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In this paper, we consider the high order impulsive differential equation on infinite interval
D

α
0+u(t) + f(t, u(t), J

β
0+u(t), D

α− 1
0+ u(t)) � 0, t ∈ [0,∞)∖ tk 

m
k�1

△u(tk) � Ik(u(tk)), t � tk, k � 1, . . . , m

u(0) � u′(0) � · · · � u
(n− 2)

(0) � 0, D
α− 1
0+ u(∞) � u0

⎧⎪⎪⎨

⎪⎪⎩
By applying Schauder fixed points and Altman fixed points, we

obtain some new results on the existence of solutions. -e nonlinear term of the equation contains fractional integral operator
Jβu(t) and lower order derivative operator Dα− 1

0+ u(t). An example is presented to illustrate our results.

1. Introduction

In this paper, we are concerned with the following impulsive
differential equation on infinite interval:

D
α
0+u(t) + f t, u(t), J

β
0+u(t), D

α− 1
0+ u(t)  � 0, t ∈ [0,∞)∖ tk 

m

k�1,

△u tk(  � Ik u tk( ( , t � tk, k � 1, . . . , m,

u(0) � u′(0) � · · · � u
(n− 2)

(0) � 0, D
α− 1
0+ u(∞) � u0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where u0 ∈ R, α, β ∈ (n − 1, n], n> 2, Dα
0+ is the standard

Riemann–Liouville fractional derivative,
0 � t0 < t1 < t2 < · · · < tm <∞, △u(tk) � u(t+

k ) − u(t−
k ),

u(t−
k ) � u(tk), u(t+

k ) � limh⟶0+u(tk + h) and
u(t−

k ) � limh⟶0− u(tk − h) represent the right and left limits
of u(t) at t � tk, and Dα− 1

0+ u(∞) � limt⟶∞Dα− 1
0+ u(t). Also,

f ∈ C([0, +∞) × R × R × R, R), Ik ∈ C(R, R).

During the past decades, fractional differential equations
have drawn wide concerns. Compared with integer order dif-
ferential equations, fractional differential equations have more
extensive application range, such as control theory, physics,
aerodynamics, polymer rheology, chemistry, biology, and so
forth.-ere aremany papers focused on the existence of positive
solutions for fractional differential equations (see [1–3]).
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Since the last century, the dynamics of populations
subject to abrupt changes was described by impulsive dif-
ferential system. And other phenomena, for instance, har-
vesting, diseases, and so on, also have been described by
using impulsive differential systems. Impulsive differential
equations of fractional order play an important role in
fractional differential equations theory and applications.
Recently, impulsive fractional differential equations have
been studied extensively. For example, Wang et al. studied
the existence and multiplicity of solutions for impulsive
fractional boundary value problem with p-Laplacian in [4],
and Liu considered fractional impulsive differential equa-
tions using bifurcation techniques in [5]. For more articles
related to impulsive fractional differential equations, refer to
[6–12].

Recently, in [13], Liu investigated the existence of so-
lutions for higher order impulsive fractional differential
equations given by

cD
q
0+x(t) � F(t, x(t)), t ∈ ti, ti+1( , i ∈ N0,

△x|t�ti
� I ti, x ti( ( , i ∈ N,

x(0) � x0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

D
q
0+x(t) � G(t, x(t)), t ∈ ti, ti+1( , i ∈ N0,

lim
t⟶t+

i

t − ti
1− α

 x(t) � J ti, x ti( ( , i ∈ N,

lim
t⟶0+

t
1− q

x(t) � x0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where q ∈ (0, 1), t ∈ [0, T], 0 � t0 < t1 < t2 < · · ·

< tm < tm+1 <T, I, J: tk: k ∈ N  × R⟶ R are discrete
Carathéodory functions, and F, G: (0, T) × R⟶ R are
strong Carathéodory functions. By using Schauder’s fixed-
point theorem, Liu established some existence results.

In [10], Liu and Ahmad studied the following problems:

cD
α
0+x(t) � q(t)f t, x(t),

c
D

p
0+x(t) , t ∈ (0,∞),

△x tk(  � Ik tk, x tk( ( , k � 1, 2, . . . ,

x(0) � x0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

cD
α
∗x(t) � q(t)f t, x(t),

c
D

p
∗x(t)( , t ∈ (0,∞),

△x tk(  � Ik tk, x tk( ( , k � 1, 2, . . . ,

x(0) � x0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

where x0 ∈ R, α ∈ (0, 1], 0<p< α, 0 � t0 < t1 < t2 < · · · with
limk⟶∞ tk �∞, q: (0,∞)⟶ R satisfies that there exists
l> − α such that |q(t)|≤ tl for all t ∈ (0,∞), and q may be
singular at t � 0. And f: [0,∞) × R2⟶ R is a Car-
athéodory function, Ik: (0,∞) × R⟶ R (k � 1, 2, . . . , ), Ik

is a Carathéodory function sequence, and
△x(tk) � limt⟶t+

k
x(t) − limt⟶t−

k
x(t), k � 1, 2, . . . ,. By us-

ing Schauder’s fixed-point theorem, the authors studied the
existence of solution. And the authors also considered the
uniqueness of solution under some appropriate conditions.

In [9], Zhao and Ge considered the following boundary
value problem:

D
α
0+u(t) + f(t, u(t)) � 0, t ∈ (0,∞), t≠ tk, k � 1, 2, . . . , m,

u t
+
k(  − u t

−
k(  � − Ik u tk( ( , k � 1, 2, . . . , m,

u(0) � 0, D
α
0+u(∞) � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

where α is a real number with 1< α≤ 2, Dα
0+ is the standard

Riemann–Liouville fractional derivative, t0 � 0,
1< t1 < t2 < · · · < tm <∞, u(t+

k ) � limh⟶0+ u(tk + h),
u(t−

k ) � limh⟶0+ u(tk − h), Dα− 1
0+ u(∞) � limt⟶∞Dα− 1

0+ u(t),
f(t, (1 + tα)u): [0,∞) × [0,∞)⟶ [0,∞) is continuous,
and Ik: [0,∞)⟶ [0,∞) (k � 1, 2, . . . , m) are continuous.
Wang and Ge proved that the problem they studied has at
least three positive solutions.

Motivated by the aforementioned work, we studied
existence of solution of problem (1) by Schauder’s fixed-
point theorem and Altman’s fixed-point theorem. -e main
features of this paper are as follows. Firstly, the nonlinear
term not only involved fractional order derivative but also
contained fractional integral. Compared with [9, 10, 13], our
nonlinear terms are more general. Many articles contain
derivatives for nonlinear terms, but few articles contain both
derivatives and integrals. Secondly, we studied the problem
on the infinite interval. To the best of our knowledge, there
are few articles involving the impulsive fractional order
differential equations on the infinite interval. If the nonlinear
term contained fractional integral and t ∈ [0,∞), it will
bring new obstacles to solve the problem. For this purpose,
we overcome obstacles by constructing a special cone.
-irdly, our problem is higher order impulsive fractional
equation. Compared with [9], we allowed α ∈ (n − 1, n],
where n> 2. It is obvious that our problem is more general.

-is paper is organized as follows. In Section 2, we
introduce some definitions and lemmas. In Section 3, we
give our main results by fixed-point theorem. In Section 4,
one example is presented to illustrate the main results.

2. Preliminaries and Lemmas

Let u: [0,∞)⟶ R, J � [0,∞), J0 � [0, t1], Jm � (tm,∞),
Jk � (tk, tk+1], k � 1, . . . , m − 1. For k � 1, 2, . . . , m, define
the function uk(t) � u(t). Let C(J, R) be the Banach space of
continuous functions from J to R. Let us to introduce the
Banach spaces

PC(J,R) � u: uk ∈ C Jk,R( , k � 0, 1, . . . , m, u

· t
+
k(  and u t

−
k(  exist, u tk( 

� u t
−
k( , lim

t⟶∞

u(t)

1 + t
α− 1 exsits,

(5)

with the norm
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‖u‖PC � sup
t∈[0,∞)

u(t)

1 + t
α− 1




,

PC1
(J,R) � u ∈ PC(J, R): D

α− 1
u(t) ∈ C Jk,R( , k � 0, 1, . . . , m, D

α− 1
u t

+
k(  andD

α− 1
u t

−
k(  exist, D

α− 1
u t

−
k( 

� D
α− 1

u tk( , lim
t⟶∞

D
α− 1

u(t) exists,

(6)

with the norm

‖u‖PC1 � max sup
t∈J

|u(t)|

1 + t
α− 1, sup

t∈J
D

α− 1
u(t)


 . (7)

Definition 1. -e Riemann–Liouville fractional integral of
order α> 0 of a function f: (0,∞)⟶ R is given by

J
α
0+f(t) �

1
Γ(α)


t

0
(t − s)

α− 1
f(s)ds, (8)

where the right side is pointwise defined on (0,∞).

Definition 2. -e Riemann–Liouville fractional derivative of
order α> 0 of a function f: (0,∞)⟶ R is given by

D
α
0+f(t) �

1
Γ(n − α)

d
dt

 

n


t

0
(t − s)

n− α− 1
f(s)ds, (9)

where n is the smallest integer greater than or equal to α and
the right side is pointwise defined on (0,∞). In particular,
for α � n, Dα

0+f(t) � f(n)(t).

Lemma 1. Let α> 0, and n denotes the smallest integer
greater than or equal to α. For all t ∈ [a, b],

J
α
0+D

α
0+u(t) � u(t) + c1t

α− 1
+ c2t

α− 2
+ · · · + cnt

α− n
, (10)

where cj ∈ R, j � 1, 2, . . . , n.

Lemma 2 (see [2]). LetΩ⊆PC1. 3en,Ω is relatively compact
in PC1 if the following conditions hold:

(1) Ω is bounded in PC1

(2) For any u(t) ∈ Ω, u(t)/1 + tα− 1 and Dα− 1u(t) are
equicontinuous on any interval Jk

(3) Given ε> 0, there exists a constant N � N(ε)> 0 such
that

u t1( 

1 + t
α− 1
1

−
u t2( 

1 + t
α− 1
2




< ε,

D
α− 1

u t1(  − D
α− 1

u t2( 


< ε,

(11)

for any t1, t2 ≥N and u(t) ∈ Ω.

Theorem 1 (Schauder fixed-point theorem). If U is a
closed bounded convex subset of a Banach space X and

T: U⟶ U is completely continuous, then T has at least one
fixed point in U.

Theorem 2 (Altman theorem). Let Ω be an open bounded
subset of a Banach space E with 0 ∈ Ω and T: Ω⟶ E be a
completely continuous operator. 3en, T has a fixed point in
Ω, provided that

‖Tx − x‖
2 ≥ ‖Tx‖

2
− ‖x‖

2
, ∀x ∈zΩ . (12)

Lemma 3. For a given y ∈ C(J,R), a function u ∈ PC1(J,R)

is a solution of the following boundary value problem:

D
α
0+u(t) + y(t) � 0, t ∈ [0,∞)∖ tk 

m

k�1,

△u tk(  � Ik u tk( ( , t � tk,

u(0) � u′(0) � · · · � u
(n− 2)

(0) � 0, D
α− 1
0+ u(∞) � u0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(13)

if and only if u ∈ PC1(J,R) is a solution of the impulsive
fractional integral equation

u(t) � −
1
Γ(α)


t

0
(t − s)

α− 1
y(s)ds +

t
α− 1

Γ(α)

∞

0
y(s)ds

+
t
α− 1

Γ(α)
u0 − t

α− 1

t<ti

Iit
1− α
i .

(14)

Proof. Assume u(t) satisfies (13). We denote the solution of
(13) by u(t)≜ uk(t) in Jk(k � 0, 1, . . . , m).

For t ∈ [0, t1], applying Lemma 1, we have

u0(t) � −
1
Γ(α)


t

0
(t − s)

α− 1
y(s)ds + C01t

α− 1
+ C02t

α− 2

+ · · · + C0nt
α− n

.

(15)

From u(0) � u′(0) � · · · � u(n− 2)(0) � 0, we know
C0n � · · · � C03 � C02 � 0. So, we get

u0(t) � −
1
Γ(α)


t

0
(t − s)

α− 1
y(s)ds + C01t

α− 1
, t ∈ 0, t1 ,

u t
−
1(  � −

1
Γ(α)


t1

0
t1 − s( 

α− 1
y(s)ds + C01t

α− 1
1 .

(16)

For t ∈ (t1, t2], by applying Lemma 1, we know
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u1(t) � −
1
Γ(α)


t

0
(t − s)

α− 1
h(s)ds + C11t

α− 1
+ C12t

α− 2

+ · · · + C1nt
α− n

.

(17)

In view of u(0) � u′(0) � · · · � u(n− 2)(0) � 0, we have
C1n � · · · � C13 � C12 � 0. So, we know

u1(t) � −
1
Γ(α)


t

0
(t − s)

α− 1
y(s)ds + C11t

α− 1
,

u t
+
1(  � −

1
Γ(α)


t1

0
t1 − s( 

α− 1
y(s)ds + C11t

α− 1
1 .

(18)

And from impulsive condition of (13),
△u(t1) � u(t+

1 ) − u(t−
1 ) � I1(u(t1)). -en,

−
1
Γ(α)


t1

0
t1 − s( 

α− 1
y(s)ds + C11t

α− 1
1

− −
1
Γ(α)


t1

0
t1 − s( 

α− 1
y(s)ds + C01t

α− 1
1  � I1 u t1( ( .

(19)

-us,

C11 � C01 + t
1− α
1 I1 u t1( ( . (20)

-en,

u1(t) � −
1
Γ(α)


t

0
(t − s)

α− 1
y(s)ds + t

α− 1
C01

+ t
α− 1

t
1− α
1 I1 u t1( ( , t ∈ t1, t2( .

(21)

For t ∈ (t2, t3], by applying Lemma 1, we obtain

u2(t) � −
1
Γ(α)


t

0
(t − s)

α− 1
h(s)ds + C21t

α− 1
+ C22t

α− 2

+ · · · + C2nt
α− n

.

(22)

In view of u(0) � u′(0) � · · · � u(n− 2)(0) � 0, we have
C2n � · · · � C23 � C22 � 0. So, we know

u2(t) � −
1
Γ(α)


t

0
(t − s)

α− 1
y(s)ds + C21t

α− 1
,

u t
+
2(  � −

1
Γ(α)


t2

0
t2 − s( 

α− 1
y(s)ds + C21t

α− 1
2 .

(23)

And from impulsive condition,
△u(t2) � u(t+

2 ) − u(t−
2 ) � I2(u(t2)). -en,

−
1
Γ(α)


t2

0
t2 − s( 

α− 1
y(s)ds + C21t

α− 1
2

− −
1
Γ(α)


t2

0
t2 − s( 

α− 1
y(s)ds + C11t

α− 1
2  � I2 u t2( ( .

(24)

We get

C21 � C11 + t
1− α
2 I2 u t2( (  � C01 + t

1− α
1 I1 u t1( ( 

+ t
1− α
2 I2 u t2( (  � C01 + 

2

i�1
t
1− α
i Ii.

(25)

Consequently,

u2(t) � −
1
Γ(α)


t

0
(t − s)

α− 1
y(s)ds + t

α− 1
C01

+ t
α− 1



2

i�1
t
1− α
i Ii, t ∈ t2, t3( .

(26)

By the recurrent method and Lemma 1, for t ∈ (tk, tk+1],
k � 0, 1, 2, . . . , m, we can say that

u(t)uk(t) � −
1
Γ(α)


t

0
(t − s)

α− 1
y(s)ds + t

α− 1
C01 + t

α− 1


k

i�1
t
1− α
i Ii.

(27)

-us, for t ∈ (tm,∞), we have

u(t) � um(t) � −
1
Γ(α)


t

0
(t − s)

α− 1
y(s)ds + t

α− 1
C01

+ t
α− 1



m

i�1
t
1− α
i Ii.

(28)
From Dα− 1

0+ u(∞) � u0, we get

− 
∞

0
y(s)ds + Γ(α) 

m

i�1
t
1− α
i Ii + Γ(α)C01 � u0. (29)

So,

C01 �
1
Γ(α)

u0 +
1
Γ(α)


∞

0
y(s)ds − 

m

i�1
t
1− α
i Ii. (30)

-erefore, for t ∈ [0,∞), we have

u(t) � −
1
Γ(α)


t

0
(t − s)

α− 1
y(s)ds +

t
α− 1

Γ(α)

∞

0
y(s)ds

+
t
α− 1

Γ(α)
u0 − t

α− 1


m

i�1
t
1− α
i Ii + t

α− 1

ti < t

t
1− α
i Ii

� −
1
Γ(α)


t

0
(t − s)

α− 1
y(s)ds +

t
α− 1

Γ(α)

∞

0
y(s)ds

+
t
α− 1

Γ(α)
u0 − t

α− 1

t<ti

t
1− α
i Ii.

(31)

Conversely, assume that u(t) satisfies impulsive frac-
tional integral equation (14). Obviously, we get
u(0) � u′(0) � · · · � un− 2(0) � 0, and Dα− 1

0+ u(∞) � u0. Us-
ing the fact Dα

0+tα− 1 � 0, we obtain Dα
0+u(t) � − y(t). Also,

we can easily show that△u(tk) � Ik(u(tk)), k � 1, 2, . . . , m.
-en, u is also the solution of problem (13). □
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3. Main Results

In this section, we will prove the existence of solution of (1) by
using Schauder fixed-point theorem and Altman theorem.

According to Lemma 3, we obtain the following lemma
first.

Lemma 4. u ∈ PC1(J,R) is a solution of problem (1) if and
only if u ∈ PC1(J,R) is a solution of the impulsive fractional
integral equation

u(t) � −
1
Γ(α)


t

0
(t − s)

α− 1
f s, u(s), J

β
u(s), D

α− 1
u(s) ds

+
t
α− 1

Γ(α)

∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s) ds

+
t
α− 1

Γ(α)
u0 − t

α− 1

t<ti

Iit
1− α
i , t ∈ J.

(32)

Define an operator T: PC1(J,R)⟶ PC1(J,R) as
follows:

(Tu)(t) � −
1
Γ(α)


t

0
(t − s)

α− 1
f s, u(s), J

β
u(s), D

α− 1
u(s) ds

+
t
α− 1

Γ(α)

∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s) ds

+
t
α− 1

Γ(α)
u0 − t

α− 1

t<ti

Iit
1− α
i , t ∈ J.

(33)

-en, problem (1) has a solution if and only if the op-
erator T has a fixed point.

Theorem 3. Assume that following conditions hold:
(H1) For f ∈ C([0, +∞)) × R × R × R, R), there exist

nonnegative functions a(t), b(t), c(t), e(t) ∈ L1(J) such that

|f(t, x, y, z)|≤ a(t)|x| + b(t)|y| + e(t)|z| + c(t),


+∞

0
1 + t

α− 1
 a(t) + b(t) dt<∞,


+∞

0
c(t)dt<∞, 

+∞

0

(1 + t)
α− 1

t
β

Γ(β + 1)
e(t)dt<∞.

(34)

(H2) For Ik ∈ C(R, R), for all u ∈ R, there exist some
constants Lk > 0 such that |Ik(u)| <Lk, k � 1, 2, . . . , m.

-en, problem (1) has at least one solution u(t) in
PC1(J,R).

Proof. Wewill use five steps to prove our conclusion. Firstly,
we will show T: PC1(J,R)⟶ PC1(J,R) is continuous.
From (33), we know

D
α− 1

Tu(t) � − 
t

0
f s, u(s), J

β
u(s), D

α− 1
u(s) ds + 

∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s) ds + u0 − Γ(α) 

t< ti

Iit
1− α
i . (35)

From (H1), we have


∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s) 



ds≤ 
+∞

0
a(s)|u(s)| + b(s) D

α− 1
u(s))


 + e(s) J

β
u(s)



 + c(s) ds

≤ 
+∞

0
1 + s

α− 1
 a(s)‖u‖PC + b(s) D

α− 1
u(s))


 +

(1 + s)
α− 1

s
β

Γ(β + 1)
e(s)‖u‖PC + c(s) ds

≤ ‖u‖PC1 
+∞

0
1 + s

α− 1
 a(s) + b(s) +

(1 + s)
α− 1

s
β

Γ(β + 1)
e(s) ds + 

+∞

0
c(s)ds

<∞.

(36)

Let un, u ∈ PC1(J,R) be such that un⟶ u(n⟶∞).
-en, ‖un‖PC1 <∞ and ‖u‖PC1 <∞. By (36) and the Lebesgue
dominated convergence theorem, we get

limn⟶∞ 
∞

0
f s, un(s), J

β
un(s), D

α− 1
un(s) ds

� 
∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s) ds.

(37)
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By (H1), (H2), and (36), we have

Tu(t)

1 + t
α− 1




� −

1
Γ(α)


t

0

(t − s)
α− 1

1 + t
α− 1 f s, u(s), J

β
u(s), D

α− 1
u(s) ds +

t
α− 1

1 + t
α− 1

1
Γ(α)


∞

0
f s, u(s), J

β
u



· s), D
α− 1

u(s) ds +
t
α− 1

1 + t
α− 1

1
Γ(α)

u0 −
t
α− 1

1 + t
α− 1 

t<ti

Iit
1− α
i



≤
2
Γ(α)


∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s) 



ds +
u0




Γ(α)
+ 

t<ti

Lit
1− α
i <∞,

(38)

D
α− 1Tu(t)


 � − 

t

0
f s, u(s), J

β
u(s), D

α− 1
u(s) ds + 

∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s)  + u0 − Γ(α) 

t<ti

Iit
1− α
i





≤ 
∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s) 



ds + 
∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s) 



ds + u0


 + Γ(α) 
t<ti

Lit
1− α
i <∞.

(39)

Hence, according to (37)–(39) and Lebesgue dominated
convergence theorem, we can easily get

Tun − Tu
����

����PC1⟶ 0 (n⟶∞). (40)

-erefore, T: PC1(J,R)⟶ PC1(J,R) is continuous.
Secondly, choose r such that

r≥
2
∞
0 c(s)ds + u0


 + Γ(α)t<ti

Lit
1− α
i

1 − 2
∞
0 1 + s

α− 1
 a(s) + b(s) +(1 + s)

α− 1
s
β/Γ(β + 1)e(s) ds

,

(41)

and let Br �
����u ∈ PC1‖u‖PC1 ≤ r  ⊂ PC1(J,R).

For any u(t) ∈ Br, by (41) and condition (H1), we have

Tu(t)

1 + t
α− 1




≤

2
Γ(α)


∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s) 



ds +
u0




Γ(α)
+ 

t<ti

Lit
1− α
i

≤
2‖u‖PC1

Γ(α)


+∞

0
1 + s

α− 1
 a(s) + b(s) ds +

2
Γ(α)


+∞

0
c(s)ds

+
2‖u‖PC1

Γ(α)


+∞

0

(1 + s)
α− 1

s
β

Γ(β + 1)
e(s)ds +

u0




Γ(α)
+ 

t<ti

Lit
1− α
i

≤ r,

D
α− 1Tu(t)


≤ 2

∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s) 



ds + u0


 + Γ(α) 
t<ti

Lit
1− α
i

≤ 2‖u‖PC1 
+∞

0
1 + s

α− 1
 a(s) + b(s) +

(1 + s)
α− 1

s
β

Γ(β + 1)
e(s) ds

+ 2
+∞

0
c(s)ds + u0


 + Γ(α) 

t<ti

Lit
1− α
i

≤ r.

(42)
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So, ‖Tu‖PC1 ≤ r and T: Br⟶ Br.
-irdly, we show that TBr is uniformly bounded. From

(38) and (39), we know

supt∈J
Tu(t)

1 + t
α− 1




<∞,

supt∈J D
α− 1Tu(t)


<∞.

(43)

So, for u ∈ Br, it is easy to know that ‖Tu‖PC1 <∞.
Hence, TBr is uniformly bounded.

Fourth, we prove that for any u(t) ∈ Br, (Tu(t)/1 + tα− 1)

and Dα− 1Tu(t) are equicontinuous on any interval Jk.
For any u(t) ∈ Br, t1, t2 ∈ Jk (k � 0, 1, 2, . . . , m), t1 < t2,

we have

Tu t2( 

1 + t
α− 1
2

−
Tu t1( 

1 + t
α− 1
1




≤

1
Γ(α)


t1

0

t2 − s( 
α− 1

1 + t
α− 1
2

−
t1 − s( 

α− 1

1 + t
α− 1
1




f s, u(s), J

β
u(s), D

α− 1
u(s) 



ds

+
1
Γ(α)


t2

t1

t2 − s( 
α− 1

1 + t
α− 1
2

f s, u(s), J
β
u(s), D

α− 1
u(s) 



ds

+
1
Γ(α)


∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s) 



ds
t
α− 1
2

1 + t
α− 1
2

−
t
α− 1
1

1 + t
α− 1
1





+
u0




Γ(α)

t
α− 1
2

1 + t
α− 1
2

−
t
α− 1
1

1 + t
α− 1
1




+

t<t2Lit
1− α
i

Γ(α)

t
α− 1
2

1 + t
α− 1
2

−
t
α− 1
1

1 + t
α− 1
1




⟶ 0 if t2⟶ t1,

D
α− 1Tu t2(  − D

α− 1Tu t1( 


≤ 
t2

t1

f s, u(s), J
β
u(s), D

α− 1
u(s) 



ds + Γ(α) 
t2 < ti

Iit
1− α
i − Γ(α) 

t1 < ti

Iit
1− α
i




⟶ 0 if t2⟶ t1.

(44)

-erefore, for any u(t) ∈ Br, Tu(t)/1 + tα− 1 and
Dα− 1Tu(t) are equicontinuous on any interval Jk.

Fifth, we need to verify that condition (3) in Lemma 2 is
satisfied. It means that we need to verify Tu(t)/1 + tα− 1 and

Dα− 1Tu(t) are equiconvergent at
t � Jk (k � 1, 2, . . . , m, . . . , ) and t �∞ for any u ∈ Br. We
have

lim
t⟶∞

|Tu(t)|

1 + t
α− 1 ≤ lim

t⟶∞

2
Γ(α)


∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s) 



ds
t
α− 1

1 + t
α− 1 +

u0




Γ(α)

t
α− 1

1 + t
α− 1 + 

t<ti

Lit
1− α
i

t
α− 1

1 + t
α− 1

⎡⎢⎢⎣ ⎤⎥⎥⎦

≤
2‖u‖PC1

Γ(α)

∞

0
1 + s

α− 1
 a(s) + b(s) +

(1 + s)
α− 1

s
β

Γ(β + 1)
e(s) ds +

2
Γ(α)


∞

0
c(s)ds +

u0

Γ(α)
+ 

t<ti

Lit
1− α
i

⎛⎝ ⎞⎠

limt⟶∞
t
α− 1

1 + t
α− 1 <∞,

lim
t⟶∞

D
α− 1Tu(t)


< lim

t⟶∞

∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s) 



ds + 
∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s) 



ds + u0


 + Γ(α) 
t<ti

Lit
1− α
i

⎡⎢⎢⎣ ⎤⎥⎥⎦

< limt⟶∞ 2‖u‖PC1 
∞

0
1 + s

α− 1
 a(s) + b(s) +

(1 + s)
α− 1

s
β

Γ(β + 1)
e(s) ds + 2

∞

0
c(s)ds + u0


 + Γ(α) 

t<ti

Lit
1− α
i

⎡⎢⎢⎣ ⎤⎥⎥⎦

<∞.

(45)
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Hence, TBr is equiconvergent at infinity. -en, we prove that Tu(t)/1 + tα− 1 and Dα− 1Tu(t) are
equiconvergent at t⟶ t+

k (k � 0, 1, 2, . . . , ). We have

lim
t⟶t+

k

Tu(t)

1 + t
α− 1
k

+
1
Γ(α)


tk

0

tk − s( 
α− 1

1 + t
α− 1
k

f s, u(s), J
β
u(s), D

α− 1
u(s) ds −

t
α− 1
k

Γ(α) 1 + t
α− 1
k 




∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s) ds

−
t
α− 1
k

Γ(α) 1 + t
α− 1
k 

u0 +
t
α− 1
k

1 + t
α− 1
k


tk < ti

Iit
1− α
i


� 0,

lim
t⟶t+

k

D
α− 1Tu(t) + 

tk

0
f s, u(s), J

β
u(s), D

α− 1
u(s) ds − 

∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s) ds − u0 + Γ(α) 

tk < ti

Iit
1− α
i




� 0.

(46)

-erefore, Tu(t)/1 + tα− 1 and Dα− 1Tu(t) are equi-
convergent at t � Jk (k � 1, 2, . . . , m, . . . , ) and t �∞ for
any u ∈ Br. By using Lemma 2, we obtain that TBr is rel-
atively compact, that is, T is a compact operator.

-erefore, Schauder’s fixed-point theorem implies that
problem (1) has at least one solution in Br.

Our second result is based on Altman fixed-point
theorem. □

Theorem 4. Assume (H2) and the following condition hold:
(H3) For f ∈ C([0, +∞) × R × R × R, R), there exist

nonnegative functions a(t), b(t), c(t) defined on [0,∞) and
constants p, q, l≥ 0 such that

|f(t, x, y, z)|≤ a(t) + b(t)|x|
p

+ c(t)|y|
q

+ e(t)|z|
l
,


+∞

0
a(t)dt � a

∗ <∞, 
+∞

0
1 + t

α− 1
 

p
b(t)dt � b

∗ < +∞, 
+∞

0
c(t)dt � c

∗ < +∞,


+∞

0

(1 + t)α− 1tβ

Γ(β + 1)
 

l

e(t)dt � e
∗ <∞.

(47)

If 0≤p, q, l< 1, then problem (1) has at least one solution
u(t) in PC1(J,R).

Proof. Let us choose

R≥max 12a
∗
, 12b

∗
( 

1/1− p
, 12c

∗
( 

1/1− q
, 12e

∗
( 

1/1− l
, 6 u0


, 6Γ(α) 

t<ti

Lit
1− α
i

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (48)
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and define U � u ∈ PC1|‖u‖PC1 ≤R . According to-eorem
3, we know T: U⟶ U is a completely continuous operator.
For any u ∈zU, by (H3), we have

Tu(t)

1 + t
α− 1 ≤

2
Γ(α)


∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s) 



ds +
u0




Γ(α)
+ 

t<ti

Lit
1− α
i

≤
2
Γ(α)


∞

0
a(s) + b(s)|u(s)|

p
+ c(s) D

α− 1
u(s)



q

+ e(s) J
β
u(s)




l

 ds  +
u0




Γ(α)
+ 

t<ti

Lit
1− α
i

≤
2
Γ(α)

a
∗

+ 
∞

0
b(s) 1 + s

α− 1
 

p |u(s)|
p

1 + s
α− 1

 
p ds + 

∞

0
c(s)‖u‖

q

PC1ds + 
+∞

0
e(s)

(1 + s)α− 1sβ

Γ(β + 1)
 

l

‖u‖
l
PC1ds⎛⎝ ⎞⎠

+
u0




Γ(α)
+ 

t<ti

Lit
1− α
i

≤
2
Γ(α)

a
∗

+ b
∗
‖u‖

p

PC1 + c
∗
‖u‖

q

PC1 + e
∗
‖u‖

l
PC1  +

u0




Γ(α)
+ 

t<ti

Lit
1− α
i

≤
2
Γ(α)

R

12
+

R

12
+

R

12
+

R

12
  +

R

6Γ(α)
+

R

6Γ(α)

<R,

(49)

D
α− 1Tu(t)


≤ 2

∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s) 



ds + u0


 + Γ(α) 
t<ti

Lit
1− α
i

≤ 2 a
∗

+ b
∗
‖u‖

p

PC1 + c
∗
‖u‖

q

PC1 + e
∗
‖u‖

l
PC1  + u0


 + Γ(α) 

t<ti

Lit
1− α
i

≤ 2
R

12
+

R

12
+

R

12
+

R

12
  +

R

6
+

R

6
� R.

(50)

-us, from (49) and (50), we have TU ⊂ U and
‖Tu‖PC1 ≤ ‖u‖PC1 , ∀u ∈zU. So, by -eorem 2, we know that
problem (1) has at least one solution. □

Theorem 5. Assume that conditions (H2) and (H3) are
satisfied. If p � q � l � 1, (1 + Γ(α))(b∗ + c∗)< Γ(α), then
problem (1) has at least one solution.

Proof. Let us take

R>
u0


 + Γ(α)t<ti

Lit
1− α
i + 2a

∗

1 − 2 b
∗

+ c
∗

+ e
∗

( 
, (51)

and define U � u ∈ PC1|‖u‖PC1 <R .
For any u ∈zU, we have
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Tu(t)

1 + t
α− 1 ≤

2
Γ(α)


∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s) 



ds +
u0




Γ(α)
+ 

t<ti

Lit
1− α
i

≤
2
Γ(α)


∞

0
a(s) + b(s)|u(s)| + c(s) D

α− 1
u(s)


 + e(s) J

β
u(s)



 ds  +
u0




Γ(α)
+ 

t<ti

Lit
1− α
i

≤
2
Γ(α)

a
∗

+ 
∞

0
b(s) 1 + s

α− 1
 

|u(s)|

1 + s
α− 1

 
ds + 

∞

0
c(s)‖u‖PC1ds + 

∞

0
e(s)

|u(s)|

1 + s
α− 1

 

(1 + s)
α− 1

s
β

Γ(β + 1)
⎡⎢⎣ ⎤⎥⎦ +

u0




Γ(α)
+ 

t<ti

Lit
1− α
i

≤
2
Γ(α)

a
∗

+ b
∗
‖u‖PC1 + c

∗
‖u‖PC1 + e

∗
‖u‖PC1(  +

u0




Γ(α)
+ 

t<ti

Lit
1− α
i

≤
2
Γ(α)

a
∗

+ b
∗
R + c
∗
R + e
∗
R(  +

u0




Γ(α)
+ 

t<ti

Lit
1− α
i

<R,

(52)

D
α− 1Tu(t)


≤ 2

∞

0
f s, u(s), J

β
u(s), D

α− 1
u(s) 



ds + u0


 + Γ(α) 
t<ti

Lit
1− α
i

≤ 2 a
∗

+ b
∗
‖u‖PC1 + c

∗
‖u‖PC1 + e

∗
‖u‖PC1(  + u0


 + Γ(α) 

t<ti

Lit
1− α
i

≤ 2 a
∗

+ b
∗
R + c
∗
R + e
∗
R(  + u0


 + Γ(α) 

t<ti

Lit
1− α
i

<R.

(53)

-us, from (52) and (53), we have TU ⊂ U and
‖Tu‖PC1 ≤ ‖u‖PC1 , ∀u ∈zU. So, by -eorem 2, we know that
problem (1) has at least one solution. □

Remark 1. If we use other conditions instead of the con-
dition “p � q � 1”, for example, 0≤p< 1, q � 1 or p> 1, q �

1 or 0≤ q< 1, p � 1 or q> 1, p � 1 or p, q> 1 or
0≤p< 1, q> 1 or 0≤ q< 1, p> 1, and choose proper R, re-
spectively, then we can obtain the same result. -e proof is
similar to -eorem 4 or -eorem 5, so we omit it.

4. Example

In this section, we give an example to illustrate of our main
result.

Example 1. Consider the following impulsive boundary
value problem of fractional order:

D
3/2
0+ u(t) +

ln 1 + D
1/2
0+ u(t)



 

20 1 + t
2

 
+

������������
u(t)D

1/2
0+ u(t)







20e
�
t

√ +
J
3/2

u(t)




20e
t � 0, t ∈ [0,∞)∖

1
2

 ,

△u
1
2

  � I u
1
2

  , t �
1
2
,

u(0) � u′(0) � 0, D
1/2
0+ u(∞) � u0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(54)
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where α � 3/2, f(t, x, y, z) � ln(1 + |y|)/20(1 + t2) +����
|xy|


/20e

�
t

√

+ |z|/20et, k � 1, t1 � 1/2.
Let I(u) � 1/(u + 1/u). -en, we have

|f(t, x, y)|≤
1

40e
�
t

√ |x| +
1

20 1 + t
2

 
+

1

40e
�
t

√⎛⎝ ⎞⎠|y| +
1

20e
t |z|,

I(u) �
1

|u| + 1/|u|
≤ 1.

(55)

By computing, we know that


+∞

0
1 + t

α− 1
 a(t) + b(t) dt � 

+∞

0
1 + t

1/2
 

1

40e
�
t

√ +
1

20 1 + t
2

 
+

1

40e
�
t

√⎡⎢⎣ ⎤⎥⎦dt �
1
5

+
π
40
≈ 0.2785<∞,


+∞

0

(1 + t)
α− 1

t
β

Γ(β + 1)
e(t)dt � 

+∞

0

(1 + t)
1/2

t
3/2

Γ(5/2)

1
20e

t ≈ 64.5850<∞.

(56)

-us, the conditions of -eorem 3 are satisfied, and
hence problem (54) has at least one solution.

Remark 2. By theorems in [9, 10, 13], this problem could not
be solved.
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