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GNSS (global navigation satellite system) compass is a low-cost, high-precision, and temporally stable north-finding technique.
While the nonlinear baseline length constraint is widely known to be important in ambiguity resolution of GNSS compass, its
direct effect on yaw angle estimation is theoretically analyzed in this work. Four different methods are considered with different
ways in which the length constraint is made use of as follows: one without considering the constraints, one with simple scaling, one
with indirect statistical scaling, and one with direct statistical scaling. It is found that simple scaling does not have any effect on yaw
estimation; indirect and direct statistical scalings are equivalent to each other with both being able to increase the precision. $e
analysis and the conclusion developed in this work can go in parallel for the case of the tilt angle estimation.

1. Introduction

Control of a vehicle often relies on measuring necessary
parameters of the vehicle [1, 2]. $e vehicle’s attitude,
especially the heading or yaw angle as one of the attitude
components, is a vital one of these parameters in many
control applications [3]. GNSS compass is a cost-effective
method to provide heading information in real time. It is
one of the high-precision short-baseline applications [4–6].
By high precision, it is meant that carrier-phase mea-
surements are used in addition to code pseudo ranges.
GNSS compass is also a special case of GNSS attitude
determination (AD), which can further be viewed as a
special case of GNSS antenna array applications [7–9]. In
compass, only the yaw or heading of the complete three
attitude elements is of interest. GNSS compass (also GNSS
AD) is of low cost and is temporally stable and hence finds
wide applications. Each piece of carrier-phase measure-
ment can be viewed as high-precision version of pseudo
range only when its integer ambiguity has been correctly
fixed [10–13]. From this regard, ambiguity resolution (AR)
is inevitable in GNSS compass as in other high-precision

applications [4, 14–16]. $ough single-epoch AR is the
most challengeable [17], we should do AR sequentially to
fully explore the temporally constant property of the
ambiguities [18], as long as cycle slips are absent or repaired
in real time [19]. In this work, we are concerned with yaw
angle estimation with carrier-phase measurements whose
ambiguities have already been fixed at previous epochs. It is
widely known that the length constraints of the baselines
connecting antennas fixed on the vehicle’s body should be
given full consideration in the AR of GNSS compass or AD.
$e nonlinear length constraint enhances the GNSS
compass AR model in terms of not only precision but also
reliability [20]. However, in AD with vector measurements,
the lengths of the vector measurements do not have an
effect in general [3, 21]. $e AD with vector measurement
can be pointwise or sequential, namely, Wahba’s problem
[22–26] or the attitude filtering problem [27–32].$is is the
reason why the vector measurements can be normalized for
the sake of better numerical stability.

Does the nonlinear baseline length constraint have an
effect on GNSS compass, as long as the ambiguity-fixed
measurements are used? Or, how can the constraint have an
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effect? If there is an effect, will this effect be positive, namely,
with precision increased? In this work, these questions are
studied in theory thoroughly and clear answers are given.
Four different methods are analyzed with different ways in
which the length constraint is considered. $e first is called
No-Constraint in which the length constraint is completely
ignored. $e second is called Simple-Scaling in which the
baseline vector estimate is simply scaled to be with the
known length. $e third is called Indirect-Statistical-Scaling
in which the baseline vector estimate is scaled statistically by
taking the covariance of the estimate into consideration. $e
fourth is called Direct-Statistical-Scaling in which the
baseline vector is estimated by solving a constrained least-
squares problem. After briefly introducing the measurement
model in Section 2, the four methods are analyzed in Section
3. $e effects of the length constraints on the compassing,
together with the relationships among them, are the focus of
the analysis. $is work is concluded in Section 4. Some
derivations and proofs are presented as appendices.

2. GNSS Compass Measurement Model

It is shown in Figure 1 that a pair of antennas is rigidly
mounted to a vehicle whose yaw or heading is to be de-
termined. $e baseline vector linking the antenna-pair is
denoted as x. Without loss of generality, the baseline vector
is in the vehicle body’s right-front plane. $en, the baseline
vector defines the yaw angle and the tilt angle. We further
assume that the baseline vector points to the front. $en, the
tilt angle is exactly the pitch angle. $e coordinate vector in
the local ENU reference frame of the baseline is also denoted
as x, and let x� [a b c]T. $is will not introduce any con-
fusion, since only the coordinates in the reference frame are
involved in this work. So, in the following by the baseline
vector, we mean its coordinate vector in the reference frame.
$e yaw can be computed from the coordinates as follows:

φ � arc tan
a

b
 . (1)

For nondedicated receivers [33], double difference
carrier-phase measurements can be used to simplify the
measurement model by eliminating both satellite and re-
ceiver clock errors [17, 34, 35]. Considering only the
measurements with corresponding ambiguities fixed, the
measurement model is as follows:

y � Bx + ε, (2)

with y, B, and Q� cov[ε] known. Note that the elements of
themeasurement vector ymay not necessarily be the original
double difference carrier phases, but rather some linear
combinations of them. $e corresponding combined am-
biguities, e.g., the wide-lane ones, are relatively easy to be
fixed; we assume they have already been fixed at certain
previous epochs. Further assume the vehicle’s body is rigid
and hence we have the following length constraint:

xTx � l
2
, (3)

with l known and time invariant. Note that this is the
nonlinear and so-called hard constraint [36, 37]. $e models

(1)-(3) represent all the available information relevant to the
compassing. Different GNSS compass methods are results of
different ways in which the information is used. An im-
portant issue concerning these methods is whether the
constraint in [3] is used and how it is used.

3. Effect of Baseline Length Constraint in
Different Methods

In the following, the four different methods are presented,
the effect of the baseline length constraint on the final so-
lution of yaw angle is analyzed, and potential relations
among different methods are revealed.

3.1. No-Constraint Method. $e first method is called No-
Constraint which ignores the constraint completely. It first
estimates the baseline vector with least-squares:

x1 � a1
b1 c1 

T
,

� BTQ− 1B 
− 1
BTQ− 1y,

(4)

with the covariance of this estimate being P1 � (BTQ− 1B)− 1.
$en, the yaw angle with this estimate is calculated
according to [1]. For easy reference, the formula is displayed
as follows:

φ1 � arc tan
eT1 x1
eT2 x1

 . (5)

with e1 � [1 0 0]T and e2 � [0 1 0] T. $e variance of this
estimate can be worked according to the error propagation
law:

σ21 � gTP1g. (6)

with gT � ((b1eT1 − a1eT2 )/(a2
1 + b

2
1)). A derivation of [6] can

be found in Appendix A. It is needless to say that the length
constraints play no role in this method.
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Figure 1: $e baseline vector (red line) in the vehicle’s body frame
(top) and in the local reference frame (bottom). (x)� baseline
vector, R� rear, F� from, E� east, N� north, and U� upward.
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3.2. Simple-Scaling Method. $e second method is carried
out in steps as follows. First, it estimates the baseline vector
as in [4]. Second, it scales the baseline vector as

x2 �
lx1����

xT1 x1
 � kx1. (7)

$is step is exactly the reason why it is called simple-
scaling. $ird, it calculates the yaw angle according to [1]:
φ2 � arc tan(eT1 x2/eT2 x2) � arc tan(keT1 x1/keT2 x1) � φ1. So, as
long as the yaw is to be estimated, the first and the second
methods are the same, and it is readily known that their
variances are also the same. $e baseline length constraint
does not have any effect on GNSS compass in this method,
either.$is may be reminiscent of the case of ADwith vector
measurements, namely, Wahba’s problem, in which the
specific length of the vector may be irrelevant to the AD.

As a final note, as long as the baseline vector, rather than
the yaw, is of interest, the precision of the solution after
simple scaling can be increased or decreased, or remain
unchanged, depending on the length of the vector before
scaling. For more information on this topic, the interested
readers are referred to Appendix B.

3.3. Indirect-Statistical-ScalingMethod. $e third method is
also a stepwise one as the second method. $e difference
from the secondmethod lies in the second step. In this step, a
constrained least-squares estimation is done with the esti-
mate from [4] being treated as pseudo measurement with
covariance P1. $e nonlinear constraint equation in [3] is
linearized, say around the estimate in [4], as follows. Let d �

l2 + xT1 x1 and c � 2x1; then, we have the linearized constraint
as follows:

d � cTx. (8)

$e resulting baseline vector estimate is defined as
follows:

x3 � argmin
x

η3 � argmin
x

x − x1( 
TP−1

1 x − x1(  + 2λ d − cTx  ,

(9)

where λ denotes the Lagrange multiplier and η is called the
Lagrangian. It turns out that the estimate defined in [9] is as
follows:

x3 � HX1 + dh. (10)

with h � (1/cTP1c)P1c and H � (I3 − hcT). A derivation of
[10] can be found in Appendix C. $e covariance is readily
known as P3 � HP1HT. We call [10] an Indirect-Statistical-
Scaling for brevity. It is indirect because we first estimate the
baseline vector without considering the constraint and then
modify the estimate by considering the constraint. It is
statistical because the statistical information, namely, the
covariance P1, is used in this scaling. $e yaw is calculated
using this estimate according to [1] and denoted as φ3.

It is clear that φ3 ≠ φ1 in general. $e question is can one
of the two be always more accurate than the other? $e
answer is positive as proved in the following. Similar to [6],

we know that σ23 � gTP3g. $e following can be readily
proved:

Δ � P1 − P3 � cTP1c hhT. (11)

A derivation can be found in Appendix D. It is readily
known that Δ is of rank one; furthermore, besides the zero
double eigenvalue, the only nonzero eigenvalue is
(cTP1c)h

Th≥ 0, because cTP1c≥ 0 and hTh≥ 0. So the
matrix Δ is positive semidefinite. So
σ21 − σ23 � gTP1g − gTP3g � gT(P1 − P3)g � gTΔg≥ 0. It
means that the precision of φ3 cannot be lower than φ1. Only
when either of the following two conditions are fulfilled, the
two are of equal precision: (1) Δ� 0; (2) g is one of the
eigenvectors of Δ. In practice, the probability of either of the
two conditions holding is zero. To summarize, with the
indirect statistical scaling in the third method, the baseline
length constraint has a positive effect in GNSS compassing,
namely, that the precision can be improved by considering
the length constraint.

3.4. Direct-Statistical-Scaling Method. $e fourth method is
a two-step one. It first estimates the baseline vector with
constrained least-squares to consider the constraint in [3].
$en, it calculates the yaw using this estimate according to
[1]. In the first step, the constrained least-squares solution to
the baseline vector is defined as follows:

x4 � argmin
x

η4 � argmin
x

(y − Bx)
TQ− 1

(y − Bx) + 2λ d − cTx  .

(12)

It can be proved, as in Appendix E, that the baseline
vector estimate defined in [12] is the same as the one in [10],
and hence, the yaw, denoted as φ4, is the same as φ3. $eir
variances are also the same. So, the baseline length constraint
has a positive effect on the GNSS compass in this method,
namely, that by considering the length constraint, the
precision of the yaw estimate can be improved.

3.5. Summary. $e above analysis is summarized in Table 1.
In a nutshell, (1) with the Simple-Scaling, the baseline length
constraint does not have any effect on the GNSS compass;
(2) the Indirect-Statistical-Scaling and the Direct-Statistical-
Scaling can equivalently produce a positive effect of the
baseline length constraint on the GNSS compass.

4. Conclusion

As long as the antennas are mounted rigidly to the vehicle’s
rigid body, the baseline length remains unchanged, in-
dependent of the vehicle’s dynamics. $is is a hard and

Table 1: A summary of the five GNSS compass methods.

Method Description Effect
No-Constraint [4] + [1] None
Simple-Scaling [4] + [7]+ [1] None
Indirect-Statistical-Scaling [4] + [10]+ [1] Positive
Direct-Statistical-Scaling [12] + [1] Positive
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nonlinear constraint. In a GNSS compass, the yaw angle or
heading of the vehicle can be determined with carrier-
phase measurements whose ambiguities have been fixed at
previous epochs. $e question is answered in this work
that whether the baseline length constraint has an effect on
the yaw angle determined. In a nutshell, the answer is as
follows: it depends on the specific method of considering
the constraints. If we simply scale the estimated baseline
vector to make its length be the true one, namely, to make
the constraint fulfilled, the constraint does not have any
effect on the yaw angle estimation. However, if the con-
straint is used through a statistical scaling, it can have a
positive effect, namely, that the precision of the yaw es-
timation can be improved. $e statistical scaling can be
done indirectly or directly. In the indirect statistical
scaling, the constraint is used after the baseline vector is
estimated, whereas in the direct statistical scaling, the
constraint is used in the baseline vector estimation. $ey
are called statistical because the statistical information,
namely, the covariance, is used in both of them. $e two
statistical scaling methods are equivalent to each other,
namely, producing the same yaw estimate with the same
variance of this estimation.

As a final note, the analysis and the conclusion developed
in this work go in parallel for the case of tilt angle.
Depending on the configuration of the baseline vector, this
tilt angle can be pitch or roll angle.

Appendix

A. Derivation of [6]

According to the train rule of the derivative, the Jacobian
(derivative) of φ1 with respect to x1 is as follows:

zφ1

zxT1
�

zarc tan eT1 x1/eT2 x1( 

zxT1
,

�
z arc tan eT1 x1/eT2 x1( 

z eT1 x1/eT2 x1( 

z eT1 x1/eT2 x1( 

z eT1 x1( 

z eT1 x1( 

zxT1


+
z eT1 x1/eT2 x1( 

z eT2 x1( 

z eT2 x1( 

zxT1
,

�
1

1 + eT1 x1/eT2 x1( 
2

1
eT2 x1

eT1 +
−eT1 x1
eT2 x1( 

2e
T
2

⎡⎣ ⎤⎦.

(A.1)

Substituting
a1 � eT1 x1
b1 � eT2 x1

 into the above, we have

zφ1

zxT1
�

1

1 + a1/b1 
2

1
b1
eT1 +

−a1

b1 
2e

T
2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ �
b1eT1 − a1eT2

a2
1 + b

2
1

.

(A.2)

which is exactly gT used in [6]. Note that [6] is obtained
simply through error or covariance propagation.

B. Effect of Simple-Scaling on the Precision of
Baseline Vector Estimation

According to the simple scaling formula, namely, x2 � kx1
with k � l/

����

xT1 x1


, we have the following covariances for x2:

P2 � k
2P1. (B.1)

So, readily we have the following:
P2 >P1, when k> 1,

P2 � P1, when k � 1,

P2 <P1, when k< 1.

⎧⎪⎪⎨

⎪⎪⎩
(B.2)

Whenwe sayP2 >P1, we say thatP2 − P1 is positive definite
and the “smaller than” case goes similarly. From [16], we know
that the simple scaling does not necessarily increase the precision
of the baseline vector estimation. To be more specific, when the
length of the unscaled baseline vector estimate is overly esti-
mated, the simple scaling can even decrease the precision.

C. Derivation of [10]

In order for the Lagrangian to be minimum, its first-order
derivative with respect to x should be zero [38–40], namely,

zη3
zx

� 0⇔P−1
1 x � P−1

1 x1 + λc. (C.1)

$e above is equivalent to the following:

x � x1 + λP1c. (C.2)

Substitute this expression into the length constraint; we
can compute the Lagrange multiplier, as follows:

λ �
d − cTx1
cTP1c

. (C.3)

Substituting (C.3) into (C.2), we have the following
estimate:

x � x1 + P1c
d − cTx1
cTP1c

� l3 −
1

cTP1c
P1cc

T
 x1 + d

1
cTP1c

P1c.

(C.4)

$e rightmost expression is exactly that in [10].

D. Derivation of [11]

First, the expression of P3 is expanded as follows:

P3 � HP1H
T
,

� P1 −
2

cTP1c
P1cc

TP1 +
1

cTP1c( 
2P1cc

TP1cc
TP1,

� P1 −
2

cTP1c
P1cc

TP1 +
1

cTP1c
P1cc

TP1,

� P1 −
1

cTP1c
P1cc

TP1.

(D.1)

So, readily we have

4 Mathematical Problems in Engineering



Δ � P1 − P3,

�
1

cTP1c
P1cc

TP1,

� cTP1c hhT.

(D.2)

Furthermore, we have

cTP1c hhT �
1

cTP1c
P1cc

TP1. (D.3)

With (D.2) and (D.3), we finally have [11].

E. Equivalence between [12] and [10]

Instead of directly working out the solution of [12], we will
equivalently prove that the minimizer of η3 can also min-
imize η4. We first rearrange η3 and η4 as follows:

η3 � xTP−1
1 x − 2xTP−1

1 x1 + xT1P
−1
1 x1 + 2λ d − cTx ,

∝ xTP−1
1 x − 2xTP−1

1 x1 + 2λ d − cTx ,

� xTBTQ− 1Bx − 2xTBTQ− 1B BTQ− 1B 
− 1
BTQ− 1y

+ 2λ d − cTx ,

� xTBTQ− 1Bx − 2xTBTQ− 1y + 2λ d − cTx ,

� ξ,

(E.1)

η4 � xTBTQ− 1Bx − 2xTBTQ− 1y + yTQ− 1y + 2λ d − cTx ,

∝ xTBTQ− 1Bx − 2xTBTQ− 1y + 2λ d − cTx ,

� ξ.

(E.2)

In both of the above, uninteresting additive terms in-
dependent of x and λ are omitted. So, the two Lagrangians
are the same, after omitting different uninteresting additive
constants which do not depend on the unknowns including
the Lagrangian multipliers. So, the minimizer of one of the
two will also minimize the other. $is means that the two
solutions are the same to each other.
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