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Generative Adversarial Networks (GANs) have achieved significant success in unsupervised image-to-image translation between
given categories (e.g., zebras to horses). Previous GANs models assume that the shared latent space between different categories
will be captured from the given categories. Unfortunately, besides the well-designed datasets from given categories, many
examples come from different wild categories (e.g., cats to dogs) holding special shapes and sizes (short for adversarial examples),
so the shared latent space is troublesome to capture, and it will cause the collapse of these models. For this problem, we assume the
shared latent space can be classified as global and local and design a weakly supervised Similar GANs (Sim-GAN) to capture the
local shared latent space rather than the global shared latent space. For the well-designed datasets, the local shared latent space is
close to the global shared latent space. For the wild datasets, we will get the local shared latent space to stop the model from
collapse. Experiments on four public datasets show that our model significantly outperforms state-of-the-art baseline methods.

1. Introduction

-e unsupervised image-to-image translation is the process of
learning an arbitrary mapping between two categories, do-
mains, or classes images without labels.-is greatly reduces the
reliance on paired datasets and extends the range of applica-
tions for image translation tasks. For example, we can translate
zebras into horses. -e unsupervised image translation tasks
can meet a variety of needs. Previous models assume that the
shared latent space between different categories will be cap-
tured from the given categories (e.g., zebras to horses). Un-
fortunately, besides the well-designed datasets from given
categories, many examples come fromwild categories (e.g., cats
to dogs) holding special shapes and sizes (short for adversarial
examples), so the shared latent space is troublesome to capture
and it will cause the collapse of these models.

Prior works such as CycleGAN [1] enable capturing the
cyclic space between well-designed categories (e.g., zebras to
horses and summer to winter) without paired data. How-
ever, the cyclic mapping of CycleGAN is a one-to-one
mapping, in its limitation section; some unnatural results

were discovered on special datasets. Recent works such as
MUNIT [2] enable us to capture the shared latent content
space between well-designed categories (e.g., cats to dogs)
without paired data. -ough MUNIT enables us to build
multiple mapping and generate natural results, it is trou-
blesome to capture the shared latent content space for wild
categories with many adversarial examples.

In this paper, we take a further step towards un-
supervised image-to-image translation research for wild
datasets with many adversarial examples. Our global model
can be divided into two parts to explain. For the first stage,
inspired by the facenet [3], we use SSIM (structural simi-
larity) [4] algorithm to calculate the distance between dif-
ferent examples. We observed that the average SSIM
distance between the most examples and other examples in
the well-designed dataset that belong to the same category is
greater than 0.3. For the wild dataset, the average SSIM
distance between many examples and other examples is less
than 0.3, and these examples will cause themodel to collapse.
Note, it is just one way to discover adversarial examples. In
order to automatically reduce the number of adversarial
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examples within each category, we introduce a Sim loss
based on SSIM (structural similarity) distance. For a wild
dataset, we first select 5 to 10 normal examples with a SSIM
distance greater than 0.3 from each other as the weakly
supervised examples. We assume that a wild dataset can be
divided into two parts. One part is the normal examples
similar to the weakly supervised examples; the other part is
the adversarial examples.-en we use Sim loss to control the
learning objects of our weakly supervised model to reduce
the number of adversarial examples. -rough the first stage,
a normal example should learn from itself and an adversarial
example should learn from a weakly supervised example.

-e Sim loss is beneficial to reduce the number of
adversarial examples, but it cannot eliminate all the
adversarial examples. For the second stage, we assume the
shared latent space can be classified as global and local and
design an image-to-image translation model to capture the
local shared latent space rather than the global shared latent
space. For the well-designed datasets, different examples
have similar latent space, so the local shared latent space is
close to the global shared latent space. For the wild datasets,
only part of examples has similar latent space; thus we only
capture the local shared latent space to stop the model from
collapse. Inspired by the multimapping [5], we introduce the
category codes to constraint the local shared features across
categories and the encoders to capture the local shared latent
space for image-to-image translation. Experiments on four
public datasets show that our model significantly out-
performs state-of-the-art baseline methods.

In summary, we propose a similar GAN (short for Sim-
GAN) for wild datasets with many adversarial examples. -e
main contributions of this study are summarized as follows.

(i) We introduce a Sim loss based on SSIM (structural
similarity) distance with weakly supervised exam-
ples for Sim-GAN to automatically reduce the
number of adversarial examples within each
category

(ii) We assume that the shared latent space can be
classified as global and local and design a model to
capture the local shared latent space rather than the
global shared latent space

(iii) We introduce the category codes to constraint the
local shared features across categories and two
encoders to capture the local shared latent space for
image-to-image translation

2. Related Work

2.1. Generative Adversarial Networks. -ere have been large
GAN-family methods since the seminal work by Goodfellow
et al. [6]. -ese GANs models [7–9] can map from noise
inputs to realistic images. -ese GANs models have pro-
duced promising results in image translation. -e Pix2pix
model [10] applies a conditional GAN to model the mapping
function. Although high-quality results have been shown,
model training requires paired training data. It is applied to
numerous tasks such as sketch to photo, image colorization,
and photo to map.

2.2. Image-to-Image Translation. -e CycleGAN [1] model
is proposed for unpaired image translation that relies on
a cycle consistency loss term. -e CycleGAN model showed
some success when applied to a range of classic image
translation tasks like zebras to horses. Some of its failure
cases include overrecognizing objects and not being able to
change the shape of the object during translation (e.g.,
outputting a cat-shaped dog). Other works tackle the greater
shape change problems. -e Contrast-GAN [11] model
introduces an adversarial distance comparison objective for
optimizing one conditional generator and several semantic-
aware discriminators. -e MUNIT [2] model assumes that
images in different domains share a common content space
but not the style space. -e ganimorph [12] model in-
troduces dilated convolutions in their discriminator archi-
tecture. -en their discriminator output facilitates more
fine-grained information flow from the discriminator to the
generator. However, for the wild datasets with many
adversarial examples, all of the above models will collapse.

3. Proposed Method

Given examples from a category, such as the images of cats, our
goal is to translate them into dogs. In this paper, x and y indicate
the examples from categories X and Y. Our method consists of
two stages. In the first stage, a weakly supervised model to
automatically reduce the number of adversarial examples within
each category is trained. Because the dogs’ dataset (http://www.
recod.ic.unicamp.br/∼rwerneck/datasets/flickr-dog/) contains
many adversarial examples, the previous models suffered
a model collapse when processing the cats-to-dogs task.
-erefore, it is necessary to reduce the number of adversarial
examples. xw and yw indicate the weakly supervised examples
from categories X and Y. As long as the SSIM distance between
the examples xw 

n

w�1 is greater than 0.3, we can get the global
shared latent space. In our weakly supervised model, the source
category and target category are the same. Figure 1(a) shows the
network structure of the first stage.

In the second stage, an image-to-image translation
model is trained. Cx (e.g., identity matrix) and Cy (e.g.,
inverse identity matrix) indicate the inverse category codes
of the categories X and Y. Inspired by the multimapping [5],
we assume that the two-dimensional Cx and Cy can con-
straint the local shared features across categories X and Y.
For the wild datasets with many adversarial examples, the
global shared latent space is troublesome to capture. We use
two inverse category codes to hide some detailed features for
each example and reduce the effect of the adversarial ex-
amples to establish the correct mapping.-ough we only get
the local shared features across categories, this will stop the
model from collapse.-en we use two encoders Ex and Ey to
capture the local shared latent space for unsupervised image-
to-image translation. Figure 1(b) shows the network
structure of the second stage.

3.1. Objective. In the first stage, our model contains two
mappings G: X⟶ Y and its discriminator DY,
F: Y⟶ X and its discriminator DX. To automatically
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reduce the number of adversarial examples for each cat-
egory separately, when we train the model, x1, x2 come
from the same category and y1, y2 come from the same
category in this stage. We introduce the adversarial losses
firstly. -e adversarial losses are usually used to judge the
true and false probability of the generated images and the
input images. -e adversarial losses can be expressed as
follows:

LGan G, DY, X, Y(  � Ey∼pdata(y) logDY(y) 

+ Ex∼pdata(x) log 1 − DY(G(x))(  .

(1)

CycleGAN argues that, for each example x from cat-
egory X, the image translation cycle should be able to bring
x back to the original image; that is, x⟶ G(x)⟶
F(G(x)) ≈ x. It is called forward cycle consistency. Sim-
ilarly, for each image y from category Y, G and F should
also satisfy backward cycle consistency: y⟶ F(y)⟶
G(F(y)) ≈ y. -e cycle consistency loss can be expressed
as follows:

LCyc(G, F) � Ex∼pdata(x) ‖F(G(x)) − x‖1 

+ Ey∼pdata(y) ‖G(F(y)) − y‖1 .
(2)

For the first stage, the source examples and the target
examples are selected randomly from the same dataset. To
automatically reduce the number of adversarial examples,
we use the weakly supervised example xw (e.g., x1, x2 rather
x) to generate more normal examples from category X. For
an example, given x1 from category X, the generated ex-
ample x2′ � G(x1) should be similar to x2 when the mini-
mum SSIM distance between xw and x2 is bigger than 0.3. In
other cases, the generated example x2′ � G(x1) should be
similar to xw. -is leads us to propose a Sim loss (s rep-
resents the structural similarity of two tensors):

Lsim x2′, x1, x2, xW(  �
x2′ − xw1

�����

�����s
, Ms < 0.3,

x2′ − x2
����

����s
, Ms ≥ 0.3,

⎧⎪⎨

⎪⎩
(3)

where xW � xw 
n

w�1 (it represents all the weakly supervised
examples) and Ms � Min Min ‖x2′ − xw‖s 

n

w�1, ‖x1 − x2‖s 

(this represents the minimum SSIM distance between the
input examples x1, x2, the output of the generator network
G(x1), and all the weakly supervised examples). In the first
stage, our Sim-GANmodel learns maps fromX toX and Y to
Y. After the above process, we have obtained the first stage
objective:

G
Sim− GANFGX � LGan G(x), Dx, x1, x2( 

+ λ2LSim x2′, x1, x2, xW( 

+ λ1LCyc G(x), F(x), x1, x2( .

(4)

In this stage, our global objective function consists of
three parts: the Gan losses, the Cyc losses, and the Sim losses.
-e parameter value we used is λ1 � 10, λ2 � 60. FGX and
FGYmean that we use the first stage to reduce the number of
adversarial examples for categories X and Y.

In the second stage, our Sim-GAN model learns maps
from two categories X and Y. We introduce encoders Ex and
Ey and category codes Cx and Cy for our model. Here, we
define G � G(x, Ex(x), Cx), F � F(y, Ey(y), Cy) to indicate
two generator networks G, F for two examples x, y of cat-
egories X, Y. In the previous papers, the SSIM (structural
similarity) algorithm is used to compare the structural
similarities of images. To reduce the effect of adversarial
examples, because other loss calculation methods do not
reflect the special structural similarity between different
adversarial examples from different categories, therefore, we
have improved the algorithm so that it can calculate the
distance between two tensors. We apply s to represent the

Sim loss

Gan loss
D

Cyc loss

(a) reducing the number of adversarial samples

G = generator, D = discriminator, E = encoder, C = category code

(b) unsupervised image-to-image translation

Cyc loss

Cx

G

D

Ex(x1)
x1

y1 SSIM loss Gan loss y1
x1y′1 Ey(y′1)

F

Cy

X FGYY Y′FGX X′

x1 G x′2

x2

{xw}w=1
N

x1F ˆ
ˆ

Figure 1: An overview of the two stages of our Sim-GAN. (a) In the first stage, x1, x2 indicate the examples of category X. Given an example
x1, our goal is to translate it into an example xw or x2. At first, generator G is used to translate an example x1 into an example x2′. -en
discriminator D distinguishes between the generated example x2′ and real one x2 or xw. At last, generator F is used to translate x2′ into x1. x1
indicates the generated result. In this stage, FGX and FGY mean that we use the first stage to reduce the number of adversarial examples for
categories X and Y. Here, Cyc loss denotes the cycle consistency loss between x1 and x1. (b) In the second stage, Ex and Ey indicate the
encoders of the categories X and Y. At first, generator G is used to translate x1, the category code Cx, and the encoded representation of
image x1 into an example y1′. -en the discriminator D distinguishes between the generated example y1′ and real example y1.
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structural similarity of the two tensors. -e SSIM loss can be
expressed as follows:

LSSIM(G(x), F(y)) � Ex∼pdata(x) G(x) − ys

����
���� 

+ Ey∼pdata(y) F(y) − xs

����
���� .

(5)

In this stage, we introduce variational autoencoders
(VAEs) [13] type encoders Ex and Ey to get the local shared
latent space. Our goal is to use the random Gaussian dis-
tribution (N (0, I)) to represent the local shared features. -e
VAE loss can be expressed as follows:

LVae(X, Y) � Ey∼pdata(y) logDKL Ey(y) ‖ N(0, I)  

+ Ex∼pdata(x) logDKL Ex(x) ‖ N(0, I)(  .

(6)

where DKL(p || q) � −  p(z)log(p(z)/q(z))dz (here, p and
q are the latent distributions and z is the latent vector from
VAE-like encoder. DKL is the Kullback–Leibler divergence).
To enforce the generator utilizing the latent vector zx, zy, the
reconstruction latent vector loss is expressed as follows:

LLatent � Ey,zy
Ey y′(  − zy

�����

�����1
  + Ex,zx

Ex x′(  − zx

����
����1 .

(7)

Specifically, when y is input to Ey, we will get zy.-en zy

can be input to the generator network G(y, zy, Cy). -e
reason for the paired zy

′ and zy is that y′ � G(y, zy, Cy).
After the above process, we have obtained the following
objective function for the second stage:

G
Sim− GANTGX � LGan G, DY, X, Y(  + LGan F, DX, Y, X( 

+ λ1LCyc(G, F) + λ2LSsim(G, F)

+ λ3LVae(X, Y) + λ4LLatent.

(8)

TGX means that we use the second stage to learn maps
from category X to category Y. In this stage, our global
objective function consists of five parts: the Gan losses, the
Cyc losses, the SSIM losses, the VAE losses, and the re-
construction losses. -e parameter value we used is λ1 � 10,
λ2 � 7, λ3 � 0.01, λ4 � 10. Finally, the workflow of example x
can be expressed as follows: x⟶ Gstage1(x)⟶ x′ ⟶
Gstage2(x′)⟶ x⟶ Fstage2(x) ≈ x′.

3.2. Network Architecture

3.2.1. Generator Network. -e goal of the generator network
is to generate learned features. For the first stage, we use the
ResNet structure with an encoder-decoder framework,
which contains two stride-2 convolution layers for down-
sampling, six residual blocks, and two stride-2 transposed
convolution layers for upsampling. In order to get more local
features, we use local response normalization [14] for all the
convolutional layers. For the second stage, some details and
spatial information may be lost in the downsampling

process. We use the ResNet structure with a decoder
framework, which contains two stride-2 convolution layers
for downsampling, six residual blocks, and two stride-2
transposed convolution layers for upsampling. We replace
all normalization layers except upsampling layers with CBIN
(the central biasing instance normalization) layers [5]. -e
CBIN aims to adjust the different distributions of input
feature maps adaptively with learnable parameters, which
makes the category code able to manage the different tasks.
We use the category code to label the different mapping in
the generator.

3.2.2. Discriminator Network. For the first stage, we use one
discriminator networks to make a distinction between the
real example and the weakly supervised example. For the
second stage, we use two discriminator networks to dis-
criminate the real and fake images in different scales.

3.2.3. Encoder. Our encoders consists of three convolution
layers followed by four residual blocks to down example the
input examples. In order to get more features, we use in-
stance normalization for all the convolutional layers. It
should be noted that the output of the encoder will be used in
our generator network.

4. Experiments

To explore the generality of the Sim-Gan model, we test the
method on a variety of tasks including human faces to
animes, human faces to cats, human faces to dogs, and cats
to dogs. We carry on the experiment for unpaired image-to-
image translation on four open source datasets. We im-
plement the Sim-Gan model in the open source Tensorflow
framework, which uses GTX1080Ti GPUs for both training
and testing. We first optimize the dataset and deal with the
problem that the dataset does not converge and then use the
trained model to process the input data in the second stage
and perform the image translation task. Furthermore, we
used our model to handle the four tasks above. -en we
performed experimental comparisons with the most ad-
vanced models to accomplish the same tasks. Finally, we
recorded various performance indicators for testing [15–18].

4.1. Datasets and Preprocessing. Before starting the experi-
ment, we should resize the image to 256× 256. Each batch of
training randomly loads 1 image from the source category
and then randomly loads 1 image from the target category.
We use a total of four public datasets for testing and
comparison. -e CELEBA dataset [19] with 202,599 ce-
lebrity face images (short for faces). -e Getchu dataset [19]
contains 26,752 anime character face images with a clean
background (short for animes). -e Flickr-Dog dataset
(http://www.recod.ic.unicamp.br/∼rwerneck/datasets/flickr-
dog/) has 42 classes and 374 photos (short for dogs).-e cAT
dataset [20] (short for cats) includes 10,000 cat images. For
each image, they annotate the head of a cat with nine points,
two for eyes, one for the mouth, and six for ears.
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We conduct cats to dogs, human faces to cats, human
faces to dogs, and human faces to animes task separately.-e
experimental results of first stage on dogs to dogs tasks are
shown in Figure 2.

As shown in Figure 2, we note that Sim-GAN can
generate dogs that are close to the weakly supervised dogs. In
this way, we can automatically reduce the number of
adversarial dogs. -e experimental results of the second
stage on these tasks are shown in Figure 3:

In Figure 3, we find that Sim-GAN can generate objects
closer to the target objects for four tasks. It means that Sim-
GAN can get the local shared latent space to stop the model
from collapse. In the first stage, we reduce more than 10%
adversarial examples for dogs, 4% adversarial examples for
cats, 3% adversarial examples for animes, and 2% adversarial
examples for human faces.

4.2. Baselines. To compare the performance of our Sim-
GAN model, we adopt the CycleGAN [1] model, the
ganimorph [12] model (Imo-GAN for short), and the
MUNIT [2] model as our baseline models.

4.3. Evaluation Index. Using the same evaluation metrics,
we compare our method against several baselines qualita-
tively and quantitatively.

4.3.1. AMT. For these tasks, we run “real vs fake” per-
ceptual studies on Amazon Mechanical Turk (AMT) to
assess the realism of our outputs. We follow the same
perceptual study protocol from Isola et al. [10], and we
gather data from 50 participants per algorithm we tested.
Participants were shown a sequence of pairs of images, one
a real image and one fake (generated by our algorithm or
a baseline), and asked to click on the image they thought
was real.

4.3.2. Classification (Cf for Short). We train three Xception
[21] based binary classifiers for each image datasets. -e
baseline is the classification accuracy in real images. Higher
classification accuracy means that the generated images may
more easy to distinguish.

4.3.3. Consistency (Cs for Short). We compared the domain
consistency between real images and generated images by
computing average distance in feature space. We use the
cosine similarity to evaluate the perceptual distance in the
feature space of the VGG-16 network [22] pretrained in
ImageNet [23]. We sum across the five convolution layers
preceding the pool layers. -e larger the value, the more the
similarities between the two images. In the test stage, we
randomly example the real image and the generated image
from the same domain to make up the data pair. -en we
compute the average distance between each pair.

4.4. Base Model Comparison. Here, we evaluate the per-
formance of different models. In order to be fair, we use the
same dataset to ensure that each model reaches a conver-
gence state. -e experimental results of the Sim-GANmodel
on these tasks are shown in Figure 4 (the result ours2 in-
dicates that only the model of our second stage is used to
generate data).

In Figure 4, it is shown that our model generates better
and closer target category examples than other models. -e
CycleGAN model cannot handle these tasks; it only learns
part of the style mapping. -e Imo-GAN model enables
completing a few tasks but lacks some details; it only learns
most of the content mapping. -e MUNIT model enables
completing most tasks, it learns the right content mapping
and style mapping. -e experimental results show that for
the cats to human faces task, besides CycleGAN, all the
models produce natural results and it means that the local
shared latent space is close to some of the global shared
latent space. -is is because the cats and faces datasets

Input Output Input Output

(a) (b) (a) (b)

Figure 2: Some experimental results of the first stage by our model, which takes dogs to dogs. In each column from left to right: (a) input
image (256× 256 pixels) and (b) the output of the first stage.
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CycleGANInput Imo-GAN MUNIT Ours2 Ours CycleGAN Imo-GAN MUNIT Ours2 OursInput

Cats to
dogs

Human to
cats

Human to
dogs

Human to
animies

(a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)

Figure 4: -e image-to-image translation results for cats to dogs, human faces to cats, human faces to dogs, and human faces to animes
tasks. (a) Input images. (b) Translation results by CycleGAN. (c) Translation results by Imo-GAN. (d) Translation by MUNIT.
(e) Translation results only using the model of our second stage. (f ) Translation results by our method.

Cats to
dogs

Human to
cats

Human to
dogs

Human to
animes

Input InputSim-GAN Sim-GAN Input InputSim-GAN Sim-GAN

(a) (a)(b) (b) (a) (a)(b) (b)

Figure 3: Some image-to-image translation results by our model, which takes cats to dogs, human faces to cats, human faces to dogs, and
human faces to animes. In each column from left to right: (a) input image (256× 256 pixels) and (b) image-to-image translation result.
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contain fewer adversarial examples. For the cats to dogs task,
besides Sim-GAN, all the models produce unnatural results
and it means that the local shared latent space enables
stopping the model from collapsing. -is is because the dogs
dataset contains many adversarial examples. In addition, the
image translation results of ours2 model shows that if there is
no weakly supervised training in the first stage, ours2 model
also produces natural results. Under most conditions, the
image translation results of ours2 model are better than the
MUNIT model and get the local shared latent space. Fur-
thermore, the reason for some similar image translation
results between MUNIT and our method is that the local
shared latent space and the global shared latent space may
intersect under certain conditions.

-e contrast effect for four tasks on three evaluation
indicators is shown in Table 1.

As can be seen from Table 1, our model achieved leading
numerical results than other models. -is means that we not
only reduce the number of adversarial examples but also
successfully capture the local shared latent space for un-
supervised image-to-image translation.

4.5. Limitations. Although our model is able to generate
semantically plausible and visually pleasing examples for
wild datasets with many adversarial examples, it has some
limitations. -e first limitation is that we are not able to
translate desired results based on conditions. -ese will be
addressed in the next study. Our model can avoid collapse
for the wild dataset, but the weakly supervisedmodel reduces
the number of examples. -erefore, our image translation
results lack diversity, which will be discussed in future work.
-e second limitation is that the image translation results are
not similar in the pose of the head. -e main reason for the

not similarity in the pose of the head is the dataset. -e
similarity is global latent spaces. -e not similarity in the
pose of the head is the local latent spaces. -e last limitation
is the pretrained ImageNet for the consistency evaluation.
-ough we use pretrained ImageNet for the consistency
evaluation of dogs, cats, and animes, the VGG-Face model is
very critical for face consistency evaluation.We will use it for
the consistency evaluation of cats to human faces, dogs to
human faces, and animes to human faces tasks.

5. Conclusion

-is paper studies the use of a novel Generative Adversarial
Networks model for image-to-image translation when other
models collapse. We assume the shared latent space can be
classified as global and local and design a weakly supervised
Similar GANs (Sim-GAN for short) to capture the local
shared latent space rather than the global shared latent space.
We first introduce a loss based on SSIM (structural simi-
larity) distance with weakly supervised examples for Sim-
GAN to automatically reduce the number of adversarial
examples within each category. -en we introduce the
category codes to constraint the local shared features across
categories and the encoders to capture the local shared latent
space for unsupervised image-to-image translation. Exper-
iments on four public datasets show that our model sig-
nificantly outperforms state-of-the-art baseline methods.
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