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For a connected graph J, a subset W⊆V(J) is termed as a locating-total dominating set if for a ∈ V(J), N(a)∩W≠ϕ, and for
a, b ∈ V(J) − W, N(a)∩W≠N(b)∩W. +e number of elements in a smallest such subset is termed as the locating-total
domination number of J. In this paper, the locating-total domination number of unicyclic graphs and bicyclic graphs are studied
and their bounds are presented.+en, by using these bounds, an upper bound for cacti graphs in terms of their order and number
of cycles is estimated. Moreover, the exact values of this domination variant for some families of cacti graphs including tadpole
graphs and rooted products are also determined.

1. Introduction

Let J � (V, E) be a simple undirected and connected graph
with vertex set V � V(J) and edge set E � E(J). +e number
of vertices in J is called the order of J. +e set of vertices in V

adjacent to any vertex v is called the open neighbourhood of
v inV, denoted by NJ(v), and the setNJ(v)⋃ v{ } is called the
closed neighbourhood of v in V, denoted by NJ[v]. A vertex
of degree one is called leaf (pendant) and its unique
neighbouring vertex is called support vertex. A set W⊆V (J)
is said to be a dominating set of J if every vertex in V − W has
nonempty open neighbourhood in W and furthermore if
N(a)∩W≠ ϕ for every vertex a ∈ V(J), then this set W is
referred to as a total dominating set in J. A total dominating
set W with the additional condition that every pair of
distinct vertices outside W have distinct open neighbour-
hood in W is known as a locating-total dominating set,
abbreviated as LTD-set. +e smallest dominating, total
dominating, and locating-total dominating sets of J are
denoted by c (J)-set,ct(J)-set, and cL

t (J)-set, respectively,
and their cardinalities are known as domination, total
domination, and locating-total domination numbers,
respectively.

A path and cycle having m vertices are denoted by Pm
and Cm. A simple connected graph having no cycle is a tree.

A graph is a unicyclic or bicyclic graph if it contains exactly
one cycle or two cycles, respectively. A graph in which any
two distinct cycles have maximum one vertex in common is
termed as a cactus. A tadpole graph is obtained by joining a
leaf (pendant) vertex of path to a vertex of a cycle through an
edge. For connected graphs K and L, the rooted product of K
by L(K⊙L) is obtained by considering |K| copies of L and
identifying the i-th vertex of L with the root vertex of i-th
copy of L. +e idea of locating-total domination and dif-
ferentiating-total domination was presented first by Haynes
et al. [1]. +ey studied these variants of domination for trees
and estimated a bound on this class.+e differentiating-total
and locating-total domination numbers of path graphs are
also determined.+e improved new bound for locating-total
dominating number of trees is presented by Chen and Sohn
[2]. +ey also gave the sharpness of these bounds and
identified the trees achieving these bounds. +e different
versions of locating-total domination number for different
classes of graphs are investigated in [3–5]. +e bounds on
locating-total domination number for different types of
products are studied in [6, 7]. A new bound of locating-total
domination number using annihilation number of a tree was
presented by Ning et al. [8]. +ey also identified the trees
attaining this bound. In this paper, locating-total domina-
tion number of unicyclic and bicyclic graphs is investigated
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and their upper bounds are given. Consequently, using these
bounds, an upper bound for cacti graphs is presented.
Moreover, the exact values of this domination variant for
some classes of cacti graphs are computed. In particular
tadpole graphs, rooted products of path by cycle graph and
cycle by path graph are computed.

2. Bounds of Locating-Total Domination
Number of Cacti Graphs

Theorem 1 (see [2]). For a tree I having r≥ 3 vertices and l

pendant vertices, one has

c
L
t (I)≤

r + l

2
. (1)

Proposition 1 (see [9]). -e cL
t -set of a graph J must include

all the support vertices of J.
A unicycle graph U having r≥ 3 vertices can be obtained

by connecting any two nonadjacent vertices of a treeI having
r≥ 3 vertices by an edge.

Lemma 1. Let W be a cL
t -set of a treeI with order r≥ 4 and

l′ pendant vertices. Let U be the unicyclic graph of order r≥ 4
with l pendant vertices constructed by joining any two
nonadjacent vertices u, v ∈ V(I) through an edge. If either
both belong to W or none of them belongs to W, then

c
L
t (U)≤

r + l + 2
2

. (2)

Proof. It is easy to see that the cL
t -set of a graph G′ obtained

by adding edges between two vertices of cL
t -set or between

two vertices not in cL
t -set of a graph G is the same as that of

cL
t -set of G. +is implies that W also becomes a cL

t -set forU.
Hence, by +eorem 1, we have

c
L
t (U) � |W| � c

L
t (I)≤

r + l′
2

. (3)

Two cases arise:

Case 1: Assume that one of them is a pendant vertex. If
exactly one is a pendant vertex, then l � l′ − 1 and by
(3),

c
L
t (U)≤

r + l + 1
2
<

r + l + 2
2

. (4)

But if both are leaves, then l � l′ − 2 and by (3),

c
L
t (U)≤

r + l + 2
2

. (5)

Case 2: Now assume none of them is a leaf; then, l′ � l

and by (3),

c
L
t (U)≤

r + l

2
<

r + l + 2
2

. (6)
□

Theorem 2. Let U be a unicycle graph having r≥ 3 vertices
and l pendant vertices. -en,

c
L
t (U)≤

r + l + 3
2

. (7)

Proof. Let I be a tree of order r with l’ leaves and
u, v ∈ V(I) be its two nonadjacent vertices such that
unicycleU is obtained fromI by joining u and v. Let W be a
cL

t -set of I. Now the vertices u and v may belong to W or
not. If both vertices u and v belong to W or both vertices u

and v do not belong to W, then by Lemma 1, it is easy to see
that W becomes cL

t -set for U and

c
L
t (U) � |W| � c

L
t (I)≤

r + l + 2
2

. (8)

Now suppose u ∉ W, v ∈W, and v is a pendant vertex.
+en there exists support vertex s such that v ∼ s. By
Proposition 1, s ∈W. Now as v is a pendant, N(v)∩W � s{ }

inI, and v is not adjacent to any vertex of V(T) − W. Also, u
is adjacent to some vertex v≠w ∈W so that in
U, w, v{ }⊆N(u)∩W. As in U, v is not adjacent to any other
vertex of V(U) − W except u, so N(u)∩W≠N(y) ∩W for
all y ∈ V(U) − W. Moreover, for all u≠y, z ∈
V(U) − W, N(y)∩W≠N(z)∩W because for all u≠y,

z ∈ V(T) − W, N(y)∩W and N(z)∩W remain the same
in both I and U. +is further implies that, in this case, W

again becomes cL
t -set forU. +erefore, by+eorem 1 and the

fact that either l � l′ − 1 or l � l′ − 2, we have

c
L
t (U) � |W| � c

L
t (I)≤

r + l′
2
≤

r + l + 2
2

. (9)

Finally, suppose that all u ∈W, v ∉W, and v is not a
leaf. +en, W∪ v{ } is LTD-set for U. +erefore, by +eorem
1, we have

c
L
t (U)≤ |W| + 1 � c

L
t (I) + 1≤

r + l′
2

+ 1. (10)

If u is a pendant vertex, then l � l′ − 1 and by (10), we
have

c
L
t (U)≤

r + l + 1
2

+ 1 �
r + l + 3

2
. (11)

But if u is not a pendant vertex, then l′ � l and by (10)

c
L
t (U)≤

r + l

2
+ 1 �

r + l + 2
2

. (12)

+e result follows from (8), (9), (11), and (12).
If in a unicycle graph U with cycle lengthm, all the edges

of its unique cycle are removed, then resulting graph is a
disconnected graph which is union ofm disjoint subtrees Ti,
where i � 1, . . . . . . , m. Each subtree Ti is a maximal subtree
of U containing only one cycle vertex. A bicyclic graph B can
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be constructed from a noncorona unicyclic graph U by
choosing any two nonadjacent vertices u, v ∈ V(Ti)⊆V(U)

for some i (i.e., u and v must be in one subtree Ti of U) and
joining the vertices must contain at least one cycle edge, u

and v through an edge. It is easy to see that any path between
vertices of two distinct subtrees. □

Lemma 2. Consider a unicyclic graph U with r> 5 vertices
and l′ leaves and cL

t -set W′. Choose any two nonadjacent
vertices u and v from maximal subtree Ti of U containing
exactly one cycle vertex such that either both belong to W′ or
none of them belongs to W′. Let B be a bicyclic graph having
r> 5 vertices and l pendant vertices obtained by connecting
u, v ∈ V(U) through an edge. -en,

c
L
t (B)≤

r + l + 5
2

. (13)

Proof. +e proof is the same as that of Lemma 1. □

Theorem 3. For bicyclic graph B with order r> 4 and l
pendant vertices, one has

c
L
t (B)≤

r + l + 6
2

. (14)

Proof. Let U be the unicyclic graph of order r> 4 with l′
pendant vertices and u, v ∈ V(Ti)⊆V(U) be its two non-
adjacent vertices, where Ti is maximal subtree of U con-
taining exactly one cycle vertex. +en, bicyclic graph B can
be obtained from U by joining u and v. Let W′ be a cL

t -set of
U. Now the vertices u and v may belong to W′ or not.

+e result follows by using Lemma 2 and the similar
arguments as used in +eorem 2.

Now, as an extension of +eorems 2 and 3, an upper
bound for locating-total domination number of cacti graphs
is appraised as follows. □

Theorem 4. Let ζ be cacti with r vertices, l pendant vertices,
and q cycles. -en, one has

c
L
t (ζ)≤

r + l + 3q

2
. (15)

Proof. We prove this by making use of mathematical in-
duction on q. If q� 1, 2, then the desired result follows
immediately by+eorems 2 and 3. Hence, we have a base for
induction. Now assume that the bound is satisfied for any
cacti graph having order r and containing q− 1 cycles. Now a
cactus ζ with order r, leaves l, and cycles q can be obtained
from a cactus ζ′ of order r with l′ leaves, q− 1 cycles, and
cL

t -set W in one of the following three ways:

Select any two pendant vertices u and v of ζ′ such that
the shortest path between u and v must not have any
cycle edge. Now if the vertices u and v are connected by
an edge, we get a cactus ζ. In this case, we can see that
the set W is also LTD-set of ζ by using similar argu-
ments as used in+eorems 2 and 3. Now here l′ � l + 2
and using induction hypothesis, we have

c
L
t (ζ)≤ c

L
t ζ′( ≤

r + l′ + 3(q − 1)

2
�

r + l + 2 + 3q − 3
2

<
r + l + 3q

2
.

(16)

Select a pendant vertex u and a nonpendant vertex v of
ζ′ such that the shortest path between u and v does not
include any cycle edge. Now if the vertices u and v are
connected by an edge, we get a cactus ζ. In the case,
when u ∉W, W⋃ u{ } is LTD-set of ζ; otherwise,W is
LTD-set for ζ by using similar arguments as used in
+eorems 2 and 3. Now here l′ � l + 2 and using in-
duction hypothesis, we have

c
L
t (ζ)≤ c

L
t ζ′(  + 1≤

r + l′ + 3(q − 1)

2
+ 1 �

r + l + 2 + 3q − 3 + 2
2

�
r + l + 3q

2
. (17)

Select any two nonpendant vertices u and v of ζ′ such
that the path between u and v does not include any
cycle edge. Now if the vertices u and v are connected by
an edge, we get a cactus ζ. In the case, when exactly one
of the u or v, say u, belongs to W, then W∪ v{ } is LTD-

set; otherwise, W is LTD-set for ζ by using similar
arguments as used in+eorems 2 and 3. Now here l′ � l

and using induction hypothesis, we have

c
L
t (ζ)≤ c

L
t ζ′(  + 1≤

r + l′ + 3(q − 1)

2
+ 1 �

r + l + 2 + 3q − 3 + 2
2

<
r + l + 3q

2
. (18)
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Hence, the result follows. □

3. Tadpole and Rooted Product Graphs

In this section, locating-total domination number for few
cacti graphs is determined. In particular, tadpole graphs
(unicyclic graphs), rooted product of cycle by path (unicyclic
graphs), and rooted product of Pq by Cm(cacti graph with q
cycles) are investigated.

Theorem 5 (see [1]). For q≥ 3, cL
t (Pq) � q/2 + q/4−

q/4.

Theorem 6 (see [4]). For q≥ 3, cL
t (Cq) � q/2 + q/4−

q/4.

Remark 1. +e locating-total domination number of Cq and
Pq for different values of q can be simplified as

(1) cL
t (Cq) � cL

t (Pq) � q/2 if q ≡ 0(mod4).
(2) cL

t (Cq) � cL
t (Pq) � q/2 + 1 if q ≡ 2(mod4).

(3) cL
t (Cq) � cL

t (Pq) � q + 1/2 if q is odd.

Let Tr
q1 ,q2

(q≥ 3) be a tadpole having r � q1 + q2 vertices
and is formed by connecting a vertex of cycle Cq1

to pendant
vertex of path by an edge.

Theorem 7. Let q1 be odd positive integer. -en, one has

c
L
t T

r
q1 ,q2

  �

r

2
, if q2 ≡ 1(mod4),

r + 1
2

, if q2 ≡ 0, 2(mod4),

r

2
+ 1, if q2 ≡ 3(mod4), q1 ≡ 3(mod)4,

r

2
, if q2 ≡ 3(mod4), q1 ≡ 1(mod)4.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

Proof. Suppose that Pq2
: a1⟶ a2⟶ a3⟶ ··· ⟶ aq2 is

connected through aq2
to a cycle vertex u of Tr

q1 ,q2
. Let W be a

cL
t -set for Tr

q1 ,q2
. As |W| is minimum, therefore a2 being

support vertex by Proposition 1 and a3 being its unique
neighbouring vertex by definition of locating-total domi-
nating set must belong to W. Consequently, a4 and a5 can be
excluded from W and then the next two consecutive vertices
belong to W. By continuing this process, we can see that for
j � 2, 3(mod4), a ∈W and for j � 0, 1(mod4), aj ∉W.

Case 1: Suppose q2≡1 (mod4). If q2 �1, then vq2
∈ Tr

q1 ,q2
is a pendant vertex and u is a support vertex. +us,
vq2

, u ∈W and

c
L
t T

r
q1 ,1  � c

L
t Cq1
  �

r

2
. (20)

But if q2> 1, then as q2≡1 (mod4), aq2
, aq2−1 ∉W and

aq2−2, aq2−3 ∈W.
Consequently, total (q2 − 1)/2 vertices of Pq2

belong to
W. Since aq2

, aq2−1 ∉W, therefore u ∈W. +us, we have

c
L
t T

r
q1 ,q2

  � c
L
t Cq2
  +

q2 − 1
2

�
r

2
. (21)

+e cL
t -set of tadpole graph Tr

q1 ,q2
for q≡ 1 (mod4) is

represented by black vertices in Figure 1.
Case 2: Suppose q2≡ 2 (mod4). If q2 � 2, then aq2

is a
support vertex. +erefore, aq2

∈W. Also, using the
definition of LTD-set, u ∈W. +is implies that (q1 +

1)/2 cycle vertices must belong to W and hence we have

c
L
t T

r
q1 ,2  �

q1 + 1
2

+ 1 �
r + 1
2

. (22)

But if q2> 2, then as q2≡ 2 (mod4), therefore aq2
∈D

and aq2−1, aq2−2 ∉W. Consequently, q2/2 path vertices
belong to W. Also, since aq2

∈W and aq2−1, aq2−2 ∉W,
therefore u ∈W which implies that (q1 + 1)/2 cycle
vertices must be in W. Hence,

c
L
t T

r
q1 ,q2

  �
q1 + 1
2

+
q2

2
�

r + 1
2

. (23)

+e cL
t -set of tadpole graph Tr

q1 ,q2
for q≡ 2 (mod4) is

represented by black vertices as shown in Figure 2.
Case 3: Now assume q2≡ 0 (mod4). If q2 � 0, then we
have

c
L
t T

r
q1 ,0  � c

L
t Cq1
  �

r + 1
2

. (24)

But if q2> 0, then as q≡ 0 (mod4) and |W| is minimum,
so aq1
∉W and aq2−1, aq2−2∈ W. Consequently, q2 /2

path vertices lie in W. Also, since aq2
∉W and aq2−1,

aq2−2∈W and u can be excluded from W. +is implies
that (q1 + 1)/2 cycle vertices must lie in W and hence

c
L
t T

r
q1 ,q2

  �
q1 + 1
2

+
q2

2
�

r + 1
2

. (25)

+e cL
t -set of tadpole Tr

q1 , q2
for q2 ≡ 0(mod4) is shown

in Figure 3 with black vertices.
Case 4: Finally, assume that q2≡ 3 (mod4). If q2 � 3,
then a2 being support vertex and a3 being its neigh-
bouring vertex lie in W. But then u can be taken out of
W. Moreover, for q1 ≡ 3(mod4), (q1 + 1)/2 cycle
vertices lie in W and hence
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c
L
t T

r
q1 ,3  �

q1 + 1
2

+ 2 �
r

2
+ 1. (26)

On the other hand, if q1≡ 1 (mod4), then (q1 − 1)/2 cycle
vertices belong to W and we have

c
L
t T

r
q1 ,3  �

q1 − 1
2

+ 2 �
r

2
. (27)

Now if q2> 3, then as q2≡ 3 (mod4); therefore, aq2
,

aq2−1 ∈W and aq2−2, aq2−3 ∉W. Consequently, (q2 + 1)/2
path vertices lie in W. Also, as aq2

, aq2−1 ∈W, and u can be
excluded from W. But then the vertices which lie in cL

t (Cq1
)

must lie in W. Moreover, if q1≡ 3 (mod4), then (q1 + 1)/2
cycle vertices are in W. +us, we have

c
L
t T

r
q1 ,q2

  �
q1 + 1
2

+
q2 + 1
2

�
r

2
+ 1, (28)

whereas if q1≡ 1 (mod4), then (q1 − 1)/2 cycle vertices
belong to W and we have

c
L
t T

r
q1 ,q2

  �
q1 − 1
2

+
q2 + 1
2

�
r

2
. (29)

+e cL
t -set of tadpole Tr

q1 ,q2
for q2 ≡ 3(mod4) is shown in

Figure 4 with black vertices. □

Theorem 8. Let q1 be an even integer. -en one has

c
L
t T

r
q1 ,q2

  �

r + 1
2

, if q2 ≡ 1, 3(mod4),

r

2
, if q2 ≡ 2(mod4),

r

2
, if q2 ≡ 0(mod4), q1 ≡ 0(mod)4,

r

2
+ 1 , if q2 ≡ 0(mod4), q1 ≡ 2(mod)4.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

Proof. Let W be a cL
t -set for Tr

q1 ,q2
. As |W| is minimum,

therefore a2 being support vertex by Proposition 1 and a3
being its unique neighbouring vertex by definition of lo-
cating-total dominating set must belong to W. Conse-
quently, a4 and a5 can be excluded from W and then the next
two consecutive vertices belong to W. By continuing this
process, we can see that for j≡ 2, 3 (mod4), aj ∈W and for
j≡ 0, 1 (mod4), aj ∉W.

Case 1: Suppose q2≡1 (mod4). If q2 �1, then
aq2
∈ Tr

q1 ,q2
is a pendant vertex and u is a support vertex.

+us, aq2
, u ∈W and

c
L
t T

r
q1 ,1  �

q1

2
+ 1 �

r + 1
2

. (31)

+e cL
t -sets of tadpoles T5

4,1 and T7
6,1 are shown in

Figure 5 with black vertices. But if q2> 1.
+en as q2≡1 (mod4), aq2

, aq2−1 ∉ W and
aq2−2, aq2−3 ∈W. Consequently, total (q2 − 1)/2 path
vertices belong to W. Further, since aq2

, aq2−1 ∉W,
therefore u ∈W. +us, (q1/2) + 1 cycle vertices lie in D
and consequently,

c
L
t T

r
q1 , q2

  �
q1

2
+ 1 +

q2 − 1
2

�
r + 1
2

. (32)

Case 2: Suppose q2≡ 3 (mod4). If q2 � 3, then a2 being
support vertex and a3 being its neighbouring vertex lie
in W. And u can be excluded from W. +is implies that

Figure 1: Tadpole Tr
q1 ,q2

for q2≡1 (mod4).

Figure 2: Tadpole Tr
q1 ,q2

for q≡ 2 (mod4).

Figure 3: Tadpole Tr
q1 ,q2

for q2≡ 0 (mod4).

Figure 4: Tadpole Tr
q1 ,q2

for q2 ≡ 3(mod4).
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q1/2 cycle vertices must lie in W, and hence, we have

c
L
t T

r
q1 ,3  �

q1

2
+ 2 �

r + 1
2

. (33)

+e cL
t -set of tadpoles T7

4,3 and T9
6,3 are shown in

Figure 6 with black vertices.
But if q2> 3, then as q2≡ 3 (mod4), so aq2

, aq2−1 lie inW,
whereas aq2−2, aq2−3 ∉W. Consequently, (q2 + 1)/2
path vertices belong to W. Further, as aq2

, aq2−1 lie in W

so u can be taken out of W. +us, q1/2 cycle vertices lie
in W so that

c
L
t T

r
q1 ,q2

  �
q1

2
+

q2 + 1
2

�
r + 1
2

. (34)

Case 3: Now suppose q2≡ 2 (mod4). If q2 � 2, then aq2
being a support vertex belongs to W. +is further
implies that u ∈W. Hence, q1/2 cycle vertices lie in W,
and consequently,

c
L
t T

r
q1 ,2  �

q1

2
+ 1 �

r

2
. (35)

+e cL
t -set of tadpoles T6

4,2 and T8
6,2 are shown in

Figure 7 with black vertices.
On the other hand, if q2> 2, then aq2 ∈W but aq2−1,
aq2−2 ∉W. +is implies that q2/2 path vertices are in-
cluded in W along with cycle vertex u. Consequently,
q1/2 cycle vertices lie in W and we have

c
L
t T

r
q1 ,q2

  �
q1

2
+

q2

2
�

r

2
. (36)

Case 4: Finally assume q2≡ 0 (mod4). It is easy to see
that if q2 � 0, then Tr

q1 ,0 � Cq1
and r� q1.

Hence,

c
L
t T

r
q1 ,0  � c

L
t Cq1
 . (37)

Using Remark 3, we have

c
L
t T

r
q1 ,0  �

q1

2
, if q1 ≡ 0(mod4),

q1

2
+ 1, if q1 ≡ 2(mod4).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(38)

As r� q1, so we have

c
L
t T

r
q1 ,0  �

r

2
, if q1 ≡ 0(mod4),

r

2
+ 1, if q1 ≡ 2(mod4).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(39)

But if q2> 0, then aq2
∉W and aq2−1, aq2−2 ∈W. +is

shows that q2/2 path vertices belong to W. Also, since
aq2
∉W and aq2−1, aq2−2 ∈W, u must be in W. Hence, the

vertices that belong to cL
t (Cq1

) must lie in W. Hence, we have

c
L
t T

r
q1 ,q2

  �
q2

2
+ c

L
t Cq1
 . (40)

Again, using Remark 3, we have

c
L
t T

r
q1 ,q2

  �

q2

2
+

q1

2
, if q1 ≡ 0(mod4),

q2

2
+

q1

2
+ 1, if q1 ≡ 2(mod4).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(41)

+us,

c
L
t T

r
q1 ,q2

  �

r

2
, if q1 ≡ 0(mod4),

r

2
+ 1, if q1 ≡ 2(mod4).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(42)

In +eorem 9, the rooted product Pq2
⊙Cq1

is computed.
Any cycle vertex can be considered as root vertex. □

Theorem 9. For positive integers q1≥ 3 and q2≥1, one has

(a) (b)

Figure 5: +e tadpoles T5
4,1 and T7

6,1.

(a) (b)

Figure 6: +e tadpoles T7
4,3 and T9

6,3.

(a) (b)

Figure 7: +e tadpoles T6
4,2 and T8

6,2.
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c
L
t Pq2
⊙Cq1

  �

c
L
t Cq1
 , if q2 � 1,

q2c
L
t Cq1
 , if q1 ≡ 0, 3(mod4),

q2c
L
t Cq1−1  +

q2

2
, if q1 ≡ 1(mod4),

q2c
L
t Cq1−2  + q2, if q1 ≡ 2(mod4).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(43)

Proof. If q2 �1, then Pq2
⊙Cq1

� Cq1
and

cL
t (Pq2
⊙Cq1

) � cL
t (Cq1

). Now we may suppose q2≥ 2.
+en four cases arise:

Case 1: Suppose q1 ≡ 0(mod 4), that is, q1 � 4k for
integer k> 0. +e graph Pq2

⊙Cq1
contains q2 mutually

disjoint cycles Ci
q1
, where i� 1,·..., q2. For each i, cycle

Ci
q1

consists of 4k vertices, namely, vi
j where j� 1, . . .,

4k. Take vi
1 as root vertex of each cycle. +e 4k vertices

in each cycle are divided into k sets such that each set
contains four consecutive vertices of cycle. From each
set, the middle two vertices can be taken as elements of
minimum LTD-set for each Ci

m . Let this minimum
LTD-set of Ci

m. +en Wi � vi
2, vi

3, vi
6, vi

7,

. . . , vi
4k−2, vi

4k−1} with |Wi|� 2k� cL
t (Ci

m). +ese 2k
vertices in each Wi are shown in Figure 8 as black
vertices.
Now the root vertices vi

1 from each Ci
m are actually the

path vertices and are locating totally dominated by the
elements of Wi for each i. Hence, all the vertices of
Pq2
⊙Cq1

are locally dominated by ∪ q2
i�1Wi . Also, this

set is minimum by construction. +us,

c
L
t Pq2
⊙Cq1

  � q2c
L
t Cq1
 . (44)

Case 2: Suppose q1 ≡ 1(mod 4), that is, q1 � 4k + 1, for
integer k> 0. Let vi

1 be the root vertex of cycle Ci
q1
for

each i. +e graph C1
q1

− v11  contains 4k vertices and
these 4k vertices are divided into k sets. Now we select
two middle vertices from each set. +en, all 4k vertices
of C1

q1
− v11  are locating totally dominated by

2kchosen vertices. Since v11 does not have a neighbour
in the selected LTD-set of C1

q1
, therefore, v21 must be a

LTD-vertex. +e graph C2
q1

− v21  also contains 4k
vertices and these 4k vertices are again divided into k
sets and all are locating totally dominated by 2k vertices
by selecting the first and last vertices from each set.
Now we are interested in minimum LTD-set; v31 may
not be an LTD-vertex. By continuing in this way, we
can see that if i is odd then vi

1 is not an LTD-vertex
otherwise vi

1 is an LTD-vertex. +is along with the fact
that path vertices are root vertices implies that all the
vertices of graph are locating totally dominated by a set
W of smallest cardinality. We note that if the path
(root) vertex is not an LTD-vertex, then associated cycle

has 2k vertices in W and otherwise each cycle has 2k+ 1
vertices in W. Hence,

c
L
t Pq2
⊙Cq1

  � q2c
L
t Cq1−1  +

q2

2
. (45)

+e cL
t -set of Pq2

⊙Cq1
for q1≡ 1 (mod4) is shown in

Figure 9 with black vertices.
Case 3: Suppose q1≡ 2 (mod4) such that q1 � 4k+ 2 and
k> 0 is an integer. In a similar manner as in Cases 1 and
2, we divide the vertices of each Ci

q1
− v11, ai , where ai

is neighbouring vertex of root vertex into k sets. For
each i, all the vertices of Ci

q1
− v11, ai  are locating

totally dominated by 2k chosen vertices (middle two
vertices in each set).+e vertices vi

1 and ai for all i can be
locating totally dominated if we include all the root
vertices. +is implies that

c
L
t Pq2
⊙Cq1

  � q2c
L
t Cq1−2  + q2. (46)

+e cL
t -set of Pq2

⊙Cq1
for q1≡ 2 (mod4) is shown in

Figure 10 with black vertices.
Case 4: Finally, suppose q1 � 4k+ 3, where k> 0 is an
integer. Here, the vertices of Ci

q1
− v11, ai, bi , where ai

and bi are consecutive two vertices of root vertex vi
1 on

cycle, are divided into k sets. Again for each i, all the
vertices Ci

q1
− v11, ai, bi  are locating totally dominated

by 2k chosen vertices (first two vertices in each set).+e
vertices v11, ai, bi  for all i can be locating-total dom-
inated by selecting two of them except root vertex.
+erefore, in this case, we have

c
L
t Pq2
⊙Cq1

  � q2c
L
t Cq1
 . (47)

+e cL
t -set of Pq2

⊙Cq1
for q1≡ 3 (mod4) is shown in

Figure 11 with black vertices.
In the following +eorem 10, the rooted product

Cq1
⊙Pq2

is computed. Here, we select pendant vertex of path
as root vertex. □

Theorem 10. For q1≥ 3 and q2≥ 2 and by taking pendant
vertex of Pq2

as root vertex, one has

c
L
t Cq1
⊙Pq2

  �

q1c
L
t Pq2
 , if q2 ≡ 0, 2(mod4),

q1c
L
t Pq2−1  + c

L
t Cq1
 , if q2 ≡ 1(mod4),

q1c
L
t Pq2−3  + 2 q1, if q2 ≡ 3(mod4).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(48)

Proof

Case 1: Suppose q2≡ 0 (mod4), such that q2 � 4k and
k> 0. +e rooted product Cq1

⊙Pq2
consists of mutually

disjoint q1 paths Pi
q2

for i� 1, ..., q1. Suppose vi
1 is the

Mathematical Problems in Engineering 7



Figure 10: +e graph Pq2
⊙Cq1

for q1≡ 2 (mod4).

Figure 11: +e graph Pq2
⊙Cq1

for q1≡ 3 (mod4).

Figure 12: +e product Cq1
⊙Pq2

for q2≡ 0 (mod4).

v1 v2 vq

Figure 9: +e rooted graph Pq2
⊙Cq1

for q1≡ 1 (mod4).

v5
1

v5
2 v5

q

v3
q

v4 
q

v2
q

v1
q

v4
2

v3
2

v2
2

v1
2

v4
1

v3
1

v2
1

v1
1

v4k
1
v4k–1

1

v4k–2
1

v4k
2
v4k–1

2

v4k–2
2

v4k
q
v4k–1
q

v4k–2
q

Figure 8: +e rooted product Pq2
⊙Cq 1

for q1≡ 0 (mod4).

Figure 13: +e graph Cq1
⊙Pq2

for q2≡1 (mod4).
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root vertex of Pi
q2
for i� 1, ..., q1. +e 4k vertices of Pi

q2
are split into k sets, each containing four consecutive
vertices. +en the collection of middle two vertices
from each set in every path gives the LTD-set for graph
Cq1
⊙Pq2

which is also minimum one:

c
L
t Cq1
⊙Pq2

  � q1c
L
t Pq2
 . (49)

+e cL
t -set of Cq1

⊙Pq2
for q2≡ 0 (mod4) is represented

by black vertices in Figure 12.
Case 2: Assume q2≡1 (mod4) such that q2 � 4k+ 1 and
k> 0. Let vi

o be the root vertex in each path Pi
q2

of
Cq1
⊙Pq2

. Consider Pi
q2

− vi
o  consisting of 4k vertices

and all the vertices in Pi
q2

− vi
o  can be locating totally

dominated by 2k chosen vertices (two middle vertices
from each set). Since all the paths Pi

q2
for i� 1,···, q1 are

mutually disjoint, therefore ∪ q1
i Pi

q2
− vi

o   is mini-
mum locating-total dominated set consisting of 2k · q1
vertices. +erefore,

c
L
t Cq1
⊙Pq2

  � 2kq1 + c
L
t Cq1
 

� q1c
L
t Pq2−1  + c

L
t Cq1
 .

(50)

+e cL
t -set of Cq1

⊙Pq2
for q2≡1 (mod4) is represented

by black vertices as shown in Figure 13.
Case 3: Now suppose that q2≡ 2 (mod4) such that
q2 � 4k+ 2. Here, each Pi

q2
for i� 1,···, q1 consists of

4k+ 2 vertices. All of them except the root and its
neighbouring vertex are locating totally dominated by
2k chosen vertices from each path as in the previous

cases. +ese chosen vertices must belong to cL
t -set. To

obtain, minimum LTD-se for rooted product, all the
root vertices are also included. Hence,

c
L
t Cq1
⊙Pq2

  � 2kq1 + q1 � q1c
L
t Pq2−2  + q1. (51)

+e cL
t -set of Cq1

⊙Pq2
for q2≡ 2 (mod4) is represented

by black vertices in Figure 14.
Case 4: +e case q2≡ 3 (mod4) is dealt in a similar
manner as in previous cases. +us, we have

c
L
t Cq1
⊙Pq2

  � q1c
L
t Pq2−3  + 2 q1. (52)

□

+e cL
t -set of Cq1

⊙Pq2
for q2≡ 3 (mod4) is shown in

Figure 15 with black vertices.

4. Conclusion

In this paper, the upper bounds for locating-total domi-
nation number of unicyclic and bicyclic graphs are obtained.
It is shown that, for unicyclic graph U of order r and leaves l,
cL

t (U)≤ r + l + 3/2 and for bicyclic graph B of order r and
leaves l, cL

t (B)≤ r + l + 6/2. +ese bounds are then gener-
alized for cacti graphs of order n having q cycles as
r + l + 3q/2. Also, the exact value of locating-total domi-
nation numbers for some cacti graphs is determined. For
tadpole graph Tr

q1 ,q2
, it is found that locating-total domi-

nating number is r/2, r + 1/2, or r/2 + 1 depending upon the
parity of r and values of q1 and q2. +e locating-total
dominating number of rooted product of Cq1 by Pq2 in terms
of q1 and cL

t (Pq2
) is computed. Similarly, locating-total

dominating number of rooted products of Pq2 by Cq1 in
terms of q2 and cL

t (Cq1
) is also determined. It is still an open

problem to find the sharpness of estimated bounds of lo-
cating-total dominating number for cacti graphs.
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