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Accurate calculation of temperature, stress, sag, and critical current (corresponding to critical temperature) of operational
overhead conductors is important for ensuring the strength and sag safety of overhead lines. Based on 2D steady-state heat transfer
equations, this article studies the temperature fields of the cross section of typical electrified conductors and establishes numerical
simulation methods for calculating the layered stress, sag, and critical temperature. Using the algorithm, the relationship between
the critical temperature and characteristics of conductors (e.g., the sag and tensile force) is studied. -e results are verified by a
comparison with the test results for heat-resistant aluminum alloy conductors JNRLH1/G1A-400/65 and JNRLH1/G1A-630/55.
Finally, the paper studies the relationship between the critical temperature of the conductor and its most sensitive factors.

1. Introduction

During peak times, it is often necessary to dynamically
increase the current of overhead lines to meet the power
supply demands. In these cases, the stress and sag of con-
ductors must be accurately calculated to avoid breakage due
to excessive stress, multicircuit wire mixture [1], or non-
enough safety distance to the ground caused by large sag. In
addition, the stress at different layers of strands (called
layered stress) and the sag are generally affected by the
temperature fields on the conductor cross sections. Only
when the temperature fields are simulated accurately can the
layered stress and sag be calculated actually. Moreover, due
to the uneven thermal expansion in different layers during
operation, the mechanical properties of the conductor’s
cross section will greatly change at definite temperature
which is defined as the critical temperature (CT) [2, 3].
However, to the author’s knowledge, there is limited re-
search on the safety assessment of overhead conductors at
the CT. -erefore, calculation of the temperature fields,
layered stress, sag and tensile force, and the analysis of the
safety of overhead lines at CT are of great significance.

Many experimental studies [4–12] have shown that the
radial temperature of conductors is not evenly distributed.
IEEE specifications [13] proposed that there is radial tem-
perature gradient among each layer. In recent years, some
methods [14–16] based on the finite element method were
proposed to simulate the conductor radial temperature field.
With these methods, models better conforming to the actual
sectional structure of conductors can be established to avoid
calculation errors due to improper values for effective
thermal conductivity. However, these studies failed to fully
consider the impact of cross-section gap distribution, inter-
strand contact, and convection conditions on the radial
temperature field. Furthermore, there is little research that
systematically studied the temperature field, layered stress,
sag, and critical temperature of conductors. -is paper
proposes a complete set of numerical methods to calculate
the temperature field, layered stress, and critical current (or
temperature) of overhead conductors. -e temperature field
with voids is calculated by using the finite element method,
and the layered stress and sag are calculated by using the
temperature results. -e CT and the corresponding critical
current (CC) are calculated through the temperature and
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stress calculative method iteratively. By comparing the re-
sults of calculation with those of the experiments for a typical
ACSR (aluminum-conductor steel reinforced), the algo-
rithms are verified. In order to facilitate the dynamic as-
sessment of safety of the conductors during the operation,
this paper studies the relationship between the critical
temperature of the conductor and its sensitive factors with
the heat-resistant aluminum alloy conductor JNRLH1/G1A-
400/65 as an example.

2. Calculation of Conductor Temperature Field

-e thermal balance equation of the entire cross sectionΩ of
the conductor can be established [14]:

k T,xx + T,yy􏼐 􏼑 + s � 0, (x, y) ∈ Ω. (1)

And the boundary condition on the surface of the
conductor Γ can also be given [14]:

qn � −k T,xnx + T,yny􏼐 􏼑 � α T − Ta( 􏼁, l(x, y) ∈ Γ, (2)

where T,xx, T,yy, T,x, and T,y indicate the second-order
derivatives and first-order derivatives of the 2D temperature
field T in the conductor on the x and y coordinates, re-
spectively; qn indicates the heat loss rate along the normal
direction n on the outer surface of the conductor; nx and ny

are the components of n in the direction of x and y; α in-
dicates the composite heat loss coefficient; Ta indicates the
ambient temperature; k is the thermal conductivity, repre-
sented by ka in the area of the aluminum strand, ks in the
area of the steel core, and kair in the area of the air; and s
indicates the rate of heat per unit volume, represented by sa

in the area of the aluminum strand, ss in the area of the steel
core, and 0 in the area of the air. Herein, ka and ks are
irrelevant to temperature field, while kair is relevant to it, and
the relationship is as follows:

kair � 2.42 × 10−2
+ 7.2 × 10− 5

Tav, (3)

where Tav indicates the average temperature of the cross
section. -e voltage of steel core per unit length is the same
as that of aluminum strand. -e current is inversely pro-
portional to the resistance which is inversely proportional to
the conductor cross section and proportional to the resis-
tivity [14]. -e ratio between the current Is of steel core and
that Ia of aluminum strand is

λ �
Is

Ia

�
As

Aa

ρa

ρs

, (4)

where As and ρs are the cross-sectional area and electrical
resistivity of steel core, respectively, and Aa and ρa are the
area and electrical resistivity of aluminum strand re-
spectively. -e rate of heat of steel core per unit volume ss

is

ss �
Pλ/(λ + 1)

As

. (5)

External aluminum strands should consider solar energy
[17], so the rate of heat per unit volume sa is

sa �
P/(λ + 1)

Aa

+
csSD
Aa

. (6)

In equation (6), the first term on the right end of the
equation is caused by the current, and the second term is
caused by the solar radiation, P indicates its total Joule heat
gain [17] which is the function of the current, average
temperature, and integrated resistance rate of the conductor,
S indicates the solar intensity, cs indicates the solar ab-
sorption of the conductor with a value of 0.23–0.9 and is
usually valued at 0.5, and D indicates the conductor
diameter.

An aluminum-conductor steel-reinforced cable (ACSR)
mainly loses heat by means of convective cooling Pc and
radiative cooling Pr. -e calculation of heat loss is provided
in the literature [17]. According to the principle of constant
heat loss per unit volume, the composite heat transfer co-
efficient of conductor surface in equation (2) can be
determined:

α �
Pc + Pr

Tsur − Ta( 􏼁A
, (7)

where A indicates the lateral surface area of conductor per
unit length (that is, the interface of the conductor and the
external environment).

3. Calculation of Conductor Stress Field

-is article assumes that conductors can only be resistant to
tension, ignoring their resistance to shear, bend and torsion
[18], and the tensile force on each strand of the same layer is
equal [19]. -ree basic conditions are required when per-
forming calculations for overhead conductors: (1) defor-
mation compatibility; (2) material constitutive relationship;
and (3) balance of internal and external forces.

3.1. Deformation Compatibility. Using the condition of
deformation compatibility, the strain of each strand can be
represented by the longitudinal strain. For a strand with a
length of Si, if unfolding it, as shown in Figure 1, the de-
formation compatibility equation can be obtained as follows
[20]:

ε0Ls �
ΔSi

sin αi

+
ΔRiφi

tan αi

, (8)

where ε0 indicates the axial strain of the overhead conductor;
Ls indicates the length of the overhead conductor corre-
sponding to a strand with a length of Si; αi indicates the angle
between the tangent of layer i of the strand and the con-
ductor cross section; ΔRiφi indicates the lateral deformation
of the unfolded strand; and φi indicates the ratio between
projected length of the unfolded strand on the cross section
and the outer radius Ri of layer i of the strand as follows:

φi � Si cos αi/Ri. (9)

From the geometrical relationship, equation (10) can be
obtained as follows:
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sin αi �
Ls

Si

. (10)

Dividing the left and right sides of equation (8) by Si and
simplifying it with equations (9) and (10), the relationship
between the strain of layer i of the strand and the conductor
ε0 is

εi � ε0sin
2αi −
ΔRi

Ri

cos2αi. (11)

3.2. Lateral Deformation. From the inside to outside, the
lateral deformation ΔRi of conductors of layer i includes
three parts: (1) the deformation Δri1′ arising from cross-
section shrinkage due to the Poisson effect when the strands
of layer i are stretched along their own axis [20]; (2) the
deformation Δri2′ due to squeezing between layers; and (3)
the deformation ΔriT

′ due to thermal expansion (or con-
traction). Studies have shown that the lateral deformation
ΔRi has a nonlinear functional relation with axial strain ε0.
-e calculation of ε0 with ΔRi requires iteration, which leads
to complicated procedures. Furthermore, study on the lat-
eral deformation of ACSR (JL/LB1A-300/50) found that the
lateral deformation of the first two parts is very small (the
lateral deformation of the first two parts is less than 1%) [21]
and can be neglected compared with that of the third part.
-e equation of lateral deformation can be simplified as
follows:

ΔRi � −ΔriT
′ . (12)

-e term ΔriT
′ in equation (12) indicates the total de-

formation of layer i due to changes in temperature.

ΔriT
′ �

Δr1T, i � 1,

Δr1T + 2􏽘
i−1

j�2
ΔrjT + ΔriT, i � 2, n.

⎧⎪⎪⎨

⎪⎪⎩
(13)

-e equation ofΔrjT (strand deformation due to thermal
expansion or contraction) in equation (13) is as follows:

ΔrjT � αjTrj Tj − 20􏼐 􏼑, (j � 1, 2, . . . n), (14)

where αjT and Tj indicate the coefficient of thermal ex-
pansion and the average temperature of jth layer, respec-
tively. -e strain εiT due to changes in temperature is as
follows:

εiT � αiT Ti − 20( 􏼁. (15)

3.3. Balance Equation of Internal and External Force.
Linear elastic material is supposed in this article. -e re-
sultant axial internal force of the conductor section can be
obtained by summing up all axial components of internal
forces of strands on the cross section. -e internal force of
each strand of layer i is as follows:

pi � Ei εi − εiT( 􏼁Ai, (16)

whereEi indicates themodulus of layer i of the conductor;Ai

indicates the cross-sectional area of one strand in layer i.
What needs to be mentioned is that the temperature strain
εiT (see equation (15)) of each layer of strands may differ due
to the difference of the thermal expansion coefficient. As the
temperature arises, aluminum strands with a higher thermal
expansion coefficient may get zero stress, and even some of
them get negative stress. As a result, all the external force is
resisted by the steel strands. -is may cause changes to the
composite property of the overhead conductors and will be
studied in detail in Section 4.2 later.

-e equation of the axial internal forces on the cross
section can be obtained as follows:

P ε0( 􏼁 � 􏽘
n

i�1
pini sin αi, (17)

where ni indicates the number of layer i strands. Figure 2 is
the diagrammatic sketch of single span overhead conductor,
in which the letters “A”, “B,” and “O” represent the sus-
pension points on the left and right and the lowest point,
respectively. -e span of the overhead conductor is l and the
height difference is h (when suspension point B on the right
is higher than A on the left, h is positive, otherwise it is
negative).-e ratio between h and l is denoted as β.-e axial
tensile external force N(x) at the distance x from the left
suspension point A (as shown in Figure 2) can be calculated
according to the axial tensile stress at the lowest point O σ0
[18]. In equation (18), c denotes the gravity of conductor per
unit length:

N(x) � σ0A0

��������������������

1 + tan β −
c(1 − 2x)

2σ0 cos β
􏼢 􏼣

2

􏽶
􏽴

. (18)

-us, the force balance equation of the conductor section
at distance of x from the origin can be obtained as follows:

f ε0( 􏼁 � N(x) − P ε0( 􏼁 � 0. (19)

B’’ B’

B

ΔSi

αi
αiA

B

Riφi

Riφi ΔRiφi
A

Si
Ls

Lsε0

Figure 1: Unfolding view of the strand.
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4. Calculation of Sag and Critical Current
(or Temperature)

4.1. Sag. Sag refers to the vertical distance between the lo-
cation of actual overhead lines and the line connecting the
left and right suspension points, such as the sag fM at the
midpoint of the conductor (shown in Figure 2). Studies
showed that the sag of overhead conductors can be ap-
proximately represented by a parabola [18]. If suspension
point A on the left is regarded as the origin, the sag fx at the
location x is as follows:

fx � fM · 4x(l − x)/l2. (20)

-e relation between the sag fM in the midpoint of the
conductor and its arc length L is as follows [18]:

fM �

�����������������

L −
l

cos β
􏼠 􏼡 ·

3l

8 cos3 β

􏽳

. (21)

If the deformation (due to the gravity and other ex-
ternal loads) is neglected (that is, the axial rigidity of the
conductor is assumed to be infinite), its initial arc length L0
is as follows:

L0 �

���������������

2σo

c
sh

cl

2σo

􏼠 􏼡

2

+ h2

􏽶
􏽴

. (22)

If the sag fM at the midpoint is known, the horizontal
tensile stress can be calculated with the following
equation:

σ0 �
cl2

8fM cos β
. (23)

If the sag fM at the midpoint is unknown but the height
difference fAO between the left suspension point and the
lowest point is known, the horizontal tensile stress can be
obtained by solving the following equation:

σ0
c

1 − ch
cl

2σ0
􏼠 􏼡

����������

1 +
h

Lh�0
􏼠 􏼡

2

􏽶
􏽴

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
h

2
+ fAO � 0. (24)

In the operation, the arc length of the overhead line will
change with the effect of current and load. If the average strain
of the whole overhead conductor is ε, the arc length L is

L � L0(1 + ε). (25)

4.2. Critical Temperature and Critical Current. Overhead
conductors are generally twisted by multilayers of strands.
-e deformation of each strand is caused by stress or due to
changes in temperature. -e deformation due to changes in
temperature will not cause internal force in the strands. As
the coefficients of thermal expansion and temperature of
each layer of strands are different, their temperature de-
formations are also different. With the increase of tem-
perature, the distribution of stresses in the strands of each
layer will vary. If the resultant external force on the con-
ductor is constant, when the temperature rises, the tensile
stresses of strands with greater thermal deformation (alu-
minum strands with higher thermal expansion coefficients)
will decrease while the stress of other strands (generally steel
core with lower coefficients) will increase. When the tem-
perature reaches a certain critical value, the resultant axial
forces on all aluminum strands are zero. At this point, the
average temperature of the cross section and the corre-
sponding current are defined as critical temperature (CT)
and critical current (CC), respectively. Note that the CT is
the same concept as the knee-point temperature [22–24].
-e CC Ic and CT Tc of the conductor meet the following
conditions:

Pa(I)
􏼌􏼌􏼌􏼌I�Ic

� 0, (26)

Pa(I) � 􏽘

na

i�1
σi(I)miAi sin αi, (27)

Tc � T Ic( 􏼁, (28)

where Pa(I) indicates the resultant force on the aluminum
strands when the current is I; mi indicates the number of
aluminum strands of layer I; αi indicates the angle between
the layer i aluminum strands and the cross section; Ai in-
dicates the cross-sectional area of a single strand of the layer i
aluminum strand; σi indicates the stress of layer i aluminum
strands; and na indicates the total layers of aluminum
strands. CT and CC are related to span, height difference,
external load (including its own weight), ambient temper-
ature, wind speed, and solar heating.

4.3. Calculation Process. -e CT, temperature field, sag, and
layered stress proposed above can be calculated according to
the flowcharts shown in Figure 3. -e main calculative
module indicates the process for calculating CTand CC.-e
submodules involve the calculation process of temperature
field (submodule 1 in Figure 3) and the calculation process of
sag and stress (submodule 2 in Figure 3). -e two sub-
modules need to be repeatedly called in the calculation of
critical temperature. -e calculation steps of the main
module are as follows:

Step 1: set the initial values of current step size dI,
number of iterations i � 0, and allowable error tol.
Calculate the upper and lower limits of current. Per-
form steps 1.1–1.3:

A

B

x

y

l

h
fM

O

fx

l/2

x
fAO

β

Figure 2: Diagrammatic sketch of the overhead conductors.
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Step 1.1: call the submodule 1 to calculate the
temperature field of the conductor cross section with a
given current I � i · dI.

Step 1.2: call the submodule 2 to calculate the layered
stress of the conductor and the resultant force Pa on
aluminum strands (see equation (27)).

Step 1.3: if Pa ≥ 0, i � i + 1, go to Step 1.1. Oth-
erwise, the upper and lower limits of CCI(2) � i · dI

and I(1) � (i − 1) · dI and the corresponding resul-
tant force P(2)

a and P(1)
a on the aluminum strands are

obtained.

Step 2: calculate the CT and CC with the false position
method. Perform steps 2.1∼2.3:

Step 2.1: update the CC I � I(2) − P(2)
a (I(2) − I(1))/

(P(2)
a − P(1)

a ) according to its upper and lower limits.

Step 2.2: if |I − I(2)|≥ tol, perform step 2.2.1∼step 2.2.3:

Step 2.2.1: call the submodules 1 and 2 to calculate
the resultant force Pa on the aluminum strands when
the current is I.

Step 2.2.2: if Pa · P(2)
a < 0, update the lower limit,

i.e., I(1) � I(2), P(1)
a � P(2)

a .

Given values for paremeters ks, ka, I, Ta and vw;
Set initial values Itmax, tol, i = 0,T(i) = Ta;

Import the mesh of the cross section

||T(i)–T(i–1)|| ≥ tolYes

No

Solve T(i) using finite element method

i = i + 1
If i ≤ Itmax , continue

Else exit and prompt an error

Calculate Tav, Tsur, kair, ss, sa, α

Output T(i)

Given dI, let the initial value be i = 0

I = i·dI, solve the temperature field

Pa ≥ 0

Determine the upper and lower limits:

I(1) = (i − 1) · dI, Pa
(1) = Pa|I=I

(1)

Pa
(2) = Pa|I=I

(2)I(2) = i · dI,

If (Pa · Pa
(2) < 0) then I(1) = I(2), Pa

(1) = Pa
(2)

|I − I(2)| ≥ tol Solve temperature field, calculate Pa

i = i + 1
Yes

No

Output Ic and Tc, etc.

Yes

No

Enter submodule 1

Enter submodule 2

Enter submodule 1 Enter submodule 2

Solve the stress field, obtain Pa

I = I(2) – Pa
(2)(I(2) – I(1))/(Pa

(2) – Pa
(1))

Sub-module1: the calculation
process of temperature fields

The main module

Read in h, l, γ, etc.;
Let initial values i = 0;

Solve σ0(using equation 24),
calculate fm(0) (using equation

22 and 21)

for each node j = 1~n,perform:

1.solve N (x)using equation 18
2.calculate Pa

(j) solving equation
19

Output: ε(j) = ε, Pa
(j),

layered stress and strain

Given ε(1) and ε(2). Read in parameters
of ith layer: Ei, Ai, αiT, αi, ni, Ti

i = i + 1
If i ≤ Itmax, continue
Else exit and promt

an error

Output: fm(i), min (Pa
(j), j = 1~n), etc.

||fm(i) − fm(i–1)|| ≥ tol

Calculate f (ε(1), f (ε(2)) and ∆Ri

Calculate f (ε)

If f (ε)f (ε)(2) < 0 then:
ε(1) = ε(2), f (ε(1)) = f (ε(2))

Yes

No

Yes

No

Submodule 2: the calculation
process of sag and stress

Solve the stress and
strain for each cross

section

I(2) = I, Pa
(2) = Pa

ε = ε(2) − f (ε(2))(ε(2)− ε(1))/[f (ε(2)) − f (ε(1))]

|ε − ε(2)| ≥ tol

ε(2) = ε, f (ε(2)) = f (ε)

Calculate ε– =
n
j=1 ε(j)/n, L(i) and fm

(i)

Figure 3: -e calculation methods for critical temperature, temperature field, sag, and layered stress.
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Step 2.2.3: update the upper limit, i.e.,
I(2) � I, P(2)

a � Pa, and go to step 2.1.

Step 2.3: otherwise, output the critical current Ic,
critical temperature Tc, and corresponding layered stress.

-e calculation of temperature field is performed with
fixed point iteration, and the calculative process is as follows:

Step 1: set the initial values of allowed maximum
number of iterations Itmax, allowed error tol, coefficient
of thermal conductivity ks for steel core and ka for
aluminum strands, current I, ambient temperature Tc,
and wind speed vw, respectively. Import the cross-
sectional finite element mesh.

Step 2: update the number of iterations i � i + 1. If
i≤ Itmax, continue; otherwise, the calculation fails; exit
and prompt an error.

Step 3: calculate the average temperature Tav of the
conductor cross section and the average temperature
Tsur of the conductor surface. Calculate kair, ss, sa, and α
with equations (3)–(7).
Step 4: solve the temperature field of the conductor
cross section by using the finite element program de-
rived from equations (1) and (2).
Step 5: if the temperature field T(i) of the iteration is
very different from the result T(i− 1) of the previous
iteration (i.e., ‖T(i) − T(i− 1)‖≥ tol), perform step 2–5.
Step 6: otherwise, converge the calculation and save the
results.

-e iterative process for calculating the sag and stress is
as follows:

Step 1: import the geometric information of weight per
unit length c, span l, height difference h, and initial sag
fAO. Set the initial value of the iteration number i � 0
and the maximum number of iterations Itmax.
Step 2: solve equation (24) to obtain the initial value of
horizontal tensile stress σ0. Calculate the initial iterative
values f(0)

m of sag at the midpoint according to equa-
tions (22) and (21), respectively.
Step 3: equally divide the whole span of conductors into
n − 1 sections (totally n nodes). For each node
j ∈ [1, n], calculate the strain and layered stress and the
resultant force P

(j)
a of aluminum strands. Perform the

following steps:
Step 3.1: calculate the resultant external force N(x)

at the node j of x with equation (18).
Step 3.2: perform step 3.2.1∼step 3.2.4 (false position

method) to solve equation (19).
Step 3.2.1: given the upper and lower limits of the axial

strain ε(1) and ε(2), read in the cross-sectional parameters
of ith layer includingEi (see equation (16)),Ai (in equation
(16)), αiT (in equation (15)), αi (in equation (8)), ni (in
equation (17)), and Ti (in equation (14)).

Step 3.2.2: calculate the lateral deformation ΔRi of
each layer with equations (12)–(14). Calculate f(ε(1))

and f(ε(2)) combined with equations (11) and
(15)–(19).

Step 3.2.3: update the axial strain
ε � ε(2) − f(ε(2))(ε(2) − ε(1))/[f(ε(2)) − f(ε(1))]

according to the upper and lower limits of axial strain.
Step 3.2.4: if |ε − ε(2)|≥ tol, perform steps 3.2.4.1∼

3.2.4.3:
Step 3.2.4.1: calculate f(ε) combined with

equations (11) and (15)–(19).
Step 3.2.4.2: if f(ε)f(ε(2))< 0, update the lower

limit of strain: ε(1) � ε(2), f(ε(1)) � f(ε(2)).
Step 3.2.4.3: update the upper limit of strain:

ε(2) � ε, f(ε(2)) � f(ε), go to step 3.2.2.
Step 3.2.5: otherwise (i.e., |ε − ε(2)|< tol), output

the axial strain ε(j) � ε, resultant force P
(j)
a on alumi-

num strands, and layered stress and strain.
Step 4: calculate the average ε � 􏽐

n
j�1ε(j)/n of strain at n

nodes. Calculate the arc length L(i) and sag f(i)
m at it-

eration i with equations (25) and (21)
Step 5: if the sag f(i)

m at the midpoint in the iteration is
very different from the result f(i−1)

m of the previous
iteration (i.e., ‖f(i)

m − f(i−1)
m ‖≥ tol), execute the steps

5.1–5.3:
Step 5.1: update the iteration number i � i + 1.
Step 5.2: if the iteration number i≤ Itmax go to step 3.
Step 5.3: else the calculation fails, exit and prompt an

error.
Step 6: otherwise, (i.e., ‖f(i)

m − f(i−1)
m ‖< tol), output the

sag f(i)
m at the midpoint, the resultant force

min(P
(j)
a , j � 1 ∼ n) on the aluminum strands at the

lowest point in the span, etc.

5. Comparison of Experimental and
Numerical Results

-is section provides comparative analyses of the results
from experiments and numerical simulation, including
those for (1) cross-section temperature of ACSR JL/G1A-
630/55 [25]; (2) layered stress of ACSR JL/G1A-400/35; and
(3) temperature-sag and temperature-tensile force charac-
teristics of heat-resistant aluminum alloy strands JNRLH1/
G1A-400/65 and JNRLH1/G1A-630/55 with a span of 60m.

5.1. Layered Temperature. With reference to the experi-
mental study [26] of conductor JL/G1A-630/55 in the dif-
ferent current and wind speed conditions, this article
conducts numerical simulation of the conductor and sets up
a finite element model, as shown in Figure 4. -e model is
performed with meshing by using triangular elements with a
maximum size of 2.4mm and with 8080 elements and 4184
finite element nodes. -e results of numerical simulation
and experiments are compared in Table 1. In the mea-
surement of the conductor’s temperature, the surface
temperature of the conductors is recorded. However, in the
numerical simulation, the temperature field on the whole
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cross section of the conductor can be calculated and then the
average temperature of strands of each layer can be obtained.

Table 1 and Figure 5 show that (1) the surface tem-
perature simulation results of the conductor at each wind
speed fit well with the experimental values apart from in-
dividual data when the wind speed is 1m/s and the current is
922A. -e simulation results are different from the ex-
perimental ones by 9.91% and the experimental data at this
point are obviously unreasonable. Under the currents of
1106A and 1290A, when the wind speed increases from
1m/s to 2m/s, the surface temperature decreases by 9°C and
10°C, respectively, compared to a 1°C reduction when the
current is 922A.-erefore, the experimental value when the
wind speed is 1m/s and the current is 922A is lower than
expected. (2) -e difference of the cross-sectional temper-
ature is small (about 1°C) and the temperature of the internal
strands is slightly higher than that of external strands.
-erefore, the temperature gradients can be ignored in the
calculation of layered stress. (3)With the increase of current,

the cross-section temperature of the conductor rises, while
with the increase of wind speed it drops.

5.2. Layered Stress. -e layered stress experiment on JL/
G1A-400/35 ACSRs is performed through stripping, that is,
stretching the conductor to a certain strain and successively
stripping the conductors by layer to calculate the difference
of axial force, so the layered stress of the conductor can be
calculated under the strain. Only the layered stresses of the
aluminum strands are studied, as the axial force is mainly
resisted by the aluminum strands (more than 3 times than
steel core).-e experiment is performed at temperature 20°C
without applying current.

-e calculation and test results are compared in Figure 6,
where the legend layer 1, 2, and 3 represent the external,
middle, and internal layers of aluminum strands respec-
tively. As shown in the figure: (1) the numerical simulation
results in the elastic phase (with strain of less than 0.2%) and

Aluminum
Steel
Air

4.12
3.2

34.32

Figure 4: -e finite element mesh of ACSR JL/G1A-630/55/mm.

Table 1: -e experimental and numerical results of ACSR JL/G1A-630/55.

Wind
speed (m/s) Current (A) Ambient

temperature (°C)

Experimental value (°C) Numerical result (°C)

Surface temperature Steel
core

Aluminum strand
of inner layer

Aluminum strand
of outer layer

0
922

31
70 68.34 68.34 68.01

1106 84 82.87 82.86 82.38
1290 98 100.16 100.15 99.48

1
922

33.5
42 46.90 46.90 46.62

1106 54 53.97 53.96 53.56
1290 61 62.73 62.72 62.15

2
922

33.5
41 41.50 41.50 41.25

1106 45 45.97 45.96 45.60
1290 51 51.48 51.47 50.97

4
922

33
38 37.56 37.55 37.33

1106 40 40.11 40.11 39.80
1290 45 43.22 43.21 42.78
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the experimental and numerical results agree each other with
an acceptable accuracy; (2) the tensile stresses of the internal
aluminum strands are slightly greater than external ones.
-ere are still some differences between the two results (with
maximum error of 17.6%) which may be because the dis-
placement deformation of strands under tension is random
as strands of each layer cannot be closely arranged without
any gap in the ACSR construction. It should be noted that
although layered stress does not perform well, the resultant
tensile stresses fit well with the experimental results, which
will be discussed later.

5.3. Temperature-Sag Characteristics. -e sag-temperature
curves of heat-resistant aluminum alloy conductor JNRLH1/
G1A-400/65 (with initial tension of 38.8 kN) and JNRLH1/
G1A-630/55 (with initial tension of 48.5 kN) are compared
in Figures 7 and 8.-e curves reflect the change law of sag (at
the midpoint) with the cross-sectional temperature. -e

experiment is performed as follows: fix the overhead lines
(with a height difference of 0) on the equipment with a span
of 60m. -en, gradually increase the temperature of the
conductors by charging with electricity and measure the sag
at the midpoint.

Figures 7 and 8 show that the numerical and experi-
mental results of the two examples fit well (the maximum
difference is 7.37% and 4.49%, respectively). With the in-
crease of temperature, the sag increases with a rate that
initially increase and then decrease. When the temperature
increases to a certain value (i.e., Point A in Figures 7 and 8),
the resultant tensile force on the aluminum strands reduces
to zero and the sag gradually increases. According to
equation (26), at point A the temperature reaches CT. -e
CTand CC of JNRLH1/G1A-400/65 are 87.5°C and 816.2 A,
respectively, and those of JNRLH1/G1A-630/55 are 105.4°C
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Figure 5: -e experimental and numerical results of ACSR JL/
G1A-630/55.
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Figure 6: -e comparison of layered stress-strain relationship of
ACSR JL/G1A-400/35.
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Figure 7: -e temperature and sag characteristics of conductor
JNRLH1/G1A-400/65.
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Figure 8: -e temperature and sag characteristics of conductor
JNRLH1/G1A-630/55.
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and 142.06A, respectively. -erefore, the slope of the sag-
temperature curves of the conductors near the critical
temperature is in the transition phase, i.e., the slope of the
sag-temperature curves increases below and decreases above
the critical temperature, but does not change greatly near the
critical temperature. When the conductor temperature is
close to the critical temperature, the steel core in the con-
ductor starts to bear all the loads. However, around CT, the
sag reaches a relatively large value, in which the axial force
along the conductor becomes relatively lower and the rate of
sag increase becomes smaller.

5.4. Temperature-Tension Force Characteristics. -e experi-
mental and numerical temperature-tensile force character-
istics of heat-resistant aluminum alloy conductor JNRLH1/
G1A-400/65 (with initial tension of 34 kN) and JNRLH1/
G1A-630/55 (with initial tension of 42 kN) are compared in
Figures 9 and 10. -e experiment is performed using the
same process in Section 5.3.

Figures 9 and 10 show that the numerical and experi-
mental results fit well (the maximum difference is 5.19% and
5.63%, respectively). -e tensile force of the overhead
conductors decreases gradually with the increase of tem-
perature. -e CT and CC are, respectively, (83.56°C,
827.64A) and (100.96°C, 1391.86A) for the two examples.
Below the CT, the tensile force rapidly decreases as the
temperature increases and gradually decreases until the
critical temperature. It should be noted that the critical point
cannot be directly observed according to the curve of
temperature vs. tensile force but needs be calculated.

6. Study of Critical Temperature and
Critical Current

6.1. Layered Stress and Sag at the Critical Point. In this
section, the experiment in Section 5.4 is simulated, and the
relationship between the current and the layered stress (and
sag) at the midpoint of overhead conductors is studied. At
CT (or CC), the characteristics of the layered stress and sag
are discussed. Figures 11 and 12 show the law of the current
with the layered stress on the cross section at the midpoint of
JNRLH1/G1A-400/65 and JNRLH1/G1A-630/55, respec-
tively. -e legend layer 1∼2 (in Figures 11 and 12) represent
the internal and external layer of steel core, respectively, the
legend layer 3∼4 (in Figure 11) and layer 3∼5 (in Figure 12)
indicate the internal and external layers of aluminum
strands, respectively. Figures 13 and 14 show relationships
between their sags at the midpoint and the current, re-
spectively. -e “A” point in Figures 11–14 indicates the
critical current.

Figures 11 and 12 show that the stresses of the steel core
of the internal layers are basically the same and the stresses of
the aluminum strands of the external layers are basically the
same too. With the increase of current, the stresses of the
external aluminum strands gradually decrease and those of
the external steel core decrease first and then increase. When
the current is greater than the critical current, the stresses of
the steel core increase rapidly. In Figure 11, the stress of the

internal steel core at critical current is less than the initial
stress (no current). However, its stress is far greater than the
initial stress in Figure 12. It is shown (in Figures 13 and 14)
that the sag (at the midpoint) gradually increases with the
increase of current and that, under the critical current, they
are 3.8 and 4.7 times more than the initial sag, respectively.
-is is because when the current is far below the CC, with the
increase of current (the temperature rises), the length and
sag gradually increase and the tensile force on it decreases
leading to gradual reduction in the stress of the internal steel
core. When the current (or temperature) is higher than the
CC (or CT), the strands (such as aluminum strands) with a
larger thermal expansion coefficient will be under pressure
rather than tension. -e strands (steel core) with a smaller
thermal expansion coefficient will resist the tensile force
caused by the aluminum strands under pressure but not that
of external load, which leads to a rapid increase in the stress
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Figure 9: -e temperature and tensile force characteristics of
conductor JNRLH1/G1A-400/65.
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Figure 10: -e temperature and tensile force characteristics of
conductor JNRLH1/G1A-630/55.
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of the steel core and linear increase in the sag. It is obvious
that this stress state is not conducive to the synergy of each
layer of strands. In actual operation, the current (or tem-
perature) of the conductor should be controlled to be lower
than the critical current (temperature) as much as possible.

6.2.=e Sensitive Factors of Critical Temperature andCurrent.
As discussed in Section 5.1, the operational current and
temperature should be less than the critical values. As the
critical temperature and current are related to layered stress
and temperature field of conductors, the following factors

0 200 400 600 800 1000 1200

La
ye

re
d 

str
es

s (
M

Pa
)

100

125

150

175

200

A

Layer 1
Layer 2

Current (A)

(a)

Current (A)
0 200 400 600 800 1000 1200

La
ye

re
d 

str
es

s (
M

Pa
)

–50

–25

0

25

50

75

100

A

Layer 3
Layer 4

(b)

Figure 11: Relationship between layered stress of conductor JNRLH1/G1A-400/65 and the current: (a) stress of steel core at each layer and
(b) stress of aluminum strand at each layer.
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Figure 12: Relationship between layered stress of conductor JNRLH1/G1A-630/55 and current: (a) stress of steel core at each layer and (b)
stress of aluminum strand at each layer.
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Figure 13: Relationship between the sag at the midpoint of
conductor JNRLH1/G1A-400/65 and the current.
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conductor JNRLH1/G1A-630/55 and the current.
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Figure 15: Relationship between critical current and its factors. (a) Relationship between critical current and horizontal tensile force. (b)
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between critical current and ambient temperature. (e) Relationship between critical current and solar intensity.
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are assumed to be sensitive: (1) solar intensity S with a unit of
W/m2 and range of 0∼1000; (2) solar absorption αs, di-
mensionless, with a range of 0.23∼0.9, reflecting the age of
the conductors; new bright conductors have an absorption
rate of 0.23 and old gray conductors have an absorption rate
of 0.9, and conductors in service period have an absorption
rate between them; (3) ambient temperature Ta with a unit
of °C and range of −20∼50; (4) wind speed vw with a unit of
m/s and range of 0∼7; (5) initial tensile force F with a unit of
kN and range of 0∼0.3Fmax, where Fmax indicates the ulti-
mate bearing capacity. In other words, critical temperature
and critical current have a functional relation with these
variables Tc(αs, Ta, vw, F, S) and Ic(αs, Ta, vw, F, S).

-is section takes the heat-resistant aluminum alloy
conductor JNRLH1/G1A-400/65 as an example. First, the
fitting of the functional relationships (e.g., linear/quadratic/
exponential functions/trigonometric functions) between
critical current and the abovementioned five variables is
conducted. -e relationships between critical current and
each of the five factors are, respectively, shown in
Figures 15(a)–15(e). -en, the relationship between critical
current and its five factors can be postulated as equation (29)
according to the fittings of the individual factor. -e fitting
coefficients ai, (i � 1 ∼ 11) with a confidence level of 95%
can be obtained with the multifactor method (see Table 2 for

specific data). -e relationship between critical current and
its influencing factors is shown in Figure 16. -e two dotted
lines in the figure represent the confidence interval of
predicted values (with a corresponding confidence level of
95%):

I � a1F
a2 + a3 sin a4vw + a5( 􏼁 + a6αs + a7 sin a8Ta + a9( 􏼁 + a10S + a11.

(29)

In the same way, the change law of critical temperature
with each influencing factor can be obtained (as shown in
Figure 17).-e results show that the critical temperature has
a great correlation with the initial tensile force and little
correlation with other factors (i.e., they can be ignored). For
function relationship fitting, the following equation can be
obtained:

Tc � aF
b

+ c, (30)

where a � 13.54, b � 0.4206, and c � 24.72.
Figures 15 and 16 show that (1) the sensitive factors of

critical current are successively wind speed, ambient tem-
perature, horizontal tensile force, solar intensity, and solar
absorption according to their significance level. (2) Hori-
zontal tensile force and wind speed are positively correlated
with critical current. Solar absorption, solar intensity, and

Table 2: -e values of the fitting coefficient ai, (i � 1∼11).

Coefficients Value Confidence bounds
a1 203.4001 −671.671 1078.472
a2 0.300959 −0.38589 0.98781
a3 7833.395 −86675.7 102342.5
a4 0.091287 −0.50256 0.685134
a5 0.998746 −2.53519 4.532683
a6 −39.569 −110.065 30.92676
a7 2386.236 −44062.9 48835.41
a8 −0.00761 −0.09472 0.079501
a9 1.132626 −2.66625 4.931498
a10 −0.10697 −0.14894 –0.065
a11 −8308.29 −107465 90848.25
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Figure 16: Fitting of critical current and its sensitive factors.
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ambient temperature are negatively correlated with it.
Figure 17 shows that the critical temperature is positively
correlated with horizontal tensile force and has little cor-
relation with other factors.

7. Conclusion

-is article proposes a set of numerical methods for cal-
culating the temperature field, layered stress, and sag of
overhead conductors, based on which the critical temper-
ature and critical current are studied. -e calculation
methods and procedures are verified through experimental
results.-e authors also studied the relationship between the
five most sensitive factors and the critical temperature (or
current). -e following conclusions are made:

(1) -e results of numerical calculation and experiments
for conductor temperature agree well. -e temper-
ature gradient on the cross section is relatively small;
therefore, its impact on the layered stress can be
ignored in the calculation. Meanwhile, the average
temperature of cross sections rises with the increase
of current and drops with the increase of wind speed.

(2) -e numerical simulation and experimental results
for layered stress in the elastic phase (with strain of
less than 0.2%) agree each other with acceptable
accuracy. -e tensile stresses of the internal alumi-
num strands are slightly greater than those of the
external ones.

(3) -e calculated sages fit well with the experimental
results. With the increase of temperature, the sag
increases with a rate that first increases and then
decreases, that is, when the conductor temperature
increases close to the critical temperature, the sag of
the conductors gradually increases. -e calculated
tensile forces agree well with experimental ones.
Below the critical temperature, the tensile force
decreases rapidly with the increase of temperature,
while the changing rate decreases close to the critical

temperature. -e critical temperature cannot be
directly observed according to the curve of tem-
perature vs. tensile force before calculation.

(4) With the increase of current, the stresses of the steel
core first decrease and then increase, while those of
the aluminum monotonically decrease. When the
current (or temperature) of overhead conductors is
higher than the critical current (or temperature), the
stresses of the steel core rapidly increase and the sag
linearly increases with increasing temperature. At
the critical current, the sag increases to 3–4 times of
its original value. In some cases, the stresses of steel
cores in the conductor are far greater than their
initial value. In actual operation, the current (or
temperature) of conductors should be controlled so
that it remains lower than the critical current (or
temperature) as much as possible.

(5) -e critical temperature is positively correlated with
horizontal tensile force and has little correlation with
other factors. According to their relative sensitivities,
the importance ranking of the influencing factors to
critical current are (from high to low): wind speed,
ambient temperature, horizontal tensile force, solar
intensity, and solar absorption. Horizontal tensile
force and wind speed are positively correlated with
critical current. Solar absorption, solar intensity, and
ambient temperature are negatively correlated.
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