
spacecraft (DSSC) [2–4], multispin spacecraft (MSSC) [5],
gyrostat satellite [6–12], tethered satellite, and other com-
plicated satellites would exhibit chaotic attitude motion in
gravitational fields [13], geomagnetic field [14, 15], and
sunlight flux. Beletsky et al [14] discussed the chaotic motion
of a magnetic spacecraft in circular polar orbit without
damping and gravitational torque. Chen and Liu [15, 16]
investigated chaotic attitude motion of a magnetic rigid
spacecraft with internal damping in a circular orbit near the
equatorial plane of the earth.*ese worksmainly analyzed the
dynamics of different mathematical models of rigid body
attitude motion from a different point of view.

*e attitudemotion of a rigid body could be described by
the Eulerian dynamic equations. *is nonlinear equation
will present very complex dynamic behaviors, including
various forms of chaotic motion. Leipnik and Newton [17]
found two strange attractors from this system. In the

previous paper [18, 19], we introduced several new chaotic
attractors but did not analyze the influence of the properties
of equilibrium point on the formation of chaotic attractors.

Different control techniques have been employed to
suppress or manipulate chaotic attitude motion of spacecraft
and satellites, including sliding mode variable structure
control [20, 21], time-delayed feedback control [22, 23],
observer-based control [24, 25], impulsive control, adaptive
control, and open-plus-closed-loop control. Alban and
Antonia [26] made use of three methods to control a six-
dimensional chaotic system that describes the attitude dy-
namics of a rigid body spacecraft subjected to deterministic
external perturbations that induce chaotic motion when no
control is acted. *e three techniques are a simple delayed
feedback control method, the Otani–Jones technique, and a
higher dimensional variation of the OGY method. Other
control methods were employed to suppress chaos byMeehan
and Asokanthan [1] and Awad [20]. Generally, the angular
velocity of the spacecraft ω was chosen as feedback control
variable. However, ω can be measured directly in practice.

Different spacecraft have different mission requirements
and need different control methods. A spinning spacecraft
usually is required to rotate along one axis with constant
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rotation rate and not to rotate along the other two axes.
When a spinning spacecraft is disturbed and produces
unexpected rotation, the nozzle thruster is usually used to
control it. Due to the coupling effect of the three channels,
the single-channel dead zone relay control method cannot
effectively suppress a chaotic motion of spinning spacecraft.

*e innovation of this paper lies in the following:

(1) Many special types of new chaotic attractors are
presented, including hidden attractors, double-
body-double-core chaotic attractors, and single-
body-three-core-tree-wing chaotic attractors.

(2) *e position of equilibrium points in several typical
cases of the Euler dynamic equation is solved, and
the stability of linearized equation at each equilib-
rium point and its influence on the formation of
chaotic attractor are analyzed.

(3) A more practicable and efficient control techniques
are utilized to suppress chaos and control state of the
system to an appointed fixed point or a periodic
orbit.

2. The Attitude Motion Equations of a
Rigid Body

*e attitude motion of a rigid body could be described by the
Eulerian equations, which consists of kinematic equations
and dynamic equations.

*e attitude orientation of spacecraft at a given point can
be locally described in terms of three Eulerian angles φ, θ,
and ψ which are successive clockwise rotations about inertial
axes X, Y, and Z, respectively. *ese successive rotations
transform the inertially fixed set of orthonormal axes X, Y,
and Z (regarded as initially instantaneously coincident with
the body axes) into the axes x, y, and z fixed in the body.*e
kinematic equation of the rigid body can be expressed as [21]

ωx � φ
.
cosψ cos θ + θ

.

sinψ,

ωy � −φ
.
sinψ cos θ + θ

.

cosψ,

ωz � _ψ + φ
.
sin θ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

or the following form

φ
.

�
ωx cosψ − ωy sinψ 

cos θ
,

θ
.

� ωx sinψ + ωy cosψ,

_ψ � ωz − ωx cosψ − ωy sinψ tan θ.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Here, ω � (ωx,ωy,ωz) are the angular velocities of a
rigid body. *e dynamical motion equations of a spacecraft
with principle axes at the center of mass are [21]

Ix _ωx � ωyωz Iy − Iz  + Mx + ux,

Iy _ωy � ωxωz Iz − Ix(  + My + uy,

Iz _ωz � ωyωx Ix − Iy  + Mz + uz.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

Here, Ix, Iy, and Iz are the principal moments of inertia
with respect to body axes x, y, and z; ux, uy, and uz are the
component of the control torques; and Mx, My, and Mz are
the perturbing torques. *e total disturbing torque M which
is put on a spacecraft can be written as

M � Mg + Mm + Mc + Mf + Md + L. (4)

Here, Mg and Mm are the gravitational and magnetic
torque; Md is the internal damping torque which is pro-
portional to the angular velocity of the body with coefficient
c; Mc and Mf are atmosphere resistance torque and solar
pressure torque. *ey all have relation to the attitude angles
φ, θ, and ψ, the attitude angular velocities ω, and the orbital
angular velocities ω0. For example, the component of
gravitational torque Mgz on Z-axis can be written as

Mgz � −ω2
0 Iy − Iz  sinφcosφ. (5)

*e magnetic torque about Z-axis can be obtained as

Mmz � k sin α[3 cos (φ − β − c) − cos (φ + β + c)]. (6)

Here, k is a coefficient with respect to the magnetic
moment constant of the earth and the magnetic moment of
the spacecraft and the distance between spacecraft and the
earth. α is the angle of inclination of orbital plane. β is the
argument of perigee. c is the true anomaly of spacecraft as
the angular coordinate measured from perigee.

Equation (3) can be rewritten as

ω→
.

� axωyωz ayωxωz azωxωy 
T

+ A
→

ω→ + ω→
.

u. (7)

Here, ax � (Iy − Iz)/Ix, ay � (Iz − Ix)/Iy, az � (Ix−

Iy)/Iz, ω→ � ωx ωy ωz 
T
, ω→

.

u � ux/Ix uy/Iy uz/Iz 
T
,

A
→

ω→ � Mx/Ix My/Iy Mz/Iz 
T
, A

→
� [aij] ∈ R3×3 (i, j �

1, 2, 3) is a perturbing frequency matrix.

3. Multifarious Chaotic Attractors

Equation (7) is a more generalized 3-dimensional nonlinear
system which will exhibit complex (periodic, quasiperiodic,
or chaotic) dynamic behaviors under the action of different
external torques.

3.1. Well-Known Chaotic Attractors in .is System. A
spinning rigid spacecraft is symmetrical with respect to the
body axes Ox, i.e., Iy � Iz. In general, it is appropriate to
choose Ix � 2Iy � 2Iz for stabilizing the spinning motion of
the spacecraft, i.e., (ax, ay, az) � (0, −1, 1). When ux � uy �

uz � 0, A
→

� −a a 0; c −1 0; 0 0 −b , a, b, and c are all
perturbing frequency parameters, and equation (7) is equal
to the normal Lorenz equations [22]:

_ωx � −aωx + aωy,

_ωy � cωx − ωy − ωxωz,

_ωz � −bωz + ωxωy.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)
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It will exhibit chaotic motion when (a, b, c) � (10, −8/3,

28) as we all know. When (ax, ay, az) � (10, −5, 5), ux �

uy � uz � 0, A
→

� −0.4 1 0; −1 −0.4 0; 0 0 α , (α is
alterable parameter), system (7) is a chaotic system named
the Leipnik–Newton system [22, 23]:

_ωx � −aωx + ωy + 10ωyωz,

_ωy � −ωx − 0.4ωy + 5ωxωz,

_ωz � bωz − 5ωxωy.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

*ere are two strange attractors in this system when a �

0.4 and b � 0.175 as we all know.
Earlier papers [1] have taken Ix � 3, Iy � 2, Iz � 1,

(ax, ay, az) � (1/3, −1, 1),
A
→

� −0.4 0 1/
�
6

√
; 0 0.175 0; −

�
6

√
0 −0.4  in

(7). *ese torques are chosen to be sufficiently large to
induce chaotic motion and are comparable in magnitude
with the available thruster torques. *e dynamics of the
satellite will then exhibit chaotic motion.We constructed the
chaotic attractor of this system shown in Figure 1.

3.2. New Chaotic Attractors

3.2.1. A Type of Hidden Attractors. In the study of the
chaotic motion of a nonlinear system, it is often concerned

with the chaotic attractors near the equilibrium point. Some
hidden attractors exist widely in the greater region or the
smaller region of the phase space.

Let us take Leipnik–Newton system (9) as an example.
*ere are five equilibriums in equation (9). *e origin of
coordinates S0: (0, 0, 0) is one of five equilibriums.*e other
four equilibriums are composed of the proper combination
of the following three values:

ωxe1,2,3,4 � ±

����������������������

(4a − 15)b ± b
��������
225 − 80a

√

250a



,

ωye1,2,3,4 � ±

����������������������

(15 − 8a)b ± b
��������
225 − 80a

√

200



,

ωze1,2,3,4 � ±5

����������������������������������������

(4a − 15) ±
��������
225 − 80a

√

250a
·
(15 − 8a) ±

��������
225 − 80a

√

400



.

(10)

Example 1. Let a � 0.4 and b � 0.3, and the four equilibri-
ums are

S1, S2: (±0.0413,∓0.1602, −0.1103),

S3, S4: (±0.3129,∓0.0403, 0.2103).
(11)

*e eigenvalues of the Jacobian linearization matrix at
four equilibriums are the same: S1, S2, S3, S4: λ1 � −0.8,

λ2,3 � 0.15 ± 1.1419i. In the phase space, there exist one
chaotic attractor near S1 and S2, and one periodic attractor
near S3 and S4, and one big hidden attractor far away from
equilibriums. *e phase trajectories of the three attractors
are shown in Figure 2. *e starting point of the small pe-
riodic attractor is selected at (−0.0459, 0.0802, 0.2871). *e
starting point of the big hidden attractor is selected at
(−74.2294, 52.3574, −29.0246).

3.2.2. Another Type of Double-Body-Double-Core Chaotic
Attractors. Investigating the reduced form of equation (7),

_ωx � axωyωz + a11ωx,

_ωy � ayωxωz + a22ωy,

_ωz � azωyωx + a33ωz.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(12)

*ere are five equilibriums in equations (12). Obviously,
the origin of coordinates S0: (0, 0, 0) is one of five equi-
libriums. *e other four equilibriums are composed of the
proper combination of the following three values:

ωxe � ±
�����
a22a33

ayaz



� ±μx,

ωye � ±
�����
a11a33

axaz



� ±μy,

ωze � ±
�����
a22a11

ayax



� ±μz.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

When the feedback coefficients a11, a22, and a33 make
0≥ μk ∈ R, (k � x, y, z), equation (12) degenerates to the
single equilibrium point system.
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Figure 1: One chaotic attractor of system (7), starting point
(0.3694, 0.0473, 0.1105).

Mathematical Problems in Engineering 3



Here, let us just discuss the case of 0≤ μk ∈ R, (k �

x, y, z).
Let us assume Ix > Iy > Iz > 0, ax > 0, ay < 0, az > 0, and

there are two cases of combination forms.

Case A: ax > 0, ay < 0, az > 0, a22 > 0, a11 < 0, a33 < 0.*e
other four equilibriums are expressed as

S1: μx, μy, μz , S2: μx, −μy, −μz ,

S3: −μx, −μy, μz , S4: −μx, μy, −μz .
(14)

Case B: ax > 0, ay < 0, az > 0, a22 < 0, a11 > 0, a33 > 0.
*e other four equilibriums are expressed as

S1′: μx, −μy, μz , S2′: μx, μy, −μz ,

S3′: −μx, μy, μz , S4′: −μx, −μy, −μz .
(15)

Equation (12) is linearized at equilibrium point
S1: (μx, μy, μz), and the Jacobian matrix is

J
→

�

a11 axμz axμy

ayμz a22 ayμx

azμy azμx a33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (16)

*e characteristic equation of the Jacobian linearization
system is

λ3 − a11 + a22 + a33( λ2 + 4a11a22a33 � 0. (17)

*e eigenvalues can be calculated by the following steps:

λ1 � u + v +
a11 + a22 + a33

3
,

λ2,3 � −
u + v

2
+

a11 + a22 + a33

3
± i

u − v

2
�
3

√
.

(18)

Here,

u �

��������

−
q

2
+

��
Q


3



,

v �

��������

−
q

2
−

��
Q


3



,

Q �
p

3
 

3
+

q

2
 

2
,

q � 2
a11 + a22 + a33

3
 

3
+ 4a11a22a33,

p � −
a11 + a22 + a33( 

2

3
.

(19)

Simulation studies indicate that system (12) will exhibit
complex dynamic behaviors under the different feedback
coefficients.

When a22 � |a11 − a33|, for example, a11 � −1, a22 � 2,
a33 � −3, there exists a single cycle attractor.

When a22 > |a11 − a33|, for example, a11 � −1, a22 � 2,
a33 � −2.8, −2.5, −2, −1.5, system (12) exhibits a divergent
trajectory, and the pace of trajectory divergence speeds up
with the increases of the difference between a11 and a33.

When a22 < |a11 − a33|, for example, a11 � −1, a22 � 2,
and a33 � −3, −3.4, −3.42, −3.43, −3.44, −3.45L . . ., system
(12) exists, respectively, 1–cycle, 2–cycle, 3–cycle, 4–cycle,
6–cycle, 8–cycle attractor · · · until the chaotic attractor.

Example 2. Let ax � 0.25, ay � −2/3, az � 0.5, a11 � −1,
a22 � 2, a33 � −4, and the other four equilibriums are

S1: (
��
24

√
,

��
32

√
,

��
12

√
),

S2: (
��
24

√
, −

��
32

√
, −

��
12

√
),

S3: (−
��
24

√
, −

��
32

√
,

��
12

√
),

S4: (−
��
24

√
,

��
32

√
, −

��
12

√
),

λ1 � −4.5474,

λ2,3 � 0.7734 ± 2.5374i.

(20)

–1

0
–0.5

0

1
–0.8 –0.6 –0.4 –0.2 0 0.2

0.5

0.4 0.6

Perodic attractor

Chaotic attractor

ωy

ωx

ω z

(a)

100

0
–150

–100

–50

100

0

50

50

0

100

–100
–50 –100

Perodic
attractor

Chaotic attractor

Big hidden attractor

ωy

ωx

ω z

(b)

Figure 2: One chaotic attractor, one periodic attractor, and one big hidden attractor exist at the same phase space of system (9): (a) small
periodic attractor; (b) big hidden attractor.
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*e eigenvalues of the Jacobian linearization matrix at
four equilibriums are the same: λ1 � −4.5474, λ2,3 �

0.7734 ± 2.5374i. *ere exist double-body-double-core
chaotic attractors in the phase space. *e phase trajectories
of the two attractors are shown in Figure 3.

3.2.3. A Type of Single-Body-.ree-Core Chaotic Attractors.
Investigating another reduced form of equation (7),

_ωx � axωyωz + a11ωx + a12ωy + a13ωz,

_ωy � ayωxωz + a22ωy,

_ωz � azωyωx + a33ωz.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(21)

*ere are five equilibriums in equation (13). *e origin
of coordinates S0: (0, 0, 0) is one of five equilibriums. *e
other four equilibriums are composed of the proper com-
bination of the following values:

ωxe1,2,3,4 � ±
�����
a22a33

ayaz



,

ωye1,2 �
a12a13 − a13az

����������
a22a33/ayaz



2axaz

����������
a22a33/ayaz

 ±

�����������������������������������������

a12a13 − a13az

����������
a22a33/ayaz


 

2
+ 4axa11a22a

2
33/ay



2axaz

����������
a22a33/ayaz

 ,

ωye3,4 �
a12a13 + a13az

����������
a22a33/ayaz



−2axaz

����������
a22a33/ayaz

 ±

�����������������������������������������

a12a13 + a13az

����������
a22a33/ayaz


 

2
+ 4axa11a22a

2
33/ay



−2axaz

����������
a22a33/ayaz

 ,

ωze1,2 �
a22a13 − a12ay

����������
a22a33/ayaz



2axay

����������
a22a33/ayaz

 ±

�����������������������������������������

a22a13 − a12ay

����������
a22a33/ayaz


 

2
+ 4axa11a33a

2
22/az



2axay

����������
a22a33/ayaz

 ,

ωze3,4 �
a22a13 + a12ay

����������
a22a33/ayaz



−2axay

����������
a22a33/ayaz

 ±

�����������������������������������������

a22a13 + a12ay

����������
a22a33/ayaz


 

2
+ 4axa11a33a

2
22/az



−2axay

����������
a22a33/ayaz

 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

If ay and a22 are the opposite sign, then az and a33 must
be the opposite sign. When ωxe > 0, ωye and ωze must be the
same sign. When ωxe < 0, ωye and ωze must be the opposite
sign.

Compared with equation (12), feedback control pa-
rameters a12ωy and a13ωy are applied to the system, the four
equilibriums are no longer symmetric, and the dynamic
properties of equation (13) near the four equilibriums
present a complicated situation. When the real part of the
eigenvalues of Jacobian linearization matrix at four equi-
libriums are greater than zero: S1, S2, S3, S4: Re(λ2,3)> 0, the
four equilibrium points are unstable saddle odd points, and
the system will produce a variety of single-body-four-core-
four-wing chaotic attractors. When one of the real part is less
than zero: S4: Re(λ2,3)< 0, this equilibrium point is stable,
and the system will produce a type of single-body-three-
core-tree-wing chaotic attractor.

Example 3. Let ax � 0.25, ay � −2/3, az � 0.5, a11 � −1,
a22 � 2, a33 � −4, a12 � 2, a13 � 2, and the other four
equilibriums are S1: (4.899, 1.43, 0.871), S2: (4.899,

−22.49, −13.77),
S3: (−4.899,8.729,−5.346), and S4: (−4.899,−3.666, 2.245).

*e eigenvalues of the Jacobian linearization matrix at
four equilibriums are S1: λ1 � −3.7695, λ2,3 � 0.3848 ±
2.0893i, S2: λ1 � −9.0734, λ2,3 � 3.0367 ± 4.5174i, S3: λ1 �

−6.8623, λ2,3 � 1.9312 ± 2.0383i, S4: λ1 � −2.9554, λ2,3 �

−0.0223 ± 2.7725i.
Obviously, S1, S2, S3: Re(λ2,3)> 0 but S4: Re(λ2,3)< 0, S4

is stable equilibrium point, and S1, S2, S3 are unstable. *ere
is a small attraction basin around S4 (shown in Figure 4(a))
and a single-body-three-core-tree-wing chaotic attractor
which are formed by S1, S2, and S3 in the larger domain. *e
phase trajectories of the attractors and the attraction basin
(red point) are shown in Figure 4.
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Figure 3: One double-body-double-core chaotic attractor of system (12): (a) chaotic attractor; (b) the projection on the Oωxωy plane.
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Figure 4: One single-body-three-core-tree-wing chaotic attractor of system (13): (a) attraction plane around S4; (b) chaotic attractor; (c) the
projection on the Oωxωy plane; (d) the projection on the Oωxωy plane.
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3.2.4. Multifarious Chaotic Attractors. Keeping ωu � 0,
changing parameter value of ax, ay, and az and matrix A,
system (7) will exhibit chaotic attitude motion, and a lot of
new chaotic attractors are found in state space, as follows:

Example 4. (ax, ay, az) � (10, −10, 10) and A
→

�

−36 36 0; 0 20 0; 0 0 −3 , as shown in Figure 5(a).

Example 5. (ax, ay, az) � (4, −1, 2) and A
→

� −8 8−2; 10−1

−1;0.83−3], as shown in Figure 5(b).

Example 6. (ax, ay, az) � (0, −1, 1) and A
→

�

−7 7−6; 40−1−33; 5 50−3 , as shown in Figure 5(c).

Example 7. (ax, ay, az) � (1, −1, 1) and A �

−6 6 0; 0 5−0.8; 10 10−1 , as shown in Figure 5(d).

4. Analysis of the Properties of New
Chaotic Attractors

In order to analyze the structure of new chaotic attractors,
the concept of attractive plane is introduced from the linear
system:

d x
→

dt
� B

→
x
→

, (23)

where B
→
∈ R3×3 is nonsingular coefficient matrix.

x
→

� [x1, x2, x3]
T is state vector. If the matrix B

→
has one real

eigenvalue λ1 and a pair of complex conjugate eigenvalues
λ2,3 � α ± βi, the solution of equation (16) can be written as

xi t, xi0(  � Ci1e
λ1t

+ Ci2e
αt cos βt + Ci3e

αt sin βt

� Ci1e
λ1t

+ ki
″ t, xi0( ,

(24)

where Cij(i, j � 1, 2, 3) are coefficients in relation to
structure parameters of system (23) and initial values.
ki
″(t, xi0) is the partial solution of (23).

Theorem 1. If the matrix B
→

has complex conjugate eigen-
values λ2,3 � α ± βi, there must be a fixed plane across coor-
dinate origin (0, 0, 0) in the phase space, and the motion
trajectory of the partial solution must be inside the fixed plane:

ki
″ t, x0(  � Ci2e

αt cos βt + Ci3e
αt sin βt, (i � 1, 2, 3).

(25)

Proof. it is assumed that the motion trajectory of the partial
solution ki

″(t, x
→

0) is inside a plane across coordinate origin
(0, 0, 0) in the phase space, and the normal vector of this plan
is P

→
� p1, p2, p3 . *e point-norm form equation of plane

can be expressed as

p1k1″ + p2k2″ + p3k3″ � 0, (26)

Now, let us prove this plane exists, and its normal vector
P
→

is constant and has nothing to do with the initial con-
ditions. Put formulas (25) into (26):

p1C12 + p2C22 + p3C32( e
αt cos βt

+ p1C13 + p2C23 + p3C33( e
αt sin βt � 0.

(27)

When t � 0, C12 � x10, C22 � x20, C32 � x30, and _xi(0) �

αCi2 + βCi3 � αxi0 + βCi3 � ai1x10 + ai2x20 + ai3x30, then we
have

p1x10 + p2x20 + p3x30( e
αt cos βt

+

p1 a11x10 − αx10 + a12x20 + a13x30( 

+ p2 a21x10 + a22x20 − αx20 + a23x30( 

+ p3 a31x10 + a32x20 + a33x30 − αx30( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦e
αt sin βt � 0.

(28)

As p1x10 + p2x20 + p3x30 � 0, we have

p1a11 + p2a21 + p3a31( x10 + p1a12 + p2a22 + p3a32( x20

+ p1a13 + p2a23 + p3a33( x30 � 0.

(29)

As long as let (p1a11 + p2a21+ p3a31)/p1 � (p1a12 +

p2a22 + p3a32)/p2 � (p1a13 + p2a23 + p3a33)/p3 � k, it can
be derived as follows:

a11 − k a21 a31

a12 a22 − k a32

a13 a23 a33 − k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p1

p2

p3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0, (30)

where k is the ratio of vectors module. Arbitrarily choose one
vector coordinate, for example, p1 � 1, and other coordinates
(p1, p2, p3) could be solved. Obviously, it has nothing to do
with the initial conditions and the eigenvalue λ. Proof ends. □

Definition 1. Assume the matrix B
→

has one real eigenvalue
λ1 and a pair of complex conjugate eigenvalues λ2,3 � α ± βi.
When λ1 < 0 (or λ1 > 0), the fixed plane is named attractive
plane (or repulsive plane) in which the partial solution
ki
″(t, x

→
0) is inside.

4.1. Structural Properties of Chaotic Attractors

Properties 1. *e size of various attractors in equation (7) is
determined by the relative positions of all equilibrium
points. In other words, the relative distances of all equi-
librium points are magnified k times, and the sizes of various
attractors are magnified 1/k times synchronously, and the
structure and shape remain unchanged.

*e parameters ax, ay, and az in equation (7) are si-
multaneously magnified k times, and the sizes of various
attractors are magnified 1/k times, and the structure and
shape remain unchanged. *is conclusion can be easily
drawn from equilibrium calculation formulas (13) and (22)
of equations (12) and (21), respectively.

Properties 2. *ere is an attractive plane in the neighbor-
hood of each equilibrium point in the chaotic system. *e
nonlinear motion mode near an equilibrium point of a
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complicated chaotic system can be approximately described
with its linearized equation. Each chaotic motion comprises
at least two nonlinear motion modes. *e essential reason to
form chaotic attractor is nonperiodic and asynchronous
switch between two modes.

5. Control of Chaotic Attitude Motion in a
Spinning Spacecraft

A spinning spacecraft usually is required to rotate along one
axis with constant rotation rate and not rotate along the other
two axes. *e goal of control is to stabilize the state of the
system at the desired equilibrium point (ωx,ωy,ωz) �

(c, 0, 0). *e angular velocity ω in system (7) cannot be
measured directly in practice and ωy ≠ θ

.

, ωz ≠ _ψ generally.
*e attitude stabilization system measures the attitude angle
ϕ, θ, and ψ and the attitude angular velocities _ϕ, θ

.

, and _ψ of
the spacecraft using attitude sensors such as earth sensors,
solar sensors, and gyroscopes. Compared with the desired
attitude angle and angular velocity, if there is a deviation, the
switch control instruction is formed by the controller to
suppress the unwanted rotation of the spacecraft.

As all know, the nonlinear relay control law which is
based on position and velocity feedback with dead band

peculiarity is suitable for the nonchaotic system when A
→

� 0
in system (7). However, the situation is completely different
for chaotic systems, because there are multiple equilibrium
points in the system, and the control torques applied to the
three axes are interacting. So, the attitude angle change of
other direction must be considered into the design when the
control law for one direction was designed.

Let us control six-dimensional chaotic system (21) (its
chaotic attractor is shown in Figure 5(a)):

_ωx �
10ωyωz − 36ωx + 36ωy + ux

Ix

,

_ωy �
−10ωxωz + 20ωy + uy

Iy

,

_ωz �
10ωyωz − 3ωz + uz

Iz

,

_φ �
ωx cosψ − ωy sinψ 

cos θ
,

θ
.

� ωx sinψ + ωy cosψ,

_ψ � ωz − ωx cosψ − ωy sinψ tanθ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)
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Figure 5: Four new chaotic attractor of system (7): (a) example 4; (b) example 5; (c) example 6; (d) example 7.
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Adopting single-channel dead zone relay control law
based on position and speed feedback,

ux(φ, _φ) �

−IxM, whenφ>φ1, _φ> − _φ1,

0, when |φ|< φ1


, | _φ|> _φ1


,

IxM, whenφ<φ1, _φ< _φ1,

⎧⎪⎪⎨

⎪⎪⎩

uy(θ, θ
.

) �

−IyM, when θ> θ1, θ
.

> − θ
.

1,

0, when |θ|< θ1


, |θ
.

|> θ
.

1



,

IyM, when θ< θ1, θ
.

< θ
.

1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

uz(ψ, _ψ) �

−IzM, whenψ >ψ1, _ψ > − _ψ1,

0, when |ψ|< ψ1


, | _ψ|> _ψ1


,

IzM, whenψ <ψ1, _ψ < _ψ1,

⎧⎪⎪⎨

⎪⎪⎩

(32)

where M is control torque to be generated by nozzle
thrusters. φ1, θ1,ψ1 is angle position error of dead band
corresponding to the driving signal when the nozzle baffle is
opened. *ere are five equilibriums in equations (21), and
the point S1: (−0.34, 0.44, 0.34) is one of five equilibriums.
*e control action may drive any state to approach a nearest
equilibrium point from an initial state. An equilibrium state
is not the desired state for a spinning spacecraft though the
chaotic motion is suppressed. Figure 6 shows the time
history of ωy and θ under the single-channel dead zone relay
control action, starting from initial state (0.2, 0.1, 0.2), be-
ginning to control on 1500 s, and ending in the equilibrium
point S1: (−0.34, 0.44, 0.34).

Now, considering the mutual effect among ωx, ωy, and
ωz, changing the dual-channel control law to be
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Figure 6: *e time history of ωy and θ under single-channel relay control action: (a) the time history of ωy; (b) the time history of θ.
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Figure 7: *e time history of ωy and θ under two-channel relay control action: (a) the time history of ωy; (b) the time history of θ.
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uy �

−IyM, when θ> θ1, θ
.

> − θ
.

1, andφ<φ1, _φ< _φ1,

IyM, when θ> θ1, θ
.

> − θ
.

1, andφ>φ1, _φ> − _φ1,

0, when |θ| < θ1


, |θ
.

|> θ
.

1



, and |φ|< φ1


, | _φ|< _φ1


,

−IyM, when θ< θ1, θ
.

< θ
.

1, andφ<φ1, _φ< _φ1,

IyM, whan θ < θ1, θ
.

< θ
.

1, andφ>φ1, _φ> − _φ1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ux �

+IxM, when θ> θ1, θ
.

> − θ
.

1, andφ<φ1, _φ< − _φ1,

−IxM, when θ> θ1, θ
.

> − θ
.

1, andφ>φ1, _φ> − _φ1,

0, when |θ|< θ1


, |θ
.

|> θ
.

1



, and |φ|< φ1


, | _φ|> _φ1


,

+IxM, when θ< θ1, θ
.

< θ
.

1, and θ> θ1, θ
.

> θ
.

1,

−IxM, when θ< θ1, θ
.

< θ
.

1, and θ< θ1, θ
.

< θ
.

1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)

Figure 7 shows the time history of ωy and θ under the
two-channel control action: initial state (0.2, 0.1, 0.2); end
point (3, 0, 0).*e control effect meets the desired operating
requirements of a spinning spacecraft with constant rotation
rate.

6. Conclusion

*e Euler dynamical equation which describes the attitude
motion of a rigid body will exhibit very complex dynamic
behaviors and include many special types of chaotic
attractors. In the same phase space, beyond chaotic
attractors, there may be a very large hidden attractor or very
small hidden attractors. Even if the system is stable near a
certain equilibrium point, chaotic attractors may still be
generated in a larger space. From the simulation analysis, we
can see that the stability of the linearized equation near the
equilibrium point determines the shape and size of the
chaotic attractor.*e single-channel dead zone relay control
method cannot effectively suppress a chaotic motion of
spinning spacecraft. *e simulation results confirm that the
single-channel dead zone relay control method cannot ef-
fectively suppress a chaotic motion of spinning spacecraft.
*e dual-channel control method proposed in this paper can
control a chaotic system to an appointed equilibrium point
or a periodic orbit.
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