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2is study investigates the deadline of the discrete time-cost tradeoff problem (DTCTP-D) with generalized precedence relations
(GPRs). 2is problem requires modes to be assigned to the activities of a project such that the total cost is minimized and the total
completion time and the precedence constraints are satisfied. Anomalies under GPRs are irreconcilable with many current
theories and methods. We propose a preprocessing technology, an equivalent simplification approach, which is an effective
method for solving large-scale complex problems. We first study a way to deal with the anomalies under GPRs, such as the reduce
(increase) in project completion as a consequence of prolonging (shortening) an activity, and discover relationships between time
floats and path lengths. 2en, based on the theories, we transform the simplification into a time float problem and design a
polynomial algorithm. We perform the simplification and improve the efficiency of the solution by deleting redundant
calculation objects.

1. Introduction

Project management is designed to manage or control com-
pany resources on a given activity, within time, cost, and other
constraints. Very few projects are completed without incurring
tradeoffs on these constraints [1]. A successful project manager
needs to maintain a balance between them such that the
outcome of the project is not compromised. However, keeping
the balance and tradeoffs between these objectives is inherently
difficult. 2e time-cost tradeoff problem (TCTP) is a special
version that addresses both discrete and continuous time-cost
relationships. 2e TCTP in this paper is limited to the discrete
version, namely, the discrete time-cost tradeoff problem
(DTCTP) [2].2eDTCTP considers a limited number of time-
cost alternatives, so-calledmodes, for each activity, and the aim
is to select a mode for each activity so that the desired project
goals are reached. De et al. [3] proved that the DTCTP is a
strong NP-hard optimization problem for general activity
networks.

2ree versions of the DTCTP have been studied in the
literature so far: the deadline problem (DTCTP-D), the
budget problem (DTCTP-B), and the efficiency problem
(DTCTP-E) [4]. In DTCTP-D, given a set of modes (time-
cost pairs) for each activity, the objective is to select a mode
for each activity so that the total cost is minimized while
meeting a given project deadline. Conversely, the budget
problemminimizes the project duration while not exceeding
a given budget. DTCTP-E is the problem of constructing
efficient time-cost solutions over the set of feasible project
durations [4]. 2is paper concentrates on the deadline
version.

2e basic DTCTP-D deals with scheduling project ac-
tivities’ modes subject to finish-to-start precedence con-
straints with zero time lags (strict precedence relation).
When this kind of temporal constraints are taken into ac-
count, an activity can start only as soon as all its predecessors
have finished. However, in a project, it can be necessary to
specify other kinds of temporal constraints besides the strict

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 6312198, 19 pages
https://doi.org/10.1155/2020/6312198

mailto:63443848@qq.com
https://orcid.org/0000-0002-9826-6282
https://orcid.org/0000-0002-3575-940X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/6312198


precedence relation. Roy [5] and Elmaghraby [6] denoted
such constraints as Generalized Precedence Relations
(GPRs). GPRs mandate the start/finish times of a pair of
activities in a project that must be separated by a minimum
or maximum amount of time referred to as a time lag. In this
paper, we study the DTCTP-D with GPRs.

For the DTCTP, the amount of schemes of the problem
will increase exponentially as the scale of the problem in-
creases, which causes the computational demand to increase
greatly. Conversely, if the amount of activities is reduced, the
number of schemes will decrease exponentially, which
means that a large-scale DTCTP may be solved by using
exact algorithms. For the TCTP-D, we summarize a feature
that matching this idea of reducing activities. Fulkerson [7]
first proposed an exact network flow computation for the
continuous TCTP-D, and the procedure is to compress
activities from their longest durations. Of special interest is
when observing the optimal solutions obtained by Fulkerson
algorithm [7] in a number of TCTP-D instances, we discover
only a few activities with compressed durations and most
others keeping the original longest durations. 2en, we
further observe the optimal solutions of DTCTP instances
and find the similar result and feature, even for the DTCTP
with GPRs. For example, in [8], the optimal solution of a
numerical example shows that 24 activities in total 29 ones
choose their longest modes; therefore, maybe, obtaining the
optimal solution is equivalent to identifying the optimal
modes of the other 5 activities. 2e result enlightens us that
maybe only a few activities need to be considered and
computed, and if so, the computation for the DTCTP-D
could be reduced substantially. 2e key of computation
reduction is to identify the few activities with compression
requirements. In this study, we focus on the preprocessing
technology to simplify the DTCTP-D with GPRs.

2e paper is organized as follows. Related work is
reviewed in Section 2. Section 3 contains a mathematical
programming model formulation for the DTCTP-D with
GPRs, and Section 4 contains the representations of GPRs
and computations of activity time parameters under GPRs.
Section 5 presents the equivalent simplification for the
DTCTP-D with GPRs and the model that employs the
characteristics of time parameters under GPRs. A report on
in-depth computational studies is provided in Section 6.
Finally, discussing and concluding remarks in Sections 7 and
8 finish the paper.

2. Related Works

2e importance of the time-cost tradeoff problem was
brought to the attention of the research community almost
50 years ago [7, 9, 10], and moreover the works for GPRs
were started nearly 70 years ago [5, 6]; however, still, due to
the inherent computational complexity, research in the
DTCTP with GPRs is rather sparse. We view the literature
studies on the DTCTP and GPRs, respectively.

2.1. DTCTP. 2e methods proposed for the DTCTP could
be categorized into three areas: exact methods, heuristics,

and metaheuristics. 2e global optimum solution is the
ultimate aim of the time-cost tradeoff, and exact algorithms
are required to compute this solution. Generally, the exact
algorithms rely on optimization models. For exactly de-
scribing the DTCTP, the mixed-integer programming op-
timization models are mainly applied [8, 11–15], and
recently, Klanšek and Pšunder [8] presented a mixed-integer
nonlinear programming optimization model for the non-
linear DTCTP.

2e exact methods for the DTCTP mainly contain the
branch-and-bound-based algorithms [16–19], cutting plane
algorithm [20], dynamic programming algorithm [2, 21],
and column generation method [22]. However, all three
types of DTCTP are NP-hard in the strong sense [3]. Hence,
the exact algorithms are limited to solve small and medium
scale instances. In times earlier than 2005, instances with
(depending on the structure of the network and the number
of processing alternatives per activity) no more than 20–50
activities can be solved to optimality in reasonable amount of
time [22]. In particular, Vanhoucke [23] concluded that
problem with time-switch constraint instances with 20 or 30
activities, and four or more modes are very difficult to solve
and have to rely on heuristic procedures. In the times, di-
rectly computing the DTCTP mainly relied on the branch-
and-bound algorithms, and we could view the efficiencies in
computational experiments. Demeulemeester et al. [18]
solved instances up to 50 activities, while Vanhoucke [23]
achieved optimal solutions for instances of the problem with
time-switch constraints up to 30 activities with a fixed
number (2 or 4) of modes. However, after 2005, authors
could directly compute the optimal solutions of the DTCTP
instances with far more than 50 activities. Hadjiconstantinou
and Klerides [20] proposed a new path-based cutting plane
approach for the DTCTP, which can provide optimal so-
lutions of the DTCTP instances withmore than 100 activities
and many modes per activity within short computational
time. Some authors studied other methods based on models.
Szmerekovsky and Venkateshan [11] studied four integer
programming formulations for the DTCTP and achieved
optimal solutions for instances with up to 90 activities.
Klanšek and Pšunder [8] further considered the nonlinear
DTCTP and presented a mixed-integer nonlinear pro-
gramming optimization model which yields the exact op-
timum solution of the nonlinear DTCTP. Due to the much
more complexity, they used the approach to solve the in-
stances up to 29 activities with 3 modes.

In order, for the optimal solutions of the larger-size
DTCTP instances, many authors research the problems
from other perspectives, and most of them focused on the
decomposition. For example, the dynamic programming
formulation for the problem may exploit the decomposition
structure of the project network [2, 3, 21, 22, 24]. 2e de-
composition that facilitates the computation is known as
modular decomposition or substitution decomposition and
has many applications in network and other combinatorial
optimization problems.2is is carried out by “transforming”
such an indecomposable project network to a series-parallel
network and then performing the “easy” calculations for the
series-parallel case. De et al. [16], Erengüc et al. [25], and
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Demeulemeester et al. [24] provided the early imple-
mentations of this approach. Demeulemeester et al. [24]
reported on computational experience for networks with up
to 45 activities, while Erengüc et al. [25] developed a Benders
decomposition approach to optimality and tested on proj-
ects with up to 64 activities. 2ese results are excellent in
1990s. Akkan et al. [22] used network decomposition to
optimally solve a set of series of subnetworks of the DTCTP,
and the results were reported for large and hard instances
including project networks with up to 138 activities and 20
modes per activity. Hazır et al. [4] presented an exact
method based on Benders decomposition for the DTCTP-D
and were able to solve instances including up to 136 activities
and 10 modes within 90min.

In addition, a few authors considered the direct re-
duction from a large-size DTCTP to a small-size one
[16, 22, 24]. 2e approach could be seen as a special de-
composition but may have more powerful function once
realized. Akkan et al. [22] discussed techniques which help
to eliminate somemodes of activities to simplify the DTCTP.
2e work is productive but there are still some bottlenecks to
overcome. For example, their procedure needs to determine
all paths which have a longest possible path length that
exceeds the deadline, but it may be difficult to compute and
identify the numerous paths in a large network. To the best
of our knowledge, there is no computational experience to
test the approach because of these defects. We are interested
in the idea and try to overcome the difficulties, which is one
work in this paper.

Although the decomposition/reduction technologies
could assist the exact method to solve the larger-size
DTCTP, for the problem with more than 200 activities and
more modes per activity, we have to use heuristics and
metaheuristics to compute near-optimal solutions. 2e
current research on heuristics and metaheuristics is focused
on the ant colony algorithm [26], genetic algorithm
[12, 13, 15, 27], simulated annealing algorithm [28], particle
swarm algorithm [29, 30], variable neighborhood search
[31], tabu search [31], Network analysis algorithm [32], and
memetic algorithm [33]. Some authors also presented other
approximation methods, such as “natural” linear relaxation
[34, 35], Lagrange relaxation [22], and bicriteria approxi-
mation algorithms [36]. 2e computational experiences
have tested the efficiencies of heuristics. Vanhoucke and
Debels [37] proposed a metaheuristic approach for the
DTCTP with time/switch constraints, work continuity
constraints, and net present value maximization, and their
computational experiences generated project with up to 200
activities, with the number of modes generated randomly
from the interval [1, 11, 38]. Kandil and El-Rayes [39], and
Bettemir [40] solved large-sized DTCTP instances earlier
using metaheuristics; however, their computations required
long time periods. Kandil and El-Rayes [39] computed in-
stances up to 720 activities in 21 h. Bettemir [40] tested one
of the best results until now that achieved solutions of in-
stances including 630 activities with a 2 percent deviation
from the optimum in 73min. Furthermore, some authors
proposed more advanced heuristic algorithms. Sonmez and
Bettemir [13] developed a hybrid genetic algorithm for the

DTCTP-D and tested it on problem instances with up to 630
activities, while Li et al. [41] proposed a biobjective hybrid
genetic algorithm for the DTCTP-C and tested it on problem
instances with up to 500 activities with fixed 8 modes or
[9, 27] modes. Recently, Leyman et al. [42] employed an
iterated local search metaheuristic for the DTCTP with
multiple cash flow and payment models and tested it on
problem instances with up to 100 activities with fixed 6
modes.

However, heuristics mainly focus on the local optimality
and near-optimality and may not always converge to the
global optimum, whereas metaheuristics require significant
computation to converge to the global optimum. Vanhoucke
and Debels [37] revealed that even a truncated version of the
branch-and-bound procedure still outperforms their met-
aheuristic procedures. Some works could be used to evaluate
such heuristics and approximations, such as the work on the
lower bound. Akkan et al. [22] proved a stronger lower
bound for the DTCTP using column generation techniques.

In practice, it is common that a project will most likely
consist of hundreds of activities [43]. For the optimal so-
lutions of large-size DTCTP instances, decomposition/re-
duction approaches may be better choices, and one target of
this paper is a more effective technology (polynomial al-
gorithm) of decomposition/reduction following our idea
that identify the activities requiring compressions.

2.2. GPRs. After the original work of Roy [5] and
Elmaghraby [6], the first systemic treatment of GPRs is due
to Kerbosch and Schell [44]. 2e GPRs are extension of the
traditional strict precedence relation between activities in a
project, which include the minimal/maximal time lags.
However, the representations and time parameters of the
former are significantly different from the latter.

For the representations of GPRs, Kerbosch and Schell
[44], IBM [45], Crandall [46], and Neumann and Schwindt
[47] modelled projects with GPRs by activity-on-node
(AoN) networks, while Elmaghraby and Kamburowski [48]
further developed an improved activity-on-arc (AoA) net-
work under GPRs. 2ere are negative length arcs and cycles
in the activity network under GPRs, which are unallowed in
the representation of strict precedence relation, such as the
Critical Path Method (CPM) network [10]. De Reyck and
Herroelen [38] declared that the networks that include
activities among which minimal and maximal time lags exist
can generate infeasibilities in the project. However, with
considering only minimal time lags between activities, CPM
can easily be extended to GPRs, that is, no cycles may occur
in the network with only case of minimal time lags between
activities.

2e time parameters of activities are computed based on
the Precedence Diagramming Method (PDM), and the
abovementioned authors working on the representations of
GPRs also proposed algorithms for the time parameters
under the GPRs. In addition, some authors considered the
extension of general GPRs [49]. Leachman et al. [50], Kis
et al. [51], and Kis [52, 53] considered the intensity of the
activities using the “feeding precedence” constraints. Bianco

Mathematical Problems in Engineering 3



and Caramia [54–56] classified the intensity as %Completed-
to-start, Start-to-%Completed, Finish-to-%Completed, and
%Completed-to-Finish. Crandall [46], Moder et al. [57],
Valls et al. [58], Hajdu [59], Kis [53], and Ponz-Tienda et al.
[60] considered the splitting of activities and proposed and
developed computations for the splitting parameters under
GPRs. 2ere are still other new approaches to face the
problem of GPRs particularly the overlapped activities, such
as Beeline Diagramming Method [61], Design Structure
Matrix [62], Collaborative Product Development Process
[63], and Concurrency Scheduling [64].

However, the PDM with GPRs presents anomalous ef-
fects that are counterintuitive about the consequences of
lengthening or shortening a job [48, 65–67], changing the
concept of the critical path itself. Crandall [46] and
Elmaghraby and Kamburowski [48] analyzed the anomalous
effect called “reverse criticality” that the reduction (increase)
in project completion time is a consequence of prolonging
(shortening) the duration of a critical activity. Recently, Qi
and Su [68] and Su and Wei [69] discovered the phe-
nomenon that time floats increase following consumptions.
Su [70] further found that the activity floats can be con-
sumed and enlarged imperceptibly even if the activity has
not started and all activities do not consume their time floats.
2ese anomalies challenge the foundations and principles of
project scheduling with GPRs including the TCTP with
GPRs.

To the best of our knowledge, the literature on the
DTCTP with GPRs is nearly scarce. Sakellaropoulos and
Chassiakos [71] paid early attention to the DTCTP with
GPRs and formulated a linear/integer program. Son et al.
[72] developed a mixed (continuous + discrete) time-cost
tradeoff model considering GPRs to represent the project
more realistically. Klanšek and Pšunder [8] considered the
nonlinear DTCTP with GPRs and presented a mixed-integer
nonlinear programming optimization model. In these lit-
erature studies, the GPRs constraints are added to the
DTCTP model, but paid no special attention to the GPRs
and characteristics. Obviously, the generalized DTCTP
models have not concerned the time parameters of activities;
therefore, they cannot reflect the influences of the anomalies
of GPRs to the time parameters. Maybe, it is a reason that
there are many literature studies on the DTCTP but few on
the problem with GPRs. All the same, a few authors con-
sidered the anomalies when solving the TCTP with GPRs.
For avoiding the influences of the anomalies, Elmaghraby
and Kamburowski [48] proposed a method liking Fulkerson
algorithm but executing activities from their shortest du-
rations. Although they only considered the continuous
TCTP with GPRs, the contribution enlightens us to handle
the discrete version. However, the decomposition/reduction
based on the project networks for the DTCTP is heavily
reliant upon the time parameters of activities. Hence, it is
hard to realize a decomposition/reduction for the DTCTP
with GPRs until the anomalies of GPRs are handled enough.

Although few authors researched the DTCTP with GPRs
specially, there are relative more works on the problem
considering other objectives for trading-off, and most fo-
cused on the discrete time-cost-quality tradeoff problem

(DTCQTP) with GPRs. 2e related contributions also
contain the modellings and algorithms. Most authors used
mixed-integer mathematical formulations to model the
DTCQTP with GPRs [73, 74], but different algorithms to
solve the problem [73–75]. Amiri et al. [73] developed a
modified nondominated sorting genetic algorithm-II, while
Tavana et al. [74] proposed an efficient version of the
ε-constraint method and a dynamic self-adaptive version of
a multiobjective evolutionary computation. Khalili-Dam-
ghani et al. [75] compared the performance of several
methods including the epsilon-constraint, multistart partial
bound enumeration algorithm, and dynamic self-adaptive
multiobjective particle swarm optimization, and the com-
putational experiments showed that the last one outper-
forms the others. 2ey discovered and analyzed the time
windows of an activity generated by the GPRs; however,
liking the DTCTP with GPRs, their works on the DTCQTP
with GPRs still did not concerned the time parameters of
activities and neglected the influences of the anomalies. A
few authors made a try to introduce the time parameters of
activities to the models and computations for improved
solutions of the TCQTP. Afruzi et al. [76] proposed a model
and algorithm for the DTCQTP. Although they considered
the problem on with one-type precedence relation, the frame
and process of the proposed model and algorithm are
bounded by the earliest/latest-start/finish times of activities,
and the computational outcomes showed the competitive
effects. Maybe the work will be useful to develop the
DTCQTP with GPRs. Mohammadipour and Sadjadi [77]
further provided a tradeoff between “project total extra cost,”
“project total risk enhancement,” and “project total quality
reduction” to shorten the overall project duration with
GPRs. In their model, they set the “earliest-start time” and
“latest-finish time” of an activity as variables, which could
reflect a degree of the influences of the anomalies of GPRs.

In order to obtain the optimal solutions of larger-size
DTCTP with GPRs instances, in this paper, we prefer to the
decomposition/reduction for the problem, that is, the
equivalent simplification. 2e related literature studies of
DTCTP and our previous works have shown that the time
parameters of activities are very useful to the simplification
effect. 2erefore, we should provide measures to handle the
anomalies under GPRs and develop a procedure for the
equivalent simplification of the DTCTP with GPRs, keeping
away from the anomalies.

3. Problem Formulation and Notation

Consider a project composed of different activities linked by
precedence relations. Each activity i in the project can be
executed in k ∈ ri different modes and each mode mk has its
own duration (dk

i ) and cost (ck
i ).

3.1. Generalized Precedence Relations. Real-life project
scheduling problems involve several types of precedence
relations among the project activities. GPRs include the
following types (si and fi denote the start and finish time of
an activity i, respectively).
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3.1.1. Finish-to-Start Type of Minimum Time Lag. 2is time
lag, FTSmin

ij (λij), defines that the start time of an activity j

occurs no earlier than λij units after the finish time of an
activity i; that is,

fi + λij ≤ sj. (1)

3.1.2. Finish-to-Finish Type of MinimumTime Lag. 2is time
lag, FTFmin

ij (λij), defines that the finish time of an activity j

occurs no earlier than λij units after the finish time of an
activity i; that is,

fi + λij ≤fj. (2)

3.1.3. Start-to-Start Type of Minimum Time Lag. 2is time
lag, STSmin

ij (λij), defines that the start time of an activity j

occurs no earlier than λij units after the start time of an
activity i; that is,

si + λij ≤ sj. (3)

3.1.4. Start-to-Finish Type of Minimum Time Lag. 2is time
lag, STFmin

ij (λij), defines that the finish time of an activity j

occurs no earlier than λij units after the start time of an
activity i; that is,

si + λij ≤fj. (4)

3.1.5. Finish-to-Start Type of Maximum Time Lag. 2is time
lag, FTSmax

ij (λij), defines that the start time of an activity j

occurs no later than λij units after the finish time of an
activity i; that is,

fi + λij ≥ sj. (5)

3.1.6. Finish-to-Finish Type of Maximum Time Lag. 2is
time lag, FTFmax

ij (λij), defines that the finish time of an
activity j occurs no later than λij units after the finish time of
an activity i; that is,

fi + λij ≥fj. (6)

3.1.7. Start-to-Start Type of Maximum Time Lag. 2is time
lag, STSmax

ij (λij), defines that the start time of an activity j occurs
no later than λij units after the start time of an activity i; that is,

si + λij ≥ sj. (7)

3.1.8. Start-to-Finish Type of Maximum Time Lag. 2is time
lag, STFmax

ij (λij), defines that the finish time of an activity j

occurs no later than λij units after the start time of an activity
i; that is,

si + λij ≥fj. (8)

To consider GPRs, the set of precedence relations, E, is
partitioned into eight subsets denoted ESTSmin , ESTSmax ,

ESTFmin , ESTFmax , EFTSmin , EFTSmax , EFTFmin , and EFTFmax , re-
spectively, for the sets of STSmin, STSmax, STFmin, STFmax,
FTSmin, FTSmax, FTFmin, and FTFmax precedence relations.

3.2. Problem Formulation. We consider the deadline
problem of DTCTP (DTCTP-D) with GPRs. 2e objective
faced by a decision maker is to minimize the project total
cost with a given due date T. 2e project total cost in the
DTCTP-D mainly means the sum of direct activity costs in
much of the literature [16, 74]. In general, the direct activity
cost is higher when the activity duration is shorter. 2e
problem is then to select a mode for each project activity and
generate a set of nondominated solutions. 2e DTCTP-D
with GPRs could be formulated based on the formulations
presented by Tavana et al. [74]. Assume that there are n

activities in the project:

min 
n

i�1


ri

k�1
δk

i c
k
i , (9)

s.t.



ri

k�1
δk

i � 1, i ∈ V, (10)

si + 

ri

k�1
d

k
i δ

k
i + λij ≤ sj, ∀i, j ∈ EFTSmin , (11)

si + 

ri

k�1
d

k
i δ

k
i + λij ≥ sj, ∀i, j ∈ EFTSmax , (12)

si + λij ≤ sj + 

ri

k�1
d

k
i δ

k
i , ∀i, j ∈ ESTFmin , (13)

si + λij ≥ sj + 

ri

k�1
d

k
i δ

k
i , ∀i, j ∈ ESTFmax , (14)

si + λij ≤ sj, ∀i, j ∈ ESTSmin , (15)

si + λij ≥ sj, ∀i, j ∈ ESTSmax , (16)

si + 

ri

k�1
d

k
i δ

k
i + λij ≤ sj + 

ri

k�1
d

k
jδ

k
j , ∀i, j ∈ EFTFmin ,

(17)

si + 

ri

k�1
d

k
i δ

k
i + λij ≥ sj + 

ri

k�1
d

k
jδ

k
j , ∀i, j ∈ EFTFmax ,

(18)

si + 

ri

k�1
d

k
i δ

k
i ≤T, ∀i ∈ V, (19)

si ≥ 0, ∀i ∈ V, (20)
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δk
i ∈ 0, 1{ }, ∀i, k. (21)

Relation (9) is allocated to describe budget objective
functions. Constraint (10) guarantees the selection of one
and only one mode for each activity. Constraints (11)–(18)
preserve the GPRs between project activities. Constraint (19)
restricts the project deadline. Constraint (20) ensures that no
activity can start earlier than zero. Constraint (21) represents
the binary form of the decision variables.

Furthermore, we formulate the DTCTP-D with GPRs
considering indirect project cost based on the formulations
presented by Elmaghraby and Kamburowski [48]. In con-
trast to the direct activity durations, the indirect project cost
generally decreases, following the compression of project
duration. Let e indicate the indirect project cost per date, ti

indicate the time of realization of node (i) in the activity
network under GPRs with beginning node (0) and end node
(2n + 1) [48] (see Section 3, and assume there are n activities
in the project), and P indicate the set of arcs representing
time lags in the network. Because the duration of activity i is
di � t2i − t2i−1 [48], the problem of finding the cheapest
project schedule with a given deadline date T may be for-
mulated as follows:

min 
n

i�1


ri

k�1
δk

i c
k
i + e t2n+1 − t0(  , (22)

s.t.



ri

k�1
δk

i � 1, i ∈ V, (23)

t2i − t2i−1 � 

ri

k�1
d

k
i δ

k
i , i ∈ V, (24)

tj − ti ≥wij, (i, j) ∈ P, (25)

t2n+1 − t0 ≤T, (26)

ti ≥ 0, ∀(i) ∈ N, (27)

δk
i ∈ 0, 1{ }, ∀i, k. (28)

Relation (22) is allocated to describing budget objective
functions including the direct and indirect costs. Constraints
(23), (27), and (28) are similar to constraints (10), (20), and
(21), respectively. Constraints (24)–(26) represent con-
straints (11)–(19) in another way based on the activity
network under GPRs. Constraint (24) links the realization
times of nodes and activity durations. Constraint (25)
preserves the time lags between project activities. Constraint
(26) restricts the project deadline.

4. Activity Network under GPRs

4.1. Representations of GPRs. 2e activity network under
GPRs proposed by Elmaghraby and Kamburowski [48] is the
current standard representation of GPRs. 2is activity

network has the following features. (1)2e beginning node is
(0) and the end node is (2n + 1), where n indicates the
amount of activities, and the nodes denote the project be-
ginning and project end, respectively. (2) An activity i is
represented as arcs (2i − 1, 2i) and (2i, 2i − 1) with lengths
w2i−1,2i � di and w2i,2i−1 � −di, where di indicates the activity
duration. (3) Aminimum (maximum) time lag is depicted as
a forward (reversed) arc with a length equal to the value
(negative value) of the time lag. Figures 1 and 2 represent the
abovementioned precedence relations, respectively. If we let
wab indicate the length of arc (a, b), then obviously w2i,2j−1 �

λij in Figure 1(a), w2i,2j � λij in Figure 1(b), and so on.

4.2.TimeParameters underGPRs. 2e time parameters in an
activity network under GPRs include time parameters of
nodes and activities. 2e time parameters of a node (i)

contain the minimum realization time ti and maximum
realization time ti. 2e time parameters of an activity j

contain the earliest start time ESj, the earliest finish time EFj,
the latest start time LSj, the latest finish time LFj, total float
TFj, free float FFj, and safety float SFj.

We present the computations for the time parameters of
nodes. 2e computation of ti of node (i) represents the
problem of finding the longest path tree rooted at (0), and ti

of node (i) can be derived from the longest path tree rooted
at (2n + 1) when the orientations of all arcs have been re-
versed. Here, ti and ti of node (i) could be computed based
on the Bellman–Ford algorithm as follows (Algorithm 1).

Obviously, Steps 2 and 4 of Algorithm 1 avoid cycles
(i)⟶ (j)⟶ (i) in the computations.

Here, the project completion time is t2n+1, and the time
parameters ESi, EFi, LSi, and LFi of activity i are computed as
follows [48]:

ESi � t2i−1, (29)

EFi � t2i, (30)

LSi � t2i−1, (31)

LFi � t2i, (32)

and the definitions and computations of time floats of ac-
tivity i are as follows [48].

4.2.1. Total Float. 2e total float of activity i, marked as TFi,
is defined as

TFi � t2i − t2i−1 − di

� t2i − t2i−1 − w2i−1,2i

� t2i−1 − t2i−1

� t2i − t2i.

(33)

2e total float is the maximum delay in the start of an
activity without deferring the project completion time.

4.2.2. Free Float. 2e free float of activity i, marked as FFi, is
computed as
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2i – 1 2i

w2i–1,2i = di

i

w2i,2i–1 = –di

2j – 1 2j

w2j–1,2j = dj

j

w2j,2j–1 = –dj

w2i,2j–1 = –λij

(a)

2i – 1 2i

2j – 1 2j

w2i–1,2i = di

i
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w2j–1,2j = dj

j
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(b)

2i – 1 2i
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i
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j
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j
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w2i–1, 2j = λij

(d)

Figure 1: Representation of minimum time lags. (a) Representation of FTSmin
ij (λij). (b) Representation of FTF

min
ij (λij). (c) Representation of

STSmin
ij (λij). (d) Representation of STFmin

ij (λij).

2i – 1 2i

w2i–1,2i = di

i

w2i,2i–1 = –di

2j – 1 2j

w2j–1,2j = dj

j
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w2j–1,2i = –λij

(a)

2i – 1 2i

2j – 1 2j

w2i–1,2i = di

i

w2i,2i–1 = –di

w2j–1,2j = dj

j

w2j,2j–1 = –dj

w2j,2i = –λij

(b)

2i – 1 2i

w2i–1,2i = di

i

w2i,2i–1 = –di

2j – 1 2j

w2j–1,2j = dj

j

w2j,2j–1 = –dj

w2j–1,2i–1 = –λij

(c)

2i – 1 2i

2j – 1 2j

w2i–1,2i = di

i

w2i,2i–1 = –di

w2j–1,2j = dj

j

w2j,2j–1 = –dj

w2j,2i–1 = –λij

(d)

Figure 2: Representation of maximum time lags. (a) Representation of FTSmax
ij (λij). (b) Representation of FTF

max
ij (λij). (c) Representation of

STSmax
ij (λij). (d) Representation of STFmax

ij (λij).

Step 1. For the beginning node (0), let
t0 � 0.

Step 2. For arc (0, j) of node (0), let
D(1)(0, j) � w0j.

for x � 2, 3, . . .,
D(x)(0, j) � mini D(x− 1)(0, i) + wij ,

and if D(x)(0, j) � D(x− 1)(0, i) + wij, then do not consider arc (j, i) in the next computation. If x � y and each node (j) meet
D(y)(0, j) � D(y− 1)(0, j),

then let
tj � D(y)(0, j).

Step 3. For the end node (2n + 1), let
t2n+1 � t2n+1.

Step 4. For arc (j, 2n + 1) of node (2n + 1), let
D(1)′(j, 2n + 1) � t2n+1 − wj,2n+1.

for x � 2, 3, . . .,
D(x)′(j, 2n + 1) � maxk D(x− 1)′(k, 2n + 1) − wjk ,

and if D(x)′(j, 2n + 1) � D(x− 1)′(k, 2n + 1) − wjk, then do not consider arc (k, j) in the next computation. If x � y and each node (j)

meets
D(y)′(j, 2n + 1) � D(y− 1)′(j, 2n + 1),

then let
tj � D(y)′(j, 2n + 1).

ALGORITHM 1: Bellman–Ford algorithm.
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FFi � min
u�2i−1,2i

min
(u,v)∈P

tv − tu − wuv , (34)

and P is the set of precedence relations. 2e free float is the
maximum delay in the start of an activity assuming all other
activities are started at their earliest start times.

4.2.3. Safety Float. 2e safety float of activity i, marked as
SFi, is computed as

SFi � min
u�2k−1,2k

min
(u,v)∈P

tv − tu − wuv . (35)

2e safety float is the maximum delay in the start of an
activity based on the assumption that all other activities are
started at their latest start times.

5. Simplifying DTCTP-D with GPRs

2e work of Akkan et al. [22] shows that the process of
preprocessing the DTCTP-D is inescapably associated with
complex path problems in the activity networks. Never-
theless, compared with paths in a large network, activities are
considerably fewer in number. 2e simplification could be a
simple process when transforming the computations of
paths into the computations of activity parameters.

5.1. 8eorems. We discover a relationship between activity
float and path lengths in the activity network under GPRs,
which reflects the property of the network structure. 2is
idea is similar to that of analytical geometry, which trans-
forms a complex cone curve into a quadratic function. We
summarize the relationship in the following theorem.

Theorem 1. For activity, i, its total float, TFi, is equal to the
difference between length of the critical path, μ∇, and length of
the longest path, μ∇i , passing it and from the beginning node
(0) to the terminal node (2n + 1) of the network, that is,

TFi � L μ∇  − L μ∇i , (36)

and L(μ) indicates the length of path μ that could contain
cycles.

Proof. See Appendix A.
We propose the following corollary by extending the

respective from activities to all arcs including those in
representations of activities and precedence relations in the
activity network under GPRs. □

Corollary 1. For an arc, (i, j), define

TFij � tj − ti − wij, (37)

and it is equal to the difference between the length of the
critical path, μ∇, and the length of the longest path, μ∇ij, passing
it and from the beginning node (0) to the terminal node (2n +

1) of the network, that is,

TFij � L μ∇  − L μ∇ij . (38)

2eorem 1 and Corollary 1 help to solve many path
problems by transforming the computations of path lengths
into the computations of time floats. We apply the theory to
simplify DTCTP-D with GPRs. In an activity network, the
project duration is equal to the length of the critical path;
therefore, in solving the TCTP-D, the solution is to make all
the paths shorter than the project deadline T at a minimum
total cost.

5.2. Algorithm. We analyze features of the DTCTP-D with
GPRs and mainly dispose off the related anomalies to
overcome the difficulty of the simplification.

Consider the DTCTP-D with GPRs presented in Sec-
tion 2.2 and the corresponding activity network under
GPRs for the project with GPRs. For the problem mainly
considering direct activity costs, the project cost increases
following the compression of project duration so that we
may not need to consider the case of project duration
shorter than the project deadline T (t2n+1 <T). For the
problem considering both direct activity costs and indirect
project cost, the project cost may be reduced following the
compression of project duration until the balance date of
the direct and indirect costs (minimum sum of the direct
and indirect project costs). If the balance date exceeds T,
the project cost will increase following the compression of
project duration from T, and we may not need to consider
the case t2n+1 <T, which is similar to the problem only
considering direct activity costs. However, if the balance
date is earlier than T, we should consider the case t2n+1 <T

for the minimum project cost and could further compress
the project duration after computing T with the minimum
sum of all direct activity costs.

2erefore, we study the simplification of the DTCTP-D
with GPRs from the perspectives of direct activity costs and
project deadline T. 2e problem could be simplified as
follows (Algorithm 2).

Proof. See Appendix B.
2e complexity of Algorithm 2 is O(mn), where m in-

dicates the quantity of arcs (see Appendix C). 2e optimal
solution of the DTCTP-D with GPRs can be solved using the
simplified network: (1) the optimal mode of each activity in
the simplified network can be obtained by using the pro-
posed algorithms; (2) for each deleted activity in Step 4, its
duration is unrelated to T so that the optimal mode is the
cheapest of the remaining modes. □

6. Illustration

6.1. Illustrative Example

6.1.1. Example 1. We consider the activity network under
GPRs exhibited in the literature of Elmaghraby and
Kamburowski [48] as an illustration, as in Figure 3. 2e
figure represents a project with GPRs including 8 activities
and 19 precedence relations between activities, and Table 1
lists 5 duration-cost modes of each activity. If the project
must be finished within 14 (T � 14) at a minimum total
cost, the problem is a DTCTP-D with GPRs. 2ere are 48
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variables and 76 constraints in the problem formulation in
Section 2.2, and the amount of schemes of the problem is
58 � 390625.

For greater efficiency, we prefer to simplify the DTCTP-
D with GPRs. 2ere are few approaches to simplifying the
problem in the literature, and a recent simplification method

for the deadline problem of classic DTCTP-D was presented
by Akkan et al. [22]. However, the abovementioned practical
problem with deadline T � 14 shown as in Figure 3 and
Table 1 will be nonsimplified using the Akkan algorithm. For
example, the first step of eliminating “long modes” is to
compute the earliest start times and the latest finish times of

Step 1. Let w2i−1,2i � mini,k dk
i  and w2i,2i−1 � −maxi,k dk

i  of each activity i, and compute ta and ta of each node (a) using
Algorithm 1.
Step 2. Delete mode mk of activity i that dk

i > t2i − t2i−1 + T − t2n+1 or dk
i < t2i − t2i−1 − T + t2n+1.

Step 3. Let w2i−1,2i � maxi,k dk∗
i  and w2i,2i−1 � −mini,k dk∗

i  and dk∗
i indicate durations of remaining modes of each activity i, and

compute ta and ta of each node (a) using Algorithm 1.
Step 4. Compute TFab of each arc (a, b), and delete arc (a, b) whose TFab > t2n+1 − T.
Step 5. For modesmk of remaining activity imeeting dk∗

i < t2i − t2i−1 − t2n+1 + T and dk∗
i > t2i − t2i−1 + t2n+1 − T, preserve the cheapest

one and delete the others.

ALGORITHM 2: Preprocessing DTCTP-D algorithm.
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Figure 3: Example of an activity network under GPRs.

Table 1: Remaining modes after Step 2 of Algorithm 2.

Activity
number

Mode m1 Mode m2 Mode m3 Mode m4 Mode m5

d c d c d c d c d c

1 1 1000 2 950
2 5 5000 5 5500 6 4500 6 4200 7 3500
3 2 100 3 80
4 6 250 7 200
5 3 10000 4 7000
6 4 800 5 780
7 6 2500
8 1 150 2 140
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all activities using the shortest modes; however, the shortest
mode selection for each activity is unfeasible because the
execution results in positive cycles in the activity network
under GPRs, such as the cycle in Figure 4.

Our algorithm in Section 4.2 is applicable to simplify the
DTCTP-D with GPRs as follows.

Step 1. Table 2 shows that d1
i ≤d2

i ≤ d3
i ≤d4

i ≤d5
i for each

activity i. Let w2i−1,2i � d1
i and w2i,2i−1 � −d5

i of each
activity i; compute ta and ta of each node (a) using
Algorithm 1, as in Figure 5.
Step 2. For activity 1, t2 − t1 + 14 − t17 � 7 and
d3
1, d4

1, d5
1 > 7; hence, delete modes m3, mk4, and m5. For

activity 3, t6 − t5 + 14 − t17 � 8 and d3
3, d4

3, d5
3 > 8;

hence, delete modes m3, m4, and m5. For activity 4, t8 −

t7 − T + t2n+1 � 6 and d1
4, d2

4, d3
4 < 6; hence, delete

modes m1, m2, and m3. Table 1 shows the remaining
modes of each activity.
Step 3. Let w2i−1,2i � max dk∗

i  and w2i,2i−1 � −min dk∗
i 

of each activity i. For example, according to Table 1, for
activity 1, w1,2 � max d1

1, d2
1  � 2 and

w2,1 � −min d1
1, d2

1  � −1; for activity 2,
w3,4 � max d1

2, d2
2, d3

2, d4
2, d5

2  � 7 and
w4,3 � −min d1

2, d2
2, d3

2, d4
2, d5

2  � −5; and so on. Com-
pute ta of each node (a) using Algorithm 1, as in
Figure 6.
Step 4. According to Figure 6 and T � 14, t17 − T � 0;
hence, delete arc (a, b) with TFab > 0. Delete arc (0, 1)

because of TF0,1 � t1 − t0 − w0,1 � 2> 0; delete arc
(1, 2) because of TF1,2 � t2 − t1 − w1,2 � 2; and so on, as
in Figure 7. Analyzing Figure 7, the durations of ac-
tivities 2 and 6 are unrelated to the project duration; the
two activities could also be deleted, as in Figure 8.
Step 5. According to Figure 8 and T � 14, t8 − t7 + t17 −

14 � 6 and d5
4 � 7≥ 6 for mode m5 of activity 4. Mode

m5 is the only and obviously the cheapest mode
meeting dk

4 � 7≥ 6 in the remainingmodes of activity 4;
therefore, mode m5 should remain. Table 3 shows
remaining modes of remaining activities.

Figure 8 shows that only two activities and five arcs are
enough for problem formulation. Table 3 shows that the
optimal solution is determined by the remaining two modes
of activity 4 and one mode of activity 7, and obviously the
optimal modes of activities 4 and 7 are modes m5 and m1,
respectively. 2e optimal mode of each deleted activity in
Step 4 is determined by the cheapest mode. 2erefore,
Table 4 shows the optimal solution of the DTCTP-D with
GPRs that the project total cost is 15150 according to Table 2.
After the simplification, the optimal solution of the problem
only needs to be chosen from two feasible solutions, which is
much simpler than the initial issue and tests the
simplification.

6.1.2. Example 2. 2e illustrative example 1 in Section 6.1.1
shows that the instance with 8 activities and 5 modes per

9

3

5

1

3

–3

–2

1

–1

10

5 6

Figure 4: Positive cycle caused by the Akkan algorithm.

Table 2: Modes of each activity.

Activity number
Mode m1 Mode m2 Mode m3 Mode m4 Mode m5

d c d c d c d c d c

1 1 1000 2 950 8 500 10 450 11 420
2 5 5000 5 5500 6 4500 6 4200 7 3500
3 2 100 3 80 9 50 10 45 12 35
4 1 500 3 300 4 280 6 250 7 200
5 3 10000 4 7000 9 5000 10 4800 11 4500
6 4 800 5 780 6 760 8 730 10 700
7 6 2500 8 2300 9 2200 10 2000 13 1500
8 1 150 2 140 5 100 6 80 10 40
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activity could be simplified as an instance only with 2 ac-
tivities and up to 3 modes per activity using the proposed
preprocessing technology, and the optimal solution of the
original instance could be computed based on the simplified
instance.

In this section, we present a medium-size example of
nonlinear DTCTP with GPRs from the literature [8, 71], and
set the problem as a DTCTP-D by letting the project
deadline be 83 (days) which is the optimum project duration
in [8]. 2e example project consists of 29 activities. 2e
precedence relationships and the lag/lead times between

succeeding activities are presented in Table 5. While the lag
times are defined with positive numbers, the lead times are
determined with negative numbers. 2e alternative cost-
duration options for each activity are presented in Table 6.

Applying our algorithm in Section 4.2 to simplify the
problem instance, we could delete some activities from Ta-
ble 6, that is, the optimal modes of these deleted activities for
the problem are their longest modes. In addition, considering
each activity with only one mode, obviously its optimal mode
is the unique one, and we also could delete it from Table 6, as
shown in Table 7. 2erefore, in order to obtain the optimal
solution of the problem instance, we only need to make
decisions for the activity modes in Table 7. Comparing with
Table 6, there are 14 activities in Table 7 that are 15 activities
less than Table 6, particularly, most of the deleted activities
have 3 modes per activity. 2e simplification reduces the total
amount of optional solutions (schedules) from
317 ∗ 26 ≈ 8∗ 109 to 39 ∗ 25 ≈ 6∗ 105. Furthermore, we also
delete 9 precedence relations (lag/lead times) from Table 5 for
more downsizing of the integer model of the instance.

6.2. Computational Experiments. We generate several ran-
dom large-size instances of the DTCTPwith GPRs tomeasure
the performance of our preprocessing technology, and further
test the effects of the simplification under different project
deadlines for each instance.We first used RanGen2 [78, 79] to
generate 20 random large-size instances (500 activities per
instance), and model the parameters as a uniform probability
density function in order to make a balanced representation
of the instances’ properties. 2en, we apply the procedure
proposed by Khalili-Damghani et al. [75] and Tareghian and

Table 3: Remaining activities and modes after Step 5.

Activity number
Mode m1 Mode m4 Mode m5

d c d c d c

4 6 250 7 200
7 6 2500

Table 4: Optimal mode of each activity.

Activity number Optimal mode
1 Mode m2
2 Mode m5
3 Mode m2
4 Mode m5
5 Mode m2
6 Mode m2
7 Mode m1
8 Mode m2
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Taheri [80] to assign the GPRs, time lags, and execution
modes to the project activities. Table 8 illustrates the pa-
rameter setting and GPRs and execution mode generations.

For these generated instances, our first phase is to
compute the maximum makespan of each project using the
network planning technology. In the second phase, we set
different deadlines for each project and call the difference
between the maximummakespan and a deadline of a project
as a required compression of the project. We set a parameter
as “Compression Ratio” that indicates the ration of the
required compression and maximummakespan of a project.
Our third phase is to let the compression ratio, respectively,
be 5%, 10%, and 15% for each instance, and simplify the
instances using the preprocessing technology. Figure 9
shows the details of the computational results (only fo-
cuses on the reductions of activities), and Table 9 lists several
statistical results of the experiments.

Figure 9 and Table 9 illustrate that most instances could
be shrunk as small- or medium-size ones by the

preprocessing technology. After the simplifications, the
optimal solutions of the initial instances could be obtained
based on their simplified ones. We could use exact algo-
rithms to compute the optimal solutions of the small-size
simplified instances or use approximate or heuristic algo-
rithms to compute much better near-optimal solutions for
the medium-size simplified instances.

7. Discussion

2e following discussion is addressed on the advantages and
the limitations of the proposed preprocessing technology for
the DTCTP with GPRs. Klanšek and Pšunder [8] discussed a
limitation of their MINLP optimization model for the
nonlinear DTCTP that the optimization model compre-
hends deterministic time and cost estimates. It is a limitation
of our work too. Generally, a precise estimation of durations
and direct costs of project activities is a very difficult task that
it significantly depends upon the crew size, the level of

Table 5: Precedence relationships and the lag/lead times of the example project activities.

Activity number Succeeding activity Precedence relationship Lag/lead time (day)
1 2 Finish-to-Start −3

3 Finish-to-Start 0
6 Finish-to-Start 0

2 3 Finish-to-Start 0
7 Finish-to-Start 0

3 4 Finish-to-Start 0
8 Finish-to-Start 0

4 5 Start-to-Start 1
9 Finish-to-Start 0

5 10 Finish-to-Start 0
11 Finish-to-Start 0

6 7 Finish-to-Start −1
7 8 Finish-to-Start 0
8 9 Finish-to-Start 0
9 10 Finish-to-Finish 1
10 11 Finish-to-Start 0
11 12 Finish-to-Start 0
12 13 Start-to-Start 2

15 Finish-to-Start −4
13 14 Start-to-Start 2
14 15 Finish-to-Start −2
15 16 Finish-to-Start −6

17 Start-to-Start 4
18 Finish-to-Start 4
19 Finish-to-Start 0

16 — — —
17 20 Start-to-Start 3
18 — — —
19 — — —
20 21 Start-to-Start 2
21 22 Start-to-Start 2
22 23 Finish-to-Start −9
23 24 Start-to-Start 6

25 Finish-to-Start −4
24 — — —
25 26 Start-to-Start 4
26 27 Finish-to-Start 0
27 28 Finish-to-Start −3
28 29 Finish-to-Start 0
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qualifications and experience of the workers, the quality of
management and supervision, and the level of resource
utilization. However, the deterministic approach of project
parameters does not consider uncertainty, and in cases of
risk associated, the stochastic consideration is necessary to
estimate the project execution more realistically.

2e proposed preprocessing technology for the DTCTP
with GPRs shows certain advantages over previous works.
Namely, it yields the exact optimum solutions of the large-
size problem instances, while the exact algorithms optimize
small-size instances and the heuristic algorithms approxi-
mately optimize large-size instances. 2e preprocessing
technology is adapt to linear and nonlinear DTCTP with
GPRs, including the traditional DTCTP. However, we have
to face another limitation that the preprocessing technology
may not keep widely powerful for many cases. On the one
hand, Table 9 shows that the effect of simplification may be
weakened by increasing the compression ratio of project
duration. It means that the preprocessing (simplification)
technology has strong function to handle a large-size in-
stance in case of a small difference between the deadline and
makespan of project. However, for a much earlier project
deadline, the preprocessing technology may be weak or even
lose efficacy. On the other hand, the time required to
compute the optimal solution of a specific DTCTP with
GPRs using the preprocessing technology increases with the
size of the optimization problem. 2e equivalent simplifi-
cation cannot change the nature of complexity of the
DTCTPwith GPRs, and apparently, failure to ensure that the
preprocessing technology could be used to simplify any much
larger-size instance to an enough small-size one whose

Table 6: Modes of each activity.

Activity number
Mode m1 Mode m2 Mode m3

d c d c d c

1 5 2030 4 2300 — —
2 8 1020 7 1280 6 1510
3 8 1700 7 1850 6 2090
4 4 590 3 730 — —
5 2 90 — — — —
6 4 910 3 1100 — —
7 2 250 — — — —
8 7 1490 6 1650 5 1830
9 4 520 3 750 — —
10 2 90 — — — —
11 1 50 — — — —
12 8 3260 7 3580 6 3710
13 5 1140 4 1400 3 1720
14 4 300 3 450 — —
15 8 1020 6 1300 6 1430
16 9 790 8 900 6 1180
17 13 3340 12 3750 11 4060
18 9 470 8 650 7 830
19 6 460 5 600 4 810
20 6 1280 5 1430 — —
21 14 1090 12 1320 10 1560
22 14 900 11 1140 9 1400
23 14 2220 12 2510 11 2690
24 3 230 — — — —
25 6 1590 5 1790 4 1990
26 10 2630 9 2930 8 3240
27 8 2060 7 2450 6 2660
28 10 320 9 440 8 610
29 1 50 — — — —

Table 7: Modes of each activity after preprocessing
(simplification).

Activity number
Mode m1 Mode m2 Mode m3

d c d c d c

1 5 2030 4 2300 — —
2 8 1020 7 1280 6 1510
3 8 1700 7 1850 6 2090
4 4 590 3 730 — —
6 4 910 3 1100 — —
8 7 1490 6 1650 5 1830
9 4 520 3 750 — —
12 8 3260 7 3580 6 3710
14 4 300 3 450 — —
22 14 900 11 1140 9 1400
23 14 2220 12 2510 11 2690
26 10 2630 9 2930 8 3240
27 8 2060 7 2450 6 2660
28 10 320 9 440 8 610

Table 8: Parameter setting, and GPRs and execution mode
generations.
Number of
activities 500

Number of modes Fixed at 4
Activity durations Randomly selected from the interval [10, 100]

Activity normal
costs

Randomly selected from the interval
[1000, 5000]

Precedence
relations

1 � FTF, 2 � FTS, 3 � STF, 4 � STS;
randomly selected from the interval [1, 4]

Time lags 1 � Positive, 2 � Negative; randomly selected
from the interval [0, 10]
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Figure 9: Details of experimental results.
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optimum solution could be computed using exact algorithm.
Our further task is to handle these limitations and try to de-
velop more effective approaches for the DTCTP with GPRs.

8. Conclusion

For large-scale project scheduling problems, direct com-
putations of optimal solutions are not feasible even when the
most advanced computers are utilized. In these situations,
equivalent simplification is a more effective approach. Much
of the literature presents simplification for the DTCTP.
However, there are few works on simplifying the DTCTP
with GPRs, and the current preprocessing technologies for
the classic DTCTP are inapplicable to GPRs because of
anomalies in their foundations. In this study, we focused on
substantially simplifying the deadline version of DTCTP
(DTCTP-D) with GPRs while coping with the related
anomalies. 2e simplification includes identifying and de-
leting unfeasible and redundant solutions of the problem.

We studied the simplification process based on the ac-
tivity network under GPRs, which is actually a complex path
problem. We discovered relationships between time floats
and paths. Furthermore, we solved the path problem using
floats and proposed a polynomial algorithm for the sim-
plification of the DTCTP-D with GPRs. 2is approach is
analogous to analytical geometry, which transforms a
complex cone curve into an algebraic quadratic function and
solves the geometric problem using an algebraic method.We
can transform many other complex path problems into
simple float problems with the relationships.

In the future, we will develop the methods further to obtain
better solutions for the DTCTP-D with GPRs based on the
simplification and the other contributions of this paper. In
particular, we will attempt to detect hybrid and dynamic ap-
proaches associated with the rules proposed in this work and
improve the proposed heuristics and propose new algorithms
for theDTCTP-D. Based on theseworks, wewill also preprocess
the other versions of DTCTP with GPRs, such as the budget
problem (DTCTP-B) and efficiency problem (DTCTP-E).

Appendix

A. Proof of Theorem 1

For activity i, in an activity network under GPRs, according
to equation (33), TFi � t2i−1 − t2i−1. According to the

computation of time parameters in Section 3.2, the rela-
tionships between tj and tj of node (j) and paths are as
follows:

tj � L μ∇0⟶ j , (A.1)

tj � L μ∇  − L μ∇j⟶ 2n+1 , (A.2)

where L(μ∇a⟶ b) denotes the longest path from node (a)

to (b). Substitute equations (A.1) and (A.2) into equation
(33):

TFi � t2i−1 − t2i−1

� L μ∇  − L μ∇2i−1⟶2n+1  − L μ∇0⟶2i−1 

� L μ∇  − L μ∇0⟶2i−1  + L μ∇2i−1⟶2n+1  

� L μ∇  − L μ∇i .

(A.3)

2erefore, equation (36) is proved. 2is completes the
proof.

B. Proof of Algorithm 2

(1) Delete Unfeasible Modes of Activities.
Using Step 1, let w2i−1,2i � min dk

i  and w2i,2i−1 �

−max dk
i  of each activity i such that each path in the activity

network under GPRs has its minimum length, and mark the
network as G. Now, for arc (2i − 1, 2i) of activity i, if a path
μ2i−1,2i (e.g., the longest path μ∇2i−1,2i from the beginning node
(0) to the terminal node (2n + 1) of G ) passing arc (2i −

1, 2i) with length dk
i is longer than the project deadline T,

and it means that the project duration will be longer than T if
activity i selects its mode mk with duration dk

i no matter
which modes other activities select. 2erefore, mode mk of
activity i is unfeasible and could be deleted.

Compute ta and ta of each node (a) in network G using
Algorithm 1. According to equations (29) and (30), if activity
i selects mode mk,

L μ∇2i−1,2i  � L μ∇0⟶ 2i−1  + w2i−1,2i + L μ∇2i⟶ 2n+1 

� t2i−1 + d
k
i + t2n+1 − t2i,

(B.1)

and μ∇a⟶ b indicates the longest path from node (a) to (b).
If L(μ∇2i−1,2i)>T, then

Table 9: Statistical experimental results.

Compression ratio (%)
Amount of remaining activities after preprocessing (simplifying) the instances

Average Minimum Maximum

5 74
19 with 2 modes

50
8 with 2 modes

102
10 with 2 modes

10 with 3 modes 7 with 3 modes 14 with 3 modes
45 with 4 modes 35 with 4 modes 78 with 4 modes

10 89
7 with 2 modes

68
7 with 2 modes

121
15 with 2 modes

11 with 3 modes 14 with 3 modes 17 with 3 modes
71 with 4 modes 47 with 4 modes 89 with 4 modes

15 129
11 with 2 modes

97
5 with 2 modes

193
12 with 2 modes

24 with 3 modes 23 with 3 modes 30 with 3 modes
94 with 4 modes 69 with 4 modes 151 with 4 modes
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d
k
i > t2i − t2i−1 + T − t2n+1. (B.2)

2erefore, using Step 2, if dk
i > t2i − t2i−1 + T − t2n+1,

duration dk
i results in the project duration longer than T and

mode mk could be deleted. In addition,

L μ∇2i,2i−1  � L μ∇0⟶ 2i  + w2i,2i−1 + L μ∇2i−1⟶ 2n+1 

� t2i − d
k
i + t2n+1 − t2i−1.

(B.3)

If L(μ∇2i−1,2i)>T, then

d
k
i < t2i − t2i−1 − T + t2n+1. (B.4)

2erefore, if dk
i < t2i − t2i−1 − T + t2n+1, duration dk

i re-
sults in the project duration longer than T and mode mk

could be removed.
(2) Delete Redundant Arcs and Activities.
After deleting the unfeasible modes of each activity, let

w2i−1,2i � maxi,k dk∗
i  and w2i,2i−1 � −mini,k dk∗

i  using Step
3, and dk∗

i indicates durations of remaining modes m∗k of
each activity i. Nowmark the network as G′. Here, G′ means
that each activity selects its remaining longest duration so
that each acyclic path has its maximum length. In G′, if the
longest path μ∇ab passing arc (a, b) and from the beginning
node (0) to the terminal node (2n + 1) of the network is
shorter than T, all paths passing arc (a, b) are certainly
shorter than T that they are independent of the DTCTP-D.
2erefore, if arc (a, b) represents a precedence relation
between activities, the arc is redundant and could be deleted;
if arc (a, b) represents an activity, each mode of the activity
has no effect on T so that the optimal mode of the activity is
the cheapest, and the activity is redundant for the problem
formulation and could be deleted.

2e representation of activity i in G′ may be a positive
cycle in G′ because of w2i−1,2i + w2i,2i−1 � maxi,k dk∗

i −

mini,k dk∗
i ≥ 0, which must be avoided to compute the

longest path for ta and ta of each node G′. Algorithm 1 could
avoid the cycles and it applies to the computations of ta and
ta in G′. According to equation (37),

L μ∇ab  � L μ∇  − TFab

� t2n+1 − TFab.
(B.5)

If L(μ∇ab)<T, then TFab > t2n+1 − T. 2erefore, using Step
4, if TFab > t2n+1 − T, arc (a, b) could be deleted.

(3) Delete Redundant Modes of Nonredundant
Activities.

Mark the remaining network of G′ as G″, and Steps 3
and 4 mean that each acyclic path in G″ still has its max-
imum length. For the remaining modes of activities in G″, if
activity i selects mode m∗k and both of the longest acyclic
paths L(μ∇2i−1,2i) and L(μ∇2i−1,2i) passing arcs (2i − 1, 2i) and
arc (2i, 2i − 1), respectively, are shorter than T, then du-
ration dk∗

i of mode m∗k is feasible but independent of T.
2erefore, for such modes of an activity, we only need to
consider the cheapest for the minimum project total cost,
and the other more expensive ones are redundant and could
be deleted.

According to equations (A.4) and (A.6), if activity i

selects mode m∗k , and L(μ∇2i−1,2i)<T and L(μ∇2i,2i−1)<T, then

t2i − t2i−1 − T + t2n+1 < d
k∗
i < t2i − t2i−1 + T − t2n+1. (B.6)

2erefore, for all modes m∗k of activity i meeting
dk∗

i < t2i − t2i−1 + T − t2n+1 and dk∗
i > t2i − t2i−1 − T + t2n+1,

except for the cheapest one in k∗, the others are redundant
and could be deleted. 2is completes the proof.

C. Complexity of Algorithm 2

Suppose there are n activities (namely, 2n + 2 nodes) and m

arcs in the activity network under GPRs. In Steps 1 and 3,
time parameters ta and ta of each node (a) need to be
computed using Algorithm 1 based on the Bellman–Ford
algorithm; therefore, the complexity is O(mn). In Steps 2
and 5, the extreme value of the unfeasible and redundant
modes of each activity needs to be computed to delete
unfeasible and redundant modes; hence, the complexity is
O(n). In Step 4, TFij of each arc (a, b) needs to be computed
and compared with t2n+1 − T; thus, the complexity is O(m).
In summary, the complexity of Algorithm 2 is O(mn).

2e following symbols are used in this paper:

Notations

ck
i : Cost of an activity i in a mode mk

di: Duration of an activity i

dk
i : Duration of an activity i in a mode mk

D(x)(i, j): Iterated symbol in the Bellman–Ford algorithm
e: Indirect project cost per date
E: Set of time lags, such as ESTSmin , including all

start-to-start minimum time lags between
activities in project

ESi: 2e earliest start time of an activity i

EFi: 2e earliest finish time of an activity i

fi: Finish time of an activity i

FFi: Free float of an activity i

FTFmax
ij (λ): Finish-to-finish maximum time lag λ between

activities i and j

FTFmin
ij (λ): Finish-to-finish minimum time lag λ between

activities i and j

FTSmax
ij (λ): Finish-to-start maximum time lag λ between

activities i and j

FTSmin
ij (λ): Finish-to-start minimum time lag λ between

activities i and j

G: Activity network under GPRs
i: Activity with number i

(i): Node with number i in an activity network
(i, j): Arc linking nodes (i) and (j) in an activity

network
L(μ): Length of a path μ in an activity network
LSi: 2e latest start time of an activity i

LFi: 2e latest finish time of an activity i

mi: Mode with number i of an activity
n: Number of project activities
N: Set of all nodes in an activity network
P: Set of arcs representing time lags in an activity

network
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si: Start time of an activity i

SFi: Safety float of an activity i

STFmax
ij (λ): Start-to-finish maximum time lag λ between

activities i and j

STFmin
ij (λ): Start-to-finish minimum time lag λ between

activities i and j

STSmax
ij (λ): Start-to-start maximum time lag λ between

activities i and j

STSmin
ij (λ): Start-to-start minimum time lag λ between

activities i and j

ri: Number of execution modes for an activity i

T: Project deadline
ti: Realization time of a node (i)

ti: Minimum realization time of a node (i) in an
activity network

ti: Maximum realization time of a node (i) in an
activity network

TFi: Total float of an activity i

TFij: Total float of an arc (i, j) (an extended concept
of TFi )

V: Set of all activities in project
wij: Length of an arc (i, j) in an activity network
x, y: Counters in the Bellman–Ford algorithm
δk

i : 0-1 binary decision variable that equals 1 if an
activity i executes in a mode mk and is 0
otherwise

λij: Value of a time lag between activities i and j

μ: Path in an activity network
μij: Path passing an arc (i, j) in an activity network
μ∇: Critical path (the longest path) in an activity

network
μ∇i : 2e longest path passing an activity i in an

activity network
μ∇ij: 2e longest path passing an arc (i, j) in an

activity network
μ∇i⟶ j: 2e longest path from a node (i) to a node (j)

in an activity network.
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