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-e inverse kinematics of redundant manipulators is one of the most important and complicated problems in robotics. Simul-
taneously, it is also the basis for motion control, trajectory planning, and dynamics analysis of redundant manipulators. Taking the
minimum pose error of the end-effector as the optimization objective, a fitness function was constructed. -us, the inverse ki-
nematics problem of the redundant manipulator can be transformed into an equivalent optimization problem, and it can be solved
using a swarm intelligence optimization algorithm. -erefore, an improved fruit fly optimization algorithm, namely, the hybrid
mutation fruit fly optimization algorithm (HMFOA), was presented in this work for solving the inverse kinematics of a redundant
robot manipulator. An olfactory search based on multiple mutation strategies and a visual search based on the dynamic real-time
updates were adopted in HMFOA.-e former has a good balance between exploration and exploitation, which can effectively solve
the premature convergence problem of the fruit fly optimization algorithm (FOA). -e latter makes full use of the successful search
experience of each fruit fly and can improve the convergence speed of the algorithm. -e feasibility and effectiveness of HMFOA
were verified by using 8 benchmark functions. Finally, the HMFOA was tested on a 7-degree-of-freedom (7-DOF) manipulator.
-en the results were compared with other algorithms such as FOA, LGMS-FOA, AE-LGMS-FOA, IFOA, and SFOA.-e pose error
of end-effector corresponding to the optimal inverse solution of HMFOA is 10− 14 mm, while the pose errors obtained by FOA,
LGMS-FOA, AE-LGMS-FOA, IFOA, and SFOA are 102 mm, 10− 1 mm, 10− 2 mm, 102 mm, and 102 mm, respectively. -e ex-
perimental results show that HMFOA can be used to solve the inverse kinematics problem of redundant manipulators effectively.

1. Introduction

Forward kinematics and inverse kinematics are two basic
problems in robot kinematics. -e forward kinematics
which determines the pose of the end-effector relative to the
reference coordinate system according to the joint variables
of the robot is relatively easy, and its solution is analytical,
deterministic, and unique, while the inverse kinematics, to
obtain the joint variables from the pose of the end-effector, is
a complex system of nonlinear equations with the strong
coupling of variables. As a result, it is a much more difficult
problem than the forward kinematics. -e inverse kine-
matics problem plays an important role in robotics, which is

the premise and foundation of robot motion control, tra-
jectory planning, and dynamic analysis [1].

Generally, the conventional methods for solving the
inverse kinematics problem of robots are closed-form
methods and numerical methods [2]. -e closed-form
methods, which consist of algebraic [3] and geometric [4],
have the advantages of fast solution speed, high accuracy,
and accessibility in obtaining all possible inverse solutions.
However, the closed-form methods highly depend on the
configuration of the robot. If a robot does not meet the
Pieper criterion [5], the closed-form methods cannot be
applied to solve the inverse kinematics problem. -erefore,
only a very small class of kinematically simple robots is
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suitable for the closed-form methods to obtain complete
analytical solutions. -e numerical methods are the main
methods to resolve the inverse kinematics of complex ar-
ticulated manipulators. Unfortunately, the numerical
methods may have the singularity of Jacobian matrix and
may also cause considerable computational load. In addi-
tion, the redundant manipulator has an infinite number of
inverse kinematics solutions to reach the same end-effector
pose, which makes it more difficult to solve inverse kine-
matics problems by using the conventional methods.
-erefore, more and more researchers have focused on
solving the inverse kinematics problem using artificial in-
telligent optimization algorithms.

So far, various optimization algorithms such as genetic
algorithm (GA) [6, 7], particle swarm optimization algorithm
(PSO) [8–12], differential evolution algorithm (DE) [2, 13, 14],
artificial bee colony algorithm (ABC) [15], and biogeography-
based optimization [16] have been proposed to calculate the
inverse kinematics solutions of robots; thus the shortcomings
of the conventional methods are effectively overcome. In this
study, a fitness function was constructed to minimize the pose
error of end-effector.-en, the inverse kinematics problemwas
transformed into an optimization problem using the forward
kinematics and the fitness function, and a novel hybrid mu-
tation fruit fly optimization algorithm (HMFOA) was devel-
oped to solve the problem more effectively.

-e rest of this paper is organized as follows. Section 2
presents a brief introduction to the forward and inverse
kinematics of a 7-DOF redundant robot manipulator. -e
HMFOA is described in Section 3. Experimental design and
comparisons are illustrated in Section 4. Finally, the results
of the study are summarized in Section 5.

2. Kinematic Analysis of a 7-DOF
Robot Manipulator

In this study, the 7-DOF YuMi 14000 ABB industrial robot
[17] was used as an example to discuss the inverse kinematics

problem. -e schematic of the 7-DOF robot is shown in
Figure 1, and its links and joints are given in Figure 2. -e
structure diagram of the left arm of the robot is presented in
Figure 3. -e Denavit–Hartenberg (DH) parameters as well
as lower and upper joint limits for the left arm of the robot
are listed in Table 1. In the work, the left arm of the robot was
only used as the object to be investigated.

In Table 1, the parameters θi, αi, di, ai, li, and ui (i �1, 2,
3, . . ., 7) represent the joint angle, link twist angle, link offset,
link length, lower joint limit, and upper joint limit, re-
spectively. -e homogeneous transformation matrix i−1

i T of
link iis formed by DH parameters in

i−1
i T �

cθi −cαisθi sαisθi aicθi

sθi cαicθi −sαicθi aisθi

0 sαi cαi di

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where sθi and cθi denote sin(θi) and cos(θi), respectively,
while sαi and cαi denote sin(αi) and cos(αi), respectively.

-us, the forward kinematic can be calculated as

0
7T �

0
1T ·

1
2T ·

2
3T ·

3
4T ·

4
5T ·

5
6T ·

6
7T �

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(2)

where 0
7T is the pose matrix of the end-effector relative to the

base coordinate system. nx, ny, nz, ox, oy, oz, ax, ay, and az

represent the rotational elements of the pose matrix, while
px, py, and pz are the elements of position vector.

According to equations (1) and (2), the pose equations
are as follows.

nx � cθ7 sθ6 cθ4 sθ1sθ3 − cθ1cθ2cθ3(  + cθ1sθ2sθ4(  + cθ6 cθ5 sθ4 sθ1sθ3((((

−cθ1cθ2cθ3 − cθ1cθ4sθ2 − sθ5 cθ3sθ1 + cθ1cθ2sθ3(  − sθ7 sθ5 sθ4 sθ1sθ3(((

−cθ1cθ2cθ3 − cθ1cθ4sθ2 + cθ5 cθ3sθ1 + cθ1cθ2sθ3( ,

(3)

ny � sθ7 sθ5 sθ4 cθ1sθ3 + cθ2cθ3sθ1(  + cθ4sθ1sθ2(  + cθ5 cθ1cθ3 − cθ2sθ1sθ3( ( 

− cθ7 sθ6 cθ4 cθ1sθ3 + cθ2cθ3sθ1(  − sθ1sθ2sθ4(  + cθ6 cθ5 sθ4 cθ1sθ3((((

+cθ2cθ3sθ1 + cθ4sθ1sθ2 − sθ5 cθ1cθ3 − cθ2sθ1sθ3( ,

(4)

nz � sθ7 sθ5 cθ2cθ4 − cθ3sθ2sθ4(  + cθ5sθ2sθ3(  − cθ7 cθ6 cθ5 cθ2cθ4(((

−cθ3sθ2sθ4 − sθ2sθ3sθ5 − sθ6 cθ2sθ4 + cθ3cθ4sθ2( ,
(5)

ox � −cθ7 sθ5 sθ4 sθ1sθ3 − cθ1cθ2cθ3(  − cθ1cθ4sθ2(  + cθ5 cθ3sθ1 + cθ1cθ2sθ3( ( 

− sθ7 sθ6 cθ4 sθ1sθ3 − cθ1cθ2cθ3(  + cθ1sθ2sθ4(  + cθ6 cθ5 sθ4 sθ1sθ3((((

−cθ1cθ2cθ3 − cθ1cθ4sθ2 − sθ5 cθ3sθ1 + cθ1cθ2sθ3( ,

(6)
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oy � cθ7 sθ5 sθ4 cθ1sθ3 + cθ2cθ3sθ1(  + cθ4sθ1sθ2(  + cθ5 cθ1cθ3 − cθ2sθ1sθ3( ( 

+ sθ7 sθ6 cθ4 cθ1sθ3 + cθ2cθ3sθ1(  − sθ1sθ2sθ4(  + cθ6 cθ5 sθ4 cθ1sθ3((((

+cθ2cθ3sθ1 + cθ4sθ1sθ2 − sθ5 cθ1cθ3 − cθ2sθ1sθ3( ,

(7)

oz � cθ6 cθ4 cθ1sθ3 + cθ2cθ3sθ1(  − sθ1sθ2sθ4(  − sθ6 cθ5 sθ4 cθ1sθ3(((

+cθ2cθ3sθ1 + cθ4sθ1sθ2 − sθ5 cθ1cθ3 − cθ2sθ1sθ3( ,
(8)

ax � sθ6 cθ5 sθ4 sθ1sθ3 − cθ1cθ2cθ3(  − cθ1cθ4sθ2(  − sθ5 cθ3sθ1 + cθ1cθ2sθ3( ( 

− cθ6 cθ4 sθ1sθ3 − cθ1cθ2cθ3(  + cθ1sθ2sθ4( ,
(9)

ay � cθ6 cθ4 cθ1sθ3 + cθ2cθ3sθ1(  − sθ1sθ2sθ4(  − sθ6 cθ5 sθ4 cθ1sθ( 3((

+cθ2cθ3sθ1 + cθ4sθ1sθ2 − sθ5 cθ1cθ3 − cθ2sθ1sθ3( ,
(10)

az � −sθ6 cθ5 cθ2cθ4 − cθ3sθ2sθ4(  − sθ2sθ3sθ5(  − cθ6 cθ2sθ4 + cθ3cθ4sθ2( , (11)

px � a1cθ1 − d7 cθ6 cθ4 sθ1sθ3 − cθ1cθ2cθ3(  + cθ1sθ2sθ4(  − sθ6 cθ5 sθ4 sθ1sθ3((((

−cθ1cθ2cθ3 − cθ1cθ4sθ2 − sθ5 cθ3sθ1 + cθ1cθ2sθ3(  − d5 cθ4 sθ1sθ3 − cθ1cθ2cθ3( (

+cθ1sθ2sθ4 − a4sθ4 sθ1sθ3 − cθ1cθ2cθ3(  − a5sθ5 cθ3sθ1 + cθ1cθ2sθ3(  + a2cθ1cθ2
+ d3cθ1sθ2 − a3sθ1sθ3 + a5cθ5 sθ4 sθ1sθ3 − cθ1cθ2cθ3(  − cθ1cθ4sθ2(  + a6sθ6 cθ4 sθ1sθ3((

−cθ1cθ2cθ3 + cθ1sθ2sθ4 + a6cθ6 cθ5 sθ4 sθ1sθ3 − cθ1cθ2cθ3(  − cθ1cθ4sθ2( (

−sθ5 cθ3sθ1 + cθ1cθ2sθ3(  + a3cθ1cθ2cθ3 + a4cθ1cθ4sθ2,

(12)

py � d7 cθ6 cθ4 cθ1sθ3 + cθ2cθ3sθ1(  − sθ1sθ2sθ4(  − sθ6 cθ5 sθ4 cθ1sθ3((((

+cθ2cθ3sθ1 + cθ4sθ1sθ2 − sθ5 cθ1cθ3 − cθ2sθ1sθ3(  + a1sθ1 + d5 cθ4 cθ1sθ3((

+cθ2cθ3sθ1 − sθ1sθ2sθ4 − a6cθ6 cθ5 sθ4 cθ1sθ3 + cθ2cθ3sθ1(  + cθ4sθ1sθ2( (

−sθ5 cθ1cθ3 − cθ2sθ1sθ3(  + a4sθ4 cθ1sθ3 + cθ2cθ3sθ1(  + a5sθ5 cθ1cθ3 − cθ2sθ1sθ3( 

+ a2cθ2sθ1 + a3cθ1sθ3 + d3sθ1sθ2 − a5cθ5 sθ4 cθ1sθ3 + cθ2cθ3sθ1(  + cθ4sθ1sθ2( 

− a6sθ6 cθ4 cθ1sθ3 + cθ2cθ3sθ1(  − sθ1sθ2sθ4(  + a3cθ2cθ3sθ1 + a4cθ4sθ1sθ2,

(13)

pz � d1 − d5 cθ2sθ4 + cθ3cθ4sθ2(  − d7 sθ6 cθ5( cθ2cθ4 − cθ3sθ2sθ4(  − sθ2sθ3sθ5( 

+ cθ6 cθ2sθ4 + cθ3cθ4sθ2(  + d3cθ2 − a2sθ2 − a5cθ5 cθ2cθ4 − cθ3sθ2sθ4( 

+ a6sθ6 cθ2sθ4 + cθ3cθ4sθ2(  + a4cθ2cθ4 − a3cθ3sθ2 − a6cθ6 cθ5 cθ2cθ4((

−cθ3sθ2sθ4−sθ2sθ3sθ5 − a4cθ3sθ2sθ4 + a5sθ2sθ3sθ5.

(14)

It can be seen that the pose equations of the redundant
manipulator are the functions of joint variables. Given the
joint variables, the pose of the end-effector relative to the
reference coordinate system can be calculated through the
pose equations, and the result is unique; that is, the forward
kinematics is a one-to-one relationship. However, given the
pose of the end-effector, the corresponding joint variables
will not be unique; that is, the inverse kinematics is a one-to-
many relationship, and there are infinite inverse kinematics
solutions for the 7-DOF robot manipulator.

3. Improved FOA

Inspired by the foraging behaviour of fruit flies, Pan [18]
proposed a novel meta-heuristic algorithm, namely, the fruit
fly optimization algorithm (FOA). Compared with other

swarm intelligence-based algorithms, FOA has the merits of
simple algorithm framework, few adjustable parameters,
easy understanding, and implementation. -erefore, FOA
has been used to resolve many science and engineering
problems [19–22]. However, FOA also has lots of short-
comings. Particularly, because the smell concentration
judgment value cannot be taken a negative value, FOA
cannot deal with the optimization problems with negative
decision variables. In addition, the optimization perfor-
mance of FOA is highly dependent on the optimal solution
of the current generation. As a result, the ability to maintain
population diversity is not strong, making the algorithm easy
to fall into local extremum.

To improve the convergence performance of FOA, a
novel hybrid mutation mechanism for osphresis searching
and a real-time dynamic update mechanism for vision
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searching are introduced, and a new improved FOA called
HMFOA is proposed in this section.

3.1. A Hybrid Mutation Mechanism for Osphresis Search.
In the original FOA, the smell concentration judgment value
Si corresponds to the decision vector of the optimization
problem, and its value is the reciprocal of distance. As a
result, the smell concentration judgment value cannot be
assigned a negative value and cannot be uniformly dis-
tributed in the search space. In HMFOA, the position of the
ith fly in D-dimensional search space is presented as
Xi � (xi1, xi2, ..., xi D), and the smell concentration judg-
ment value of the ith fly can be directly obtained according to
Si � Xi. In this way, the above shortcomings can be
overcome.

Inspired by the mutation idea of the differential evo-
lution algorithm, the osphresis searching of HMFOA is
executed according to equations (15)–(18).

Xi �
Xi
′, rand1 < 1 − ω,

Xi
″, rand1 ≥ 1 − ω,

⎧⎪⎨

⎪⎩
(15)

Xi
′ �

Pbg + ω × Pbr1 − Pbr2( , rand2 < 0.5,

Pbg × rand3 + ω × Pbr1 − Pbr2( , rand2 ≥ 0.5,


(16)

Xi
″ �

Pbi + ω × Pbr1 − Pbr2( , rand4 < 0.5,

L + rand5 ×(U − L), rand4 ≥ 0.5,
 (17)

ω �
1 + cos π ×(t − 1)/tmax( 

2
, (18)

where Pbg denotes the best previous position of all fruit flies
in the swarm, Pbr1 denotes the best previous position of the
r1 th fruit fly, Pbr2 denotes the best previous position of the
r2 th fruit fly, r1 and r2 are random and mutually different

Figure 1: 7-DOF YuMi 14000 ABB industrial robot.
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Figure 2: YuMi robot arm links and joints (robotics product specification IRB 14000, 2015).
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integers generated in the range [1, m] (m presents the
population size), and they also are different from the fly’s
index i and g; that is, r1≠ r2≠ i≠g. U and L are the upper
and lower boundary vectors of the search space, respectively.
rand1, rand2, rand3, rand4, and rand6 are random variables
uniformly distributed on the interval [0, 1]. ω is a pertur-
bation scaling factor that controls the search radius. t is the
current iteration of the algorithm and tmax is the maximum
iteration number of the algorithm.

According to equation (15), equation (17) is selected as
the searching operator with a larger probability in the early
stage of algorithm evolution, which ensures that the algo-
rithm has the strong global search ability. As the number of
iterations of the algorithm increases gradually, the proba-
bility that equation (16) is selected as the searching operator
also increases gradually. -erefore, in the later stage of al-
gorithm evolution, the local perturbation search near the
global optimal position is enhanced. -us, the convergence
accuracy of the algorithm is steadily improved.

According to equations (16) and (17), it can be seen that
the essence of olfactory searching is to randomly select one
of the four mutation strategies according to probability as
the current olfactory searching operator of the ith fly.-us, a
hybrid coevolution mechanism can be formed by randomly
alternating different mutation strategies, and the diversity of
the swarm is well maintained. -e difference vector ω ×

(Pbr1 − Pbr2) is used to randomly disturb the reference
vector, and it is also helpful to improve the diversity of
algorithm search. According to equation (18), a nonlinear
decreasing perturbation scaling factor ω is introduced to
balance the global exploration and local exploitation of the
HMFOA. In the early stage of iteration, the value of factor ω
is relatively large, which ensures that the algorithm can carry
out optimal search within a larger search radius and thus has
a strong global search capability. As the value of factor ω
decreases, the search radius of fruit fly individual also de-
creases. Hence, the local search capability of the algorithm is
enhanced in the later stage of algorithm evolution, and the
candidate solution with better quality can be found in local
neighbourhood.

3.2. A Real-Time Dynamic Update Mechanism for Vision
Search. In the original FOA, when all fruit flies have com-
pleted their olfactory search, they fly toward the current
optimal location using their visual senses.-is searchmethod,
which only learns from the best individual, has the following
disadvantages. Firstly, if the position corresponding to the
best fruit fly individual is a local extreme value, it will easily
lead to premature convergence of the algorithm. Secondly,

Table 1: DH parameters for the left arm (i is the axis).

i
di

(mm)
θi

(degree)
ai

(mm)
αi

(degree)
li

(degree)
ui

(degree)

1 166 0 −30 −90 −168.5 168.5
2 0 0 30 90 −143.5 43.5
3 251.5 0 40.5 −90 −123.5 80
4 0 −90 40.5 −90 −290 290
5 265 180 27 −90 −88 138
6 0 0 −27 90 −229 229
7 36 0 0 0 −168.5 168.5
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Figure 3: -e structure diagram of the left arm of the YuMi robot.
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because the contribution of nonoptimal fruit flies to pop-
ulation search is ignored, this search method places too much
emphasis on competition among fruit flies and weakens
cooperation among individuals.

In order to accelerate the convergence speed of the al-
gorithm, a dynamic real-time update mechanism is employed
in the visual search. In HMFOA, the vision searching refers to
the dynamic real-time update of the search center position
vector in equations (16) and (17).-at is, when the position of
the fly is updated, the new position of the fly is evaluated
immediately, and then the disturbance center position vectors
Pbg, Pbg × rand3, and Pbi are further updated in real-time
using equations (19) and (20) (in this paper, the optimization
problem refers to the minimum optimization problem).

Pbg �
Xi, fitness Xi( ≤ fitness Pbg ,

Pbg, fitness Xi( > fitness Pbg ,

⎧⎨

⎩ (19)

Pbi �
Xi, fitness Xi( ≤ fitness Pbi( ,
Pbi, fitness Xi( > fitness Pbi( ,

 (20)

where fitness(·) is the fitness function.
In short, HMFOA can make full use of the successful

search experience of each fly individual by using a real-time
updated vision searching mechanism, which can effectively
improve the search efficiency of the swarm.

3.3. Cross-Border Processing. During the evolution of
HMFOA, it may occur that the position of the fly is beyond the
search space. In order to enhance the diversity of the swarm,
the cross-border position component is processed as follows.

xij �
uj − min x

j
i − uj, uj − lj ∗ rand6, xij > uj,

lj + min lj − x
j
i , uj − lj ∗ rand6, xij < lj,

⎧⎨

⎩

(21)

where rand6 is a random variable uniformly distributed on
the interval [0, 1] and lj and uj are the lower and upper
bounds for xij, respectively.

3.4. Implementation of HMFOA. -e implementation pro-
cess of HMFOA is shown in Figure 4. -e detailed steps of
implementing the HMFOA are described as follows:

Step 1: initialize relate parameters, including pop-
ulation size and the maximum number of iterations.
-en, randomly initialize the locations of all fruit flies
in the search space. -e best position of the fly indi-
vidual is the current position. -e global optimal po-
sition is selected as the current optimal position of the
swarm. Assign i � 1, t � 1.
Step 2: the olfactory search of the ith fly is performed
according to equations (15)–(18). -e cross-border
position components are processed according to
equation (21) and calculate the fitness of the ith fly.
Step 3: according to equation (19), the best previous
position of the swarm is updated in real time, and its
objective fitness is recorded.

Step 4: according to equation (20), the best previous
position of the ith fly is updated in real time, and its
objective fitness is recorded.
Step 5: if all flies of the current generation complete the
evolution operation, that is, i � m, the next step is
executed. Otherwise, set i � i + 1 and return to step 2.
Step 6: if the iterative number reaches the maximum,
that is, t � tmax, the algorithm ends and the optimi-
zation results are output. Otherwise, set t � t + 1, i � 1
and return to step 2.

4. Simulation Results and Discussion

In this section, 8 typical benchmark functions are used to
verify the performance of the HMFOA, and then the algo-
rithm is used to solve the inverse kinematics problem of the 7-
DOF YuMi 14000 ABB industrial robot. -e optimization
results of HMFOA are compared with those of FOA, IFOA
[23], LGMS-FOA [24], AE-LGMS-FOA [25], and SFOA [26].

Y

Y

N

N

Start

�e ith fly performs osphresis search

Cross-border processing

�e ith fly performs vision search, i = i + 1

Output the best 
fitness

Initialize HMFOA parameters and initial
positions of all flies, set i = 1, t = 1

i > m

i = 1, t = t + 1

t > tmax

Figure 4: -e process of HMFOA.
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4.1. Parameter Setting. For all the algorithms, the population
size is 60, and the maximum number of iterations is 1000. In
LGMS-FOA, we set ω0 � 1, α � 0.95, n � 0.005. -e pa-
rameters of AE-LGMS-FOA are p � 0.005, ω0 � 1, n � 10,
and 80% of the best population is used to generate XAv. For
FOA, the random initialization fruit fly swarm location zone
is [0, 10], and the random direction and distance of iterative
fruit fly food searching are [−1, 1]. In IFOA, 50% of the
individuals in a swarm fly toward the local optimal solution,
and the others fly randomly; the perturbation amplification
factor ω is 0.3.

-e DH parameters as well as lower and upper joint
limits for the left arm of the robot are listed in Table 1, as
mentioned above.

All algorithms are coded in MATLAB R2013a. -e
computation is conducted on a personal computer (PC) with
Intel (R) Core (TM) i7-7700, 3.6GHz CPU, 16GB RAM, and
Windows 10 Operational System.

4.2. Function Simulation. Eight benchmark functions in
Table 2 are used to test the performance of HMFOA. Among
them, f1, f2, f3, and f4 are unimodal functions, which are
employed to test the convergence speed and accuracy of the
algorithm. -e latter four functions are multimodal func-
tions, which are made use of testing the global searching
ability of the algorithm.

To evaluate the reliability of the results, each function
was tested for 50 runs; the fitness results of the best value
(Best), the mean value (Mean), the worst value (Worst), and
the standard deviation (Std) are reported in Table 3 for all
functions with dimensions equal to 30. -e average con-
vergence curve of each algorithm is shown in Figure 5.

As can be seen from Table 3, for all benchmark functions,
the HMFOA is far superior to other algorithms involved in
comparison in terms of the best value, mean value, worst
value, and standard deviation. Among the 8 benchmark
functions, HMFOA can converge to the theoretical optimal
values of 7 functions (except f7). For function f7, HMFOA
also achieves satisfactory convergence quality. It can be seen
from Figure 5, compared with the other five algorithms, the
evolution curve of HMFOA drops faster and reaches a lower
level (to facilitate evaluation and observation, the fitness of
the objective function in the graph is a logarithm with the
base of 10), indicating that HMFOA has the advantages of
fast convergence speed and high convergence accuracy. -e
results in Figure 5 also show that FOA, IFOA, LGMS-FOA,

AE-LGMS-FOA, and SFOA are easy to fall into local
optimum.

4.3. Inverse Kinematics Solution of Redundant Manipulator.
In the inverse kinematics calculation of the manipulator, the
position vector of the ith fly contains the set of the joint
variables of the 7-DOF redundant manipulator, that is,
Xi � [xi1,xi2, ...,xi7] � [θi1,θi2, ...,θi7], where θi1,θi2, ...,θi7
denote 7 joint angles, respectively. For a desired pose matrix

0
7T∗ �

n∗x o∗x a∗x p∗x
n∗y o∗y a∗y p∗y
n∗z o∗z a∗z p∗z
0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
of the end-effector, the position vector

Xi of the ith fly is substituted into the forward kinematics
equations (3)–(14) to obtain the actual pose matrix

0
7T�

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. If 07T∗ � 0

7T holds, then Xi is the solution

of the corresponding inverse kinematics. -erefore, the
optimization objective of the algorithm should be to make
the matrix 0

7T infinitely close to the matrix 0
7T
∗ by changing

the position of the fruit fly.
-e orientation error and position error of the end-ef-

fector are calculated by equations (22) and (23), respectively.

f′ � n
∗
x − nx


 + n
∗
y − ny



 + n
∗
z − nz


 + o
∗
x − ox


 + o
∗
y − oy





+ o
∗
z − oz


 + a
∗
x − ax


 + a
∗
y − ay



 + a
∗
z − az


,

(22)

f″ � p
∗
x − px


 + p
∗
y − py



 + p
∗
z − pz


. (23)

-us, the fitness function of the inverse kinematics
problem can be defined as follows.

f � min f′ + λf″( , (24)

where min(·)is the minimum function and λ is the weight
factor.

In order to solve the inverse kinematics more effectively,
we expand the population size of all the algorithms and set it
to 100, and the rest of the parameters are the same as
mentioned above. -e weight factor λ is set as 10− 2. In this
research, the desired pose matrix of the end-effector is set as
follows.

0
7T
∗

�

−0.4294219697 −0.3634256892 0.8267518009 16.0540518588

0.8450970831 0.1610933636 0.5097645028 66.8595013541

−0.3184457443 0.9175896123 0.2379529604 243.1491200419

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)

In order to investigate the reliability of the results, each
algorithm runs independently and continuously for 50
times, respectively. -e fitness results of the Best, the Worst,

the Mean, the Std, and the successful ratio (SR) are reported
in Table 4. -e average convergence curve of each algorithm
is shown in Figure 6. One of the best inverse kinematics
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solutions obtained by each algorithm is presented in Ta-
ble 5. According to the inverse kinematics solutions in
Table 5, the poses of the end-effector are obtained as shown
in Figure 7.-e pose errors of different algorithms are listed
in Table 6.

-e SR, i.e., the percentage of trials where algorithms
converge with a specified accuracy (in this study it is
assigned a value of 10− 9 ), is defined by

SR �
n′
n

× 100%, (26)

Table 2: Benchmark functions.

Test function Search space Optimal value

f1(x) � 
D
i�1 x2

i [−100, 100]D 0
f2(x) � 

D−1
i�1 [100(xi+1 − x2

i )2 + (1 − xi)
2] [−30, 30]D 0

f3(x) � 
D
i�1 (

i
k�1 xk)2 [−100, 100]D 0

f4(x) � 
D
i�1 |xi| + 

D
i�1 |xi| [−10, 10]D 0

f5(x) � 
D
i�1 x2

i /4000 − 
D
i�1 cos(xi/

�
i

√
) + 1 [−600, 600]D 0

f6(x) � 
D
i�1[x2

i − 10 cos(2πxi) + 10] [−5.12, 5.12]D 0

f7(x) � −20 exp(−0.2
�����������

(1/D) 
D
i�1 x2

i



) − exp((1/D) 
D
i�1 cos(2πxi)) + 20 + e [−100, 100]D 0

f8(x) � f(x1, x2) + f(x2, x3) + · · · + f(xD, x1), f(x, y)

� 0.5 + ((sin2(
������
x2 + y2


) − 0.5)/(1 + 0.001(x2 + y2)))2

[−100, 100]D 0

Table 3: Comparison results of benchmark functions.

FOA LGMS-FOA AELGMS-FOA IFOA SFOA HMFOA

f1

Best 1.411770e− 4 3.466251e− 40 1.911653e− 19 1.356467e− 4 3.625604e− 5 0
Mean 4.623815e− 4 5.019091e− 40 3.351138e− 18 1.387048e− 4 3.721975e− 5 0
Worst 4.794164e− 4 7.370712e− 40 1.821983e− 17 1.411770e− 4 3.830758e− 5 0
Std. 1.432076e− 6 9.099148e− 41 3.523805e− 18 1.432076e− 6 4.633699e− 7 0

f2

Best 27.244893 26.430489 26.945519 27.752978 28.688393 0
Mean 28.693051 28.056813 27.956949 28.228172 28.722672 0
Worst 32.020138 29.377247 28.994375 28.596902 28.774159 0
Std. 0.892672 0.640186 0.497804 0.232890 0.024310 0

f3

Best 0.133342 0.029958 3.335927e− 4 0.039419 1.503231e− 5 0
Mean 0.138847 0.923459 0.006701 0.040155 2.124765e− 5 0
Worst 0.143332 4.750825 0.036739 0.040996 3.583190e− 5 0
Std. 0.001782 1.030883 0.007965 3.230054e− 4 4.625523e− 6 0

f4

Best 0.118299 2.814927e− 13 7.590946e− 9 0.063400 0.035800 0
Mean 0.119498 0.010992 4.956341e− 6 0.064237 0.035856 0
Worst 0.121374 0.103356 2.242247e− 4 0.064880 0.035957 0
Std. 6.145446e− 4 0.021724 3.133953e− 5 2.749579e− 4 3.254229e− 5 0

f5

Best 2.409987e− 5 0 1.920686e− 14 6.970412e− 6 1.028335e− 6 0
Mean 2.481638e− 5 0.005076 0.003841 7.121020e− 6 1.226157e− 6 0
Worst 2.562478e− 5 0.019697 0.024573 7.284919e− 6 1.517875e− 6 0
Std. 3.167733e− 7 0.005384 0.006266 7.113268e− 8 9.531260e− 8 0

f6

Best 0.092326 0 0 0.026792 0.008531 0
Mean 11.785692 5.968559e− 15 6.430412e− 15 0.027441 0.008581 0
Worst 79.015636 1.598721e− 14 1.598721e− 14 0.028106 0.008613 0
Std. 16.989014 3.440084e− 15 4.603335e− 15 2.965811e− 4 1.659589e− 5 0

f7

Best 0.016704 1.509903e− 14 1.443619e− 10 0.008752 0.004740 8.881784e− 16
Mean 0.016867 2.376765e− 14 4.627204e− 10 0.008835 0.004774 8.881784e− 16
Worst 0.017080 3.996803e− 14 1.311684e− 09 0.008934 0.004807 8.881784e− 16
Std. 9.602465e− 5 6.518431e− 15 2.675685e− 10 4.148766e− 5 1.263296e− 5 0

f8

Best 9.296021e− 4 0 0 2.719695e− 4 7.178698e− 5 0
Mean 0.067527 1.554312e− 17 1.831868e− 16 2.772358e− 4 7.458798e− 5 0
Worst 1.109406 2.220446e− 16 8.881784e− 16 2.829657e− 4 7.696815e− 5 0
Std. 0.163524 5.329071e− 17 2.332129e− 16 2.697164e− 6 9.418096e− 7 0
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Figure 5: Continued.
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where n is the total number of trials and n′is the number of
successful trials.

According to Table 4, the best value, worst value, mean
value, standard deviation, and successful ratio of HMFOA

are superior to those of other algorithms involved in
comparison. -e successful ratio of HMFOA is up to 94%,
while the successful ratios of FOA, LGMS-FOA, AE-LGMS-
FOA, IFOA, and SFOA are all zero.-e best values of LGMS-

Table 4: Performance statistics of different algorithms.

FOA LGMS-FOA AE-LGMS-FOA IFOA SFOA HMFOA
Best 2.3664845407 8.6689214717e− 3 8.0997417917e− 4 5.8509445796 5.1327857288 4.8294701571e− 16
Worst 5.8858025146 1.5095793139 1.3589677774 6.1056362998 8.3300837795 9.1473267081e− 2
Mean 5.7220157213 4.5801009616e− 1 3.1026807967e− 1 5.9634463791 7.0334301557 2.1510704486e− 3
Std 4.8093695407e− 1 4.2380970796e− 1 3.0905484214e− 1 5.3295364512e− 2 6.6812284973e− 1 1.2857130856e− 2
SR (%) 0 0 0 0 0 94
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Figure 6: Average convergence curves for a redundant robot manipulator.
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Figure 5: Average convergence curves for the selected functions. (a) f1. (b) f2. (c) f3. (d) f4. (e) f5. (f ) f6. (g) f7. (h) f8.
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Figure 7: Continued.

Table 5: An inverse kinematics solution corresponding to the best fitness of each algorithm.

FOA LGMS-FOA AE-LGMS-FOA IFOA SFOA HMFOA
θ1/rad 0.0976126056 −1.0839133510 −2.6595857928 0.0879773602 0.2928215864 −2.7714570693
θ2/rad −1.0722179601 −2.4772682366 −1.3854268665 0.1076406335 −0.3252784200 −1.2864166263
θ3/rad 0.1066073486 −0.4238387176 −0.8803102621 0.0778478430 0.2793738833 −1.1659304990
θ4/rad 5.0187740095 −4.5222500892 −4.8530768097 0.0983433196 0.5282601969 1.4498210529
θ5/rad 0.0666429414 1.3790609675 0.0041955026 0.3085488511 0.3596046188 0.3811435232
θ6/rad 0.0906599000 1.3828761741 3.3703822119 0.0943219901 −0.2018160421 3.4299412880
θ7/rad 0.9180238304 0.3766713486 −1.0054925913 0.0726914072 0.5789474603 −0.3168192999
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FOA and AE-LGMS-FOA are 13 and 12 orders of magnitude
worse than HMFOA, respectively, while the optimization
results of FOA, IFOA, and SFOA are even worse. It can be
seen from Figure 6 that the HMFOA has faster convergence
speed and higher convergence accuracy than the other five
algorithms (to facilitate evaluation and observation, the fit-
ness of the objective function in the graph is a logarithm with
the base of 10). From Figure 7, we can directly observe the
actual pose of each inverse kinematics solution.

As can be seen from Table 6, the position errors cor-
responding to the optimal inverse solutions of FOA, IFOA,
and SFOA are 102 mm, 102 mm, and 102 mm, respectively.
Due to the relatively large position errors, the inverse ki-
nematic solutions obtained by FOA, IFOA, and SFOA are
unacceptable. -e inverse kinematics solutions corre-
sponding to LGMS-FOA and AE-LGMS-FOA have achieved
very high orientation accuracy, and the corresponding
maximum errors of the position components are orders of
magnitude 10− 1 mm and 10− 2 mm, respectively. -e ori-
entation and position accuracy corresponding to the optimal
inverse kinematics solution of HMFOA are rather higher
than other methods mentioned above, which indicates that
the HMFOA can be used to effectively solve the inverse
kinematics problem of redundant manipulator.

In a word, the calculation results of HMFOA are better
than those of FOA, LGMS-FOA, AE-LGMS-FOA, IFOA,
and SFOA in the inverse kinematics solution of the 7-DOF
manipulator.

5. Conclusions

In this study, the inverse kinematics problem of the ma-
nipulator is transformed into a minimum optimization
problem, and an improved fruit fly optimization algorithm,
namely, the hybrid mutation fruit fly optimization algo-
rithm, is proposed for resolving this problem. -e olfactory
search mechanism based on hybrid coevolution of multiple
mutation strategies is employed in the algorithm, which can
effectively balance the global and local search of the algo-
rithm. Simultaneously, the premature convergence problem
of the algorithm can also be effectively solved. -rough the
dynamic real-time update of visual search, the successful
search experience of each fruit fly individual is fully utilized.
-us, the search efficiency of the swarm can be effectively
improved. -e simulation results of 8 typical benchmark
functions indicate the feasibility and effectiveness of the
proposed algorithm. -e inverse kinematics of a 7-DOF
redundant manipulator is taken as an example for
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Figure 7: Poses of the end-effector corresponding to different algorithms. (a) FOA. (b) LGMS-FOA. (c) AE-LGMS-FOA. (d) IFOA. (e)
SFOA. (f ) HMFOA.

Table 6: -e pose errors of different algorithms.

FOA LGMS-FOA AE-LGMS-FOA IFOA SFOA HMFOA
n∗x − nx −7.3284224305e− 1 5.5511151231e− 17 −5.5511151231e− 17 −9.0361801676e− 2 −6.9918463297e− 2 0
n∗y − ny −7.1127054555e− 2 −1.1102230246e− 16 0 5.1834675479e− 1 1.9132713058e− 1 0
n∗z − nz −5.8011245465e− 1 −5.5511151231e− 17 −1.1102230246e− 16 5.6375175368e− 1 3.4739363429e− 1 0
o∗x − ox 3.5307444229e− 1 −5.5511151231e− 17 −5.5511151231e− 17 −2.9259749224e− 1 −6.5206087533e− 2 −5.5511151231e− 17
o∗y − oy −0.2393223149e− 1 −2.7755575616e− 17 −8.3266726847e− 17 −7.6512409616e− 1 −4.3453605161e− 1 −1.1102230246e− 16
o∗z − oz 1.4888118509 0 1.1102230246e− 16 5.4731325106e− 1 1.7174065382e− 1 0
a∗x − ax 1.4548948573 2.2204460493e− 16 1.1102230246e− 16 −1.1134284726e− 1 −5.7455356949e− 2 1.1102230246e− 16
a∗y − ay 5.2392832745e− 1 −1.1102230246e− 16 −2.2204460493e− 16 3.2173407939e− 1 4.3062832710e− 2 0
a∗z − az −5.4001598940e− 1 0 −2.7755575616e− 17 5.2885327132e− 1 2.5711680884e− 1 2.7755575616e− 17
p∗x − px 4.6935429781e + 2 5.3290705182e− 14 −8.0995335681e− 2 −3.5061043328e + 2 −1.9242055348e + 2 −3.5527136788e− 15
p∗y − py 1.0069936321e + 2 −8.6290277692e− 1 −2.0822353690e− 6 6.4331576044 −8.5433896652e + 1 −1.4210854715e− 14
p∗z − pz −2.9740412354e + 2 3.9893702441e− 3 0 −1.3976150052e + 2 −1.6629175959e + 2 0
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experimental simulation. -e comparisons of HMFOA with
FOA and other variants of FOA illustrate that HMFOA is
extremely suitable for solving kinematic problems of re-
dundant manipulator.
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