

# Research Article Multivariate Inverted Kumaraswamy Distribution: Derivation and Estimation

## Hanan M. Aly and Ola A. Abuelamayem

Department of Statistics, Faculty of Economics and Political Science, Cairo University, Giza, Egypt

Correspondence should be addressed to Ola A. Abuelamayem; ola.abuelamayem@feps.edu.eg

Received 10 July 2020; Revised 23 August 2020; Accepted 8 September 2020; Published 23 October 2020

Academic Editor: Antnio M. Lopes

Copyright © 2020 Hanan M. Aly and Ola A. Abuelamayem. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Industrial revolution leads to the manufacturing of multicomponent products; to guarantee the sufficiency of the product and consumer satisfaction, the producer has to study the lifetime of the products. This leads to the use of bivariate and multivariate lifetime distributions in reliability engineering. The most popular and applicable is Marshall–Olkin family of distributions. In this paper, a new bivariate lifetime distribution which is the bivariate inverted Kumaraswamy (BIK) distribution is found and its properties are illustrated. Estimation using both maximum likelihood and Bayesian approaches is accomplished. Using different selection criteria, it is found that BIK provides the best performance compared with other bivariate distributions like bivariate exponential and bivariate inverse Weibull distributions. As a generalization, the multivariate inverted Kumaraswamy (MIK) distribution is derived. Few studies have been conducted on the multivariate Marshall–Olkin lifetime distributions. To the best of our knowledge, none of them handle estimation process. In this paper, we developed an algorithm to show how to estimate the unknown parameters of MIK using both maximum likelihood and Bayesian approaches. This algorithm could be applied in estimating other Marshall–Olkin multivariate lifetime distributions.

# 1. Introduction

Global competition in combination with using higher manufacturing technologies results in producing two or multicomponent products. This led to the use of bivariate and multivariate distributions in reliability engineering. Different families of distributions were constructed. One of the most commonly used is the Marshall–Olkin (MO) family. It is widely used due to its flexibility in considering different situations of failures (i.e., the first component has lifetime smaller, greater, or equal to the lifetime of other components).

In the literature, several lifetime distributions were derived as members of the bivariate Marshall–Olkin family. Marshall and Olkin [1] presented a bivariate exponential distribution with exponential marginals and loss of memory property. Using the same strategy, Kundu and Dey [2], Bareto-Souza and Lemonte [3], Muhammed [4], and Alqallaf and Kundu [5] introduced the bivariate Weibull, bivariate Kumaraswamy, bivariate generalized Burr, and bivariate inverse generalized exponential distributions, respectively. Using the maximum instead of the minimum in the MO scheme, Kundu and Gupta [6, 7] introduced the bivariate generalized exponential and bivariate proportional reversed hazard distributions, respectively. Moreover, Sarhan et al. [8] presented bivariate generalized linear failure rate distribution. Recently, Muhammed [9] introduced bivariate inverse Weibull (BIW) distribution.

Sometimes, the use of bivariate distributions may not be sufficient and there exists a need for multivariate distributions. For example, in air fighter jets, the natural lifetime since being manufactured and the flying time since being put into service are recorded. Studying the reliability of the air fighter jets using only two variables may not be good enough. One should take into consideration the lifetime of the engine, the wing, and the fuselage. This leads to the use of multivariate distribution. For more details, see Li and Li [10]. There is no much work performed in the multivariate case. Sarhan et al. [8] and Kundu and Gupta [11] derived the multivariate generalized linear failure rate and multivariate inverse Weibull distributions, respectively. To the best of our knowledge, there is no work dealing with estimating the unknown parameters for multi-variate Marshall–Olkin family.

Several authors tackled the estimation problem for bivariate MO distributions. For example, Kundu and Gupta [6], Muhammed [9], Aly et al. [12], Eliwa and El-Morshedy [13], El-Morshedy et al. [14], and Sarhan [4, 5, 15] estimated the unknown parameters using maximum likelihood approach for different bivariate lifetime distributions. On the other hand, Hanagal and Ahmadi [16], Kundu and Gupta [17], and Lin et al. [11, 13–15, 18] applied Bayesian approach for estimating certain bivariate lifetime distributions.

The univariate inverted Kumaraswamy (IK) distribution has several applications in different fields (see Abd Al-Fattah et al. [19] and Abdul Hammed et al. [20]), for example, in medical research, life testing problems, and stress-strength analysis. Also, in reliability and biological studies, IK distribution may be used to model failure rates. Due to its expected wide applicability, we are interested in deriving bivariate inverted Kumaraswamy (BIK) distribution. BIK could be applied in different fields like sports, engineering, and medicine as will be explained using three different real datasets. We expect better performance of BIK than other bivariate distributions. No one has derived the distribution before or found its mathematical properties.

The main purpose of this paper is to introduce BIK as a new Marshall–Olkin bivariate distribution in order to be applied efficiently in several fields. As a generalization, the multivariate inverted Kumaraswamy (MIK) distribution is derived. To the best of our knowledge, there is no work dealing with estimating the unknown parameters for multivariate Marshall–Olkin family. Here, estimation of MIK parameters is found using both maximum likelihood and Bayesian approaches. This work could be applied to all Marshall–Olkin multivariate distributions.

The paper is organized as follows. In Section 2, the bivariate inverted Kumaraswamy distribution is derived, and the cumulative distribution function and probability density function are presented. Also, the marginals and conditional distributions of the proposed model are obtained. Moreover, the product moments and the moment generating function are derived. In Section 3, the maximum likelihood estimators of the model parameters, asymptotic Fisher information matrix, and Bayesian estimators are obtained. Multivariate inverted Kumaraswamy distribution and its properties are illustrated in Section 4. The maximum likelihood and Bayesian estimators of the parameters under multivariate case are obtained in Section 5. Numerical analysis using both simulation, and real datasets are presented in Section 6. Finally, the paper is concluded in Section 7.

# 2. Bivariate Inverted Kumaraswamy Distribution

In this section, we will derive the bivariate inverted Kumaraswamy distribution as a new member in the MO family. Its properties such as the marginal and conditional distributions, joint moment generating function, and product moments are studied.

2.1. Derivation of the Bivariate Inverted Kumaraswamy Distribution. The probability density function (pdf) and the cumulative distribution function (cdf) of the univariate inverted Kumaraswamy distribution (IK), respectively, are as follows (for more details, see [19]):

$$f_{\rm IK}(x,\,\beta,\alpha) = \,\alpha\,\beta\,\,(1+x)^{-(\alpha+1)}\,(1-(1+x)^{-\alpha})^{\beta-1}, \quad x > 0,\,\alpha,\beta > 0,$$
(1)

$$F_{\rm IK}(x, \beta, \alpha) = (1 - (1 + x)^{-\alpha})^{\beta}, \quad x > 0, \ \alpha, \beta > 0.$$
(2)

Assume that  $U_i$ , i = 1, 2, 3, are three random variables, such that  $U_i$  follows IK ( $\beta_i$ ,  $\alpha$ ). Define  $X_1 = \max(U_1, U_2)$ and  $X_2 = \max(U_2, U_3)$ . Hence, the bivariate vector ( $X_1, X_2$ ) follows BIK with shape parameters  $\beta_i$ ,  $\alpha$ , i = 1, 2, 3. The joint cdf of ( $X_1, X_2$ ) has the following form:

$$F_{X_{1},X_{2}}(x_{1},x_{2}) = P(X_{1} \le x_{1}, X_{2} \le x_{2})$$
  
=  $P(\max(U_{1},U_{2}) \le x_{1}, \max(U_{2},U_{3}) \le x_{2}),$   
=  $P(U_{1} \le x_{1}, U_{2} \le x_{2}, U_{3} \le \min(x_{1},x_{2})),$  (3)  
=  $P(U_{1} \le x_{1}, U_{2} \le x_{2}, U_{3} \le z),$   
=  $F_{\text{IK}}(x_{1},\beta_{1},\alpha) F_{\text{IK}}(x_{2},\beta_{2},\alpha) F_{\text{IK}}(z,\beta_{3},\alpha),$ 

where  $z = \min(x_1, x_2)$ . The joint cdf can also be written as follows:

$$F_{X_{1},X_{2}}(x_{1},x_{2}) = \begin{cases} F_{\mathrm{IK}}(x_{1},\beta_{1}+\beta_{3},\alpha) F_{\mathrm{IK}}(x_{2},\beta_{2},\alpha), & \text{if } x_{1} < x_{2}, \\ F_{\mathrm{IK}}(x_{1},\beta_{1},\alpha) F_{\mathrm{IK}}(x_{2},\beta_{2}+\beta_{3},\alpha), & \text{if } x_{2} < x_{1}, \\ F_{\mathrm{IK}}(x,\beta_{1}+\beta_{2}+\beta_{3},\alpha), & \text{if } x_{1} = x_{2} = x, \end{cases}$$

$$(4)$$

where  $F_{IK}$  is as illustrated in equation (2).

**Proposition 1.** The joint pdf of  $(X_1, X_2)$  has the following form:

$$f_{X_1,X_2}(x_1,x_2) = \begin{cases} f_1(x_1,x_2), & \text{if } x_1 < x_2, \\ f_2(x_1,x_2), & \text{if } x_2 < x_1, \\ f_3(x), & \text{if } x_1 = x_2 = x, \end{cases}$$
(5)

where

$$f_{1}(x_{1}, x_{2}) = f_{IK}(x_{1}, \beta_{1} + \beta_{3}, \alpha) f_{IK}(x_{2}, \beta_{2}, \alpha),$$

$$f_{2}(x_{1}, x_{2}) = f_{IK}(x_{1}, \beta_{1}, \alpha) f_{IK}(x_{2}, \beta_{2} + \beta_{3}, \alpha),$$

$$f_{3}(x) = \frac{\beta_{3}}{\beta_{1} + \beta_{2} + \beta_{3}} f_{IK}(x, \beta_{1} + \beta_{2} + \beta_{3}, \alpha),$$
(6)

in which  $f_{IK}$  is as illustrated in equation (1).

Proof. See Appendix A.1.

The joint pdf of  $(X_1, X_2)$  can be expressed as a mixture of absolutely continuous part and singular part as follows.  $\Box$ 

**Proposition 2.** If  $(X_1, X_2)$  follows BIK  $(\beta_1, \beta_2, \beta_3, \alpha)$ , then

$$F_{X_1,X_2}(x_1,x_2) = \frac{\beta_1 + \beta_2}{\beta_1 + \beta_2 + \beta_3} F_a(x_1,x_2) + \frac{\beta_3}{\beta_1 + \beta_2 + \beta_3} F_s(z),$$
(7)

$$F_{a}(x_{1}, x_{2}) = \frac{\beta_{1} + \beta_{2} + \beta_{3}}{\beta_{1} + \beta_{2}} \left(1 - (1 + x_{1})^{-\alpha}\right)^{\beta_{1}} \left(1 - (1 + x_{2})^{-\alpha}\right)^{\beta_{2}} \left(1 - (1 + z)^{-\alpha}\right)^{\beta_{3}} - \frac{\beta_{3}}{\beta_{1} + \beta_{2} + \beta_{3}} \left(1 - (1 + z)^{-\alpha}\right)^{\beta_{1} + \beta_{2} + \beta_{3}},$$

$$F_{s}(z) = \left(1 - (1 + z)^{-\alpha}\right)^{\beta_{1} + \beta_{2} + \beta_{3}},$$
(8)

where

where  $z = \min\{x_1, x_2\}$ ,  $F_s(.)$  and  $F_a(., .)$  are the singular and absolute parts, respectively.

Proof. See Appendix A.1.

**Corollary 1.** The joint pdf of  $(X_1, X_2)$  can be written as follows:

$$f_{X_1,X_2}(x_1,x_2) = \frac{\beta_1 + \beta_2}{\beta_1 + \beta_2 + \beta_3} f_a(x_1,x_2) + \frac{\beta_3}{\beta_1 + \beta_2 + \beta_3} f_s(z),$$
(9)

where

$$f_{a}(x_{1}, x_{2}) = \frac{\beta_{1} + \beta_{2} + \beta_{3}}{\beta_{1} + \beta_{2}} \begin{cases} f_{1}(x_{1}, x_{2}) \text{ if } x_{1} < x_{2} \\ f_{2}(x_{1}, x_{2}) \text{ if } x_{2} < x_{1} \end{cases},$$
(10)  
$$f_{s}(z) = f_{IK}(z, \beta_{1} + \beta_{2} + \beta_{3}).$$

The absolutely continuous part of BIK can be unimodal depending on the values of  $\beta_1, \beta_2, \beta_3$ , and  $\alpha$ .  $f_a(x_1, x_2)$  is unimodal if  $\beta_1 + \beta_3 < \beta_2$  (under the case  $x_1 < x_2$ ) or  $\beta_2 + \beta_3 < \beta_1$  (under the case  $x_1 > x_2$ ). The respective modes are

$$\left\{ \left[ \frac{\alpha(\beta_1 + \beta_3) + 1}{\alpha + 1} \right]^{1/\alpha} - 1, \left[ \frac{\alpha\beta_2 + 1}{\alpha + 1} \right]^{1/\alpha} - 1 \right\},$$

$$\left\{ \left[ \frac{\alpha\beta_1 + 1}{\alpha + 1} \right]^{1/\alpha} - 1, \left[ \frac{\alpha(\beta_2 + \beta_3) + 1}{\alpha + 1} \right]^{1/\alpha} - 1 \right\}.$$
(11)

2.2. Properties of Bivariate Inverted Kumaraswamy Distribution. In this section, we illustrate different properties of BIK distribution. We provide marginal, conditional distributions, joint moment generating function, and product moments.

$$\begin{cases} (C) F_{X_1|X_2 \le x_2}(x_1) = \\ \left\{ (1 - (1 + x_1)^{-\alpha})^{\beta_1 + \beta_3} (1 - (1 + x_2)^{-\alpha})^{-\beta_3}, & \text{if } x_1 \le x_2, \\ (1 - (1 + x_1)^{-\alpha})^{\beta_1}, & \text{if } x_2 < x_1. \end{cases} \end{cases}$$

Proof. See Appendix A.1.

**Proposition 3** (Marginal and conditional distributions). If  $(X_1, X_2)$  follows BIK  $(\beta_1, \beta_2, \beta_3, \alpha)$ , then

(a) X<sub>1</sub> follows IK (β<sub>1</sub> + β<sub>3</sub>, α) and X<sub>2</sub> follows IK (β<sub>2</sub> + β<sub>3</sub>, α).
(b) max {X<sub>1</sub>, X<sub>2</sub>} follows IK (β<sub>1</sub> + β<sub>2</sub> + β<sub>3</sub>, α).

**Proposition 4** (Moment generating function). If  $(X_1, X_2)$  follows BIK  $(\beta_1, \beta_2, \beta_3, \alpha)$ , then the joint moment generating function of  $X_1$  and  $X_2$  is given by  $M(t_1, t_2) = l_1 + l_2 + l_3$ , where

$$\begin{split} l_{1} &= \beta_{2} \left(\beta_{1} + \beta_{3}\right) \sum_{i=0}^{\infty} \frac{t_{2}^{i}}{i!} \sum_{k_{2}=0}^{i} \left( \frac{i}{k_{2}} \right) (-1)^{i-k_{2}} \sum_{j=0}^{\infty} \frac{t_{1}^{i}}{j!} \sum_{k_{1}=0}^{j} \left( \frac{j}{k_{1}} \right) (-1)^{i-k_{1}} \\ &\quad \cdot X \left\{ B \left( 1 - \frac{k_{2}}{\alpha}, \beta_{2} \right) B \left( 1 - \frac{k_{1}}{\alpha}, \beta_{1} + \beta_{3} \right) - \frac{\alpha}{\alpha - k_{1}} B \left( 2 - \frac{k_{2} + k_{1}}{\alpha}, \beta_{2} \right) X_{3} F_{2} \left( 2 - \frac{k_{2} + k_{1}}{\alpha}, 1 - \beta_{1} - \beta_{3}; 2 - \frac{k_{1}}{\alpha}; 2 + \beta_{2} - \frac{k_{2} + k_{1}}{\alpha}; 1 \right) \right\}, \\ l_{2} &= \beta_{1} \left(\beta_{2} + \beta_{3}\right) \sum_{j=0}^{\infty} \frac{t_{1}^{j}}{j!} \sum_{k_{1}=0}^{j} \left( \frac{j}{k_{1}} \right) (-1)^{j-k_{1}} \sum_{i=0}^{\infty} \frac{t_{2}^{i}}{i!} \sum_{k_{2}=0}^{i} \left( \frac{i}{k_{2}} \right) (-1)^{i-k_{2}} \\ &\quad \cdot X \left\{ B \left( 1 - \frac{k_{1}}{\alpha}, \beta_{1} \right) B \left( 1 - \frac{k_{2}}{\alpha}, \beta_{2} + \beta_{3} \right) - \frac{\alpha}{\alpha - k_{2}} B \left( 2 - \frac{k_{1} + k_{2}}{\alpha}, \beta_{1} \right) X_{3} F_{2} \left( 2 - \frac{k_{1} + k_{2}}{\alpha}, 1 - \beta_{2} - \beta_{3}; 2 - \frac{k_{2}}{\alpha}; 2 + \beta_{1} - \frac{k_{1} + k_{2}}{\alpha}; 1 \right) \right\}, \\ l_{3} &= \beta_{1} \sum_{i=0}^{\infty} \frac{(t_{1} + t_{2})^{i}}{i!} \sum_{k=0}^{i} \left( \frac{i}{k} \right) (-1)^{i-k} B \left( 1 - \frac{k}{\alpha}, \beta_{1} + \beta_{2} + \beta_{3} \right), \end{split}$$

$$(12)$$

where  ${}_{p}F_{q}(b_{1},...,b_{q};c_{1},...,c_{q};u) = \sum_{k=0}^{\infty} ((b_{1})_{k},...,(b_{p})_{k}/(c_{1})_{k},...,(c_{q})_{k})(u^{k}/k!), (b_{i}) = \Gamma(b+i)/\Gamma(b), i = 1,..., p, (c_{j}) = \Gamma(c+j)/\Gamma(c), j = 1,...,q, p and q are nonnegative integers, and B (...) is beta function.$ 

**Proposition 5** (Product moments). If  $(X_1, X_2)$  follows BIK  $(\beta_1, \beta_2, \beta_3, \alpha)$ , then the product moments of  $X_1$  and  $X_2$  are given by  $E(X_1^s X_2^r) = J_1 + J_2 + J_3$ , where

Proof. See Appendix A.1.

$$J_{1} = \sum_{i=0}^{r} (-1)^{r-i} {\binom{r}{i}} \sum_{j=0}^{s} (-1)^{s-j} {\binom{s}{j}} \beta_{2} (\beta_{1} + \beta_{3}) \Big[ B\Big(1 - \frac{j}{\alpha}, \beta_{1} + \beta_{3}\Big) B\Big(1 - \frac{i}{\alpha}, \beta_{2}\Big) \\ - \frac{\alpha}{\alpha - j} B\Big(2 - \frac{i+j}{\alpha}, \beta_{2}\Big)_{3} F_{2}\Big(2 - \frac{i+j}{\alpha}, 1 - \frac{j}{\alpha}, 1 - \beta_{1} - \beta_{3}; 2 - \frac{j}{\alpha}, 2 - \frac{i+j}{\alpha} + \beta_{2}; 1\Big) \Big],$$

$$J_{2} = \sum_{i=0}^{r} (-1)^{r-i} {\binom{r}{i}} \sum_{j=0}^{s} (-1)^{s-j} {\binom{s}{j}} \beta_{1} (\beta_{2} + \beta_{3}) \\ \cdot \Big[ B\Big(1 - \frac{i}{\alpha}, \beta_{2} + \beta_{3}\Big) B\Big(1 - \frac{j}{\alpha}, \beta_{1}\Big) - \frac{\alpha}{\alpha - i} B\Big(2 - \frac{i+j}{\alpha}, \beta_{1}\Big) \\ \cdot {}_{3}F_{2}\Big(2 - \frac{j+i}{\alpha}, 1 - \frac{i}{\alpha}, 1 - \beta_{2} - \beta_{3}; 2 - \frac{j+i}{\alpha} + \beta_{1}; 1\Big) \Big\}, J_{3} = \sum_{k=0}^{r+s} (-1)^{r+s-k} {\binom{r+s}{k}} \beta_{3} B\Big(1 - \frac{k}{\alpha}, \beta_{1} + \beta_{2} + \beta_{3}\Big) B\Big(1 - \frac{k}{\alpha}, \beta_{2} + \beta_{3}\Big).$$

$$(13)$$

Proof. See Appendix A.1.

# 3. Estimation of Bivariate Inverted Kumaraswamy Distribution

In this section, we estimate the unknown parameters using both maximum likelihood and Bayesian approaches. 3.1. Using Maximum Likelihood Approach. In this section, we derive the maximum likelihood (ML) estimators of the unknown parameters of BIK distribution. Suppose  $\{(x_{11}, x_{21}), \ldots, (x_{1n}, x_{2n})\}$  is a random sample of size *n* from BIK  $(\beta_1, \beta_2, \beta_3, \alpha)$ ; then, the ML estimators of the unknown parameters are obtained as follows.

The log likelihood function of the sample of size *n* is given by  $\log L(\underline{\theta}) = \sum_{i \in I_1} \log f_1(x_{1i}, x_{2i}) + \sum_{i \in I_2} \log f_2(x_{1i}, x_{2i}) + \sum_{i \in I_3} \log f_3(x_i)$ , where

$$I_{1} = \{i; x_{1i} < x_{2i}\},$$

$$I_{2} = \{i; x_{1i} > x_{2i}\},$$

$$I_{3} = \{i; x_{1i} = x_{2i} = x_{i}\},$$

$$I = I_{1} \bigcup I_{2} \bigcup I_{3},$$

$$|I_{1}| = n_{1},$$

$$|I_{2}| = n_{2},$$

$$|I_{3}| = n_{3},$$

$$n_{1} + n_{2} + n_{3} = n,$$
(14)

where  $|I_j|$  denotes the cardinality of the set  $I_j$ , for j = 1, 2, 3. Thus,

$$\log L(\underline{\theta}) = (2n_{1} + 2n_{2} + n_{3})\log \alpha + n_{1}\log(\beta_{1} + \beta_{3}) + n_{1}\log(\beta_{2}) + n_{2}\log(\beta_{1}) + n_{2}\log(\beta_{2} + \beta_{3}) + n_{3}\log(\beta_{3}) - (\alpha + 1) \left\{ \sum_{i \in I_{1} \cup I_{2}} \log(1 + x_{1i}) + \sum_{i \in I_{1} \cup I_{2}} \log(1 + x_{2i}) + \sum_{i \in I_{3}} \log(1 + x_{i}) \right\} + (\beta_{1} + \beta_{3} - 1) \sum_{i \in I_{1}} \log(1 - (1 + x_{1i})^{-\alpha}) + (\beta_{2} - 1) \sum_{i \in I_{1}} \log(1 - (1 + x_{2i})^{-\alpha}) + (\beta_{1} - 1) \sum_{i \in I_{2}} \log(1 - (1 + x_{2i})^{-\alpha}) + (\beta_{2} + \beta_{3} - 1) \sum_{i \in I_{2}} \log(1 - (1 + x_{2i})^{-\alpha}) + (\beta_{1} + \beta_{2} + \beta_{3} - 1) \sum_{i \in I_{3}} \log(1 - (1 + x_{i})^{-\alpha}),$$
(15)

where  $\underline{\theta} = (\alpha, \beta_1, \beta_2, \beta_3)$ .

The first derivatives of the log likelihood with respect to the unknown parameters and also the observed Fisher information matrix are obtained in Appendix A.2. The ML estimates  $\hat{\underline{\theta}} = (\hat{\alpha}, \hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3)$  of  $\underline{\theta} = (\alpha, \beta_1, \beta_2, \beta_3)$  are numerically obtained in Section 6.

3.2. Using Bayesian Approach. Let  $(X_1, X_2)$  follow BIK  $(\underline{\theta})$ , where  $\underline{\theta} = (\alpha, \beta_1, \beta_2, \beta_3)$  is the vector of unknown parameters. The posterior pdf of parameters can be obtained as follows:

$$P(\underline{\theta} | (X_1, X_2)) \propto L((X_1, X_2); \underline{\theta}) P(\underline{\theta}), \qquad (16)$$

where  $P(\underline{\theta})$  is the prior distribution.

Pena and Gupta [21] considered Bayesian estimation of the parameters for Marshall–Olkin bivariate exponential distribution (BVE), in series and parallel systems. They obtained posterior mode using gamma Dirichlet distribution as prior distribution. Angali et al. [22] considered Bayesian estimation for BVE using gamma prior.

Similar to [22], we considered a gamma prior distribution with the following pdf:

$$P(\beta_i, a_i, b_i) \propto \beta_i^{a_i - 1} \exp(-b_i \beta_i),$$
  

$$P(\alpha, a_4, b_4) \propto \alpha^{a_4 - 1} \exp(-b_4 \alpha),$$
(17)

where i = 1, 2, 3 and  $a_i, b_i, a_4, b_4$  are the hyperparameters. The posterior pdf has the following form:

$$P(\underline{\theta} | (X_{1}, X_{2})) \propto \prod_{i=1}^{n_{1}} \alpha^{2} (\beta_{1} + \beta_{3}) \beta_{2} (1 + x_{1i})^{-(\alpha+1)} (1 + x_{2i})^{-(\alpha+1)} X (1 - (1 + x_{1i})^{-\alpha})^{\beta_{1} + \beta_{3} - 1} (1 - (1 + x_{2i})^{-\alpha})^{\beta_{2} - 1} \prod_{i=1}^{n_{2}} \alpha^{2} (\beta_{2} + \beta_{3}) \beta_{1} (1 + x_{1i})^{-(\alpha+1)} (1 + x_{2i})^{-(\alpha+1)} X (1 - (1 + x_{1i})^{-\alpha})^{\beta_{1} - 1} (1 - (1 + x_{2i})^{-\alpha})^{\beta_{2} + \beta_{3} - 1} \prod_{i=1}^{n_{3}} \alpha \beta_{3} (1 + x_{i})^{-(\alpha+1)} (1 - (1 + x_{i})^{-\alpha})^{\beta_{1} + \beta_{2} + \beta_{3} - 1} X \prod_{i=1}^{n_{3}} \beta_{i}^{a_{i} - 1} \exp(-b_{i}\beta_{i}) \alpha^{a_{4} - 1} \exp(-b_{4}\alpha).$$

$$(18)$$

It is observed that Bayesian estimators under square error loss function cannot be obtained in explicit forms. Therefore, we obtain the posterior mean using MCMC technique which is illustrated in Section 6.

# 4. Multivariate Inverted Kumaraswamy Distribution

In literature, there is no much work that dealt with multivariate MO distributions. Sarhan et al. [8] derived the multivariate generalized linear failure rate distribution. Kundu and Gupta [11] derived the multivariate inverse Weibull distribution. Here, we will introduce a new multivariate MO distribution, which is the multivariate inverted Kumaraswamy (MIK) distribution. It is a generalization of the BIK considered in Section 2. We expect that MIK will be of great importance for several applied fields. In the following two sections, the derivation of MIK is explained and some of its properties are studied.

*4.1. Derivation of MIK.* In this section, we will derive the cdf and pdf of MIK.

Let  $U_1, \ldots, U_{m+1}$  be m + 1 independent random variables such that  $U_i \sim \text{IK}(\beta_i, \alpha)$ , for  $i = 1, \ldots, m + 1$ . Define  $X_j = \max\{U_j, U_{m+1}\}, \qquad j = 1, \ldots, m$ . Then,  $X = (X_1, \ldots, X_m)^T$  is an *m*-variate IK with parameters  $(\beta_1, \ldots, \beta_{m+1}, \alpha)$ , and it will be denoted by MIK  $(m, \beta_1, \ldots, \beta_{m+1}, \alpha)$ . We have the following results regarding MIK distribution.

**Proposition 6.** If  $\underline{X} = (X_1, \ldots, X_m) \sim MIK(m, \beta_1, \ldots, \beta_{m+1}, \alpha)$ , then the joint cdf of  $\underline{X}$  for  $x_1 > 0, \ldots, x_m > 0$  is

$$F_{\underline{X}}(\underline{x}) = \prod_{i=1}^{m+1} F_{\mathrm{IK}}(x_i, \beta_i, \alpha), \qquad (19)$$

where  $\underline{x} = (x_1, ..., x_m)$  and  $x_{m+1} = \min\{x_1, ..., x_m\}$ .

*Proof.* We prove by generalizing the same method illustrated in Section 2.

Similar to the bivariate case, the MIK distribution can be written as, for m > 1,

$$F_{\underline{X}}(\underline{x}) = k F_a(\underline{x}) + (1-k)F_s(\underline{x}), \tag{20}$$

where 0 < k < 1 and  $F_a$  and  $F_s$  denote the absolute and continuous parts, respectively. The corresponding pdf can also be written as

$$f_{\underline{X}}(\underline{x}) = k f_a(\underline{x}) + (1-k)f_s(\underline{x}).$$
(21)

The absolutely continuous part of  $f_a(\underline{x})$  can be obtained from

$$\frac{\partial^m F_{\underline{X}}(x_1, \dots, x_m)}{\partial x_1, \dots, \partial x_m},$$
(22)

where  $\underline{x} = (x_1, \ldots, x_m)^T$  belongs to the set where  $F_{\underline{x}}(\underline{x})$  is absolutely continuous, if and only if  $x'_i$ s are different. For each  $\underline{x}$ , where  $x_i$  are different, there exists a permutation  $\rho = \{i_1, \ldots, i_m\}$  such that  $x_{i1} < \cdots, < x_{im}$ .

 $\begin{cases} i_1, \ldots, i_m \end{cases} \text{ such that } x_{i1} <, \cdots, < x_{im}. \\ \text{Define} & f_\rho(\underline{x}) = f_{IK}(x_{i1}, \beta_{i1} + \beta_{m+1}, \alpha) f_{IK}(x_{i2}, \beta_{i2}, \alpha), \ldots, f_{IK}(x_{im}, \beta_{im}, \alpha). \\ \text{Then, for} & x_{i1} <, \cdots, < x_{im}, \\ x_m = k f_a(x_1, \ldots, x_m) = f_\rho(x_{i1}, \ldots, x_{im}), \text{ where } k \text{ can be obtained as follows:} \\ \end{cases}$ 

$$k = \sum_{\rho} J_{\rho}, \tag{23}$$

where

$$\int_{R^{m}} f_{a}(x_{1}, \dots, x_{m}) dx_{1}, \dots, dx_{m} = \sum_{\rho} \int_{x_{im}=0}^{\infty} \int_{x_{im}=0}^{x_{im}=0} \int_{x_{im}=0}^{x_{im}=0} f_{\rho}(x_{1}, \dots, x_{m}) dx_{i1}, \dots, dx_{im}$$
$$= \sum_{\rho} J_{\rho}.$$
(24)

Since

$$\int_{x_{i_{1}}=0}^{x_{i_{2}}} f_{\rho}(x_{1},...,x_{m}) dx_{i_{1}} = F_{\mathrm{IK}}(x_{i_{2}};\beta_{i_{1}}+\beta_{m+1},\alpha) \prod_{j=2}^{m} f_{\mathrm{IK}}(x_{i_{j}},\beta_{i_{j}},\alpha),$$

$$\int_{x_{i_{2}}=0}^{x_{i_{3}}} \int_{x_{i_{1}}=0}^{x_{i_{2}}} f_{\rho}(x_{1},...,x_{m}) dx_{i_{1}} dx_{i_{2}} = \frac{\beta_{i_{2}}}{\beta_{i_{1}}+\beta_{i_{2}}+\beta_{m+1}} F_{\mathrm{IK}}(x_{i_{3}};\beta_{i_{1}}+\beta_{i_{2}}+\beta_{m+1},\alpha) \prod_{j=3}^{m} f_{\mathrm{IK}}(x_{i_{j}},\beta_{i_{j}},\alpha),$$

$$\vdots$$

$$(25)$$

$$J_{\rho} = \frac{\beta_{i_2}}{\beta_{i_1} + \beta_{i_2} + \beta_{m+1}} X \frac{\beta_{i_3}}{\beta_{i_1} + \beta_{i_2} + \beta_{i_3} + \beta_{m+1}} X, \dots, X \frac{\beta_{i_m}}{\beta_{i_1} + \dots + \beta_{i_m} + \beta_{m+1}},$$

then

$$k = \sum_{\rho} \frac{\beta_{i_2}}{\beta_{i_1} + \beta_{i_2} + \beta_{m+1}} X \frac{\beta_{i_3}}{\beta_{i_1} + \beta_{i_2} + \beta_{i_3} + \beta_{m+1}} X, \dots, X \frac{\beta_{i_m}}{\beta_{i_1} + \dots + \beta_{i_m} + \beta_{m+1}},$$
(26)

and for all  $x_{i_1} < \cdots, < x_{i_m}$ ,  $f_a(\underline{x}) = 1/k f_{\rho}(\underline{x})$ .

Now, let  $I_l = \{i_1, \dots, i_l\} \subset I = \{1, \dots, m\}$  such that  $i_1 < \dots < i_l$ .  $f_{\underline{X}}(\underline{x})$  can be written as

$$f_{\underline{X}}(\underline{x}) = k f_a(\underline{x}) + \sum_{l=2}^{m} \sum_{I_l \in I} k_l f_{I_l}(\underline{x}),$$
(27)

where  $f_{I_l}$  is a pdf with respect to (m - l + 1) dimensional Lebesgue measure on the hyperplane  $A_{I_l} = \{ \underline{x} \in \Re^m : x_{i1} =, \dots, = x_{il} \}.$  The exact meaning of  $f_{\underline{X}}(\underline{x})$  is as follows.

For any Borel measurable set  $B \in \Re^m$ ,

$$p(x \in B) = k \int_{B} f_{a}(\underline{x}) + \sum_{l=2}^{m} \sum_{I_{l} \subset I} k_{I_{l}} \int_{B_{Il}} f_{I_{l}}(\underline{x}), \qquad (28)$$

where  $B_{I_l} = B \cap A_{I_l}$  is the projection of set *B* onto (m - l + 1)

dimensional hyperplane  $A_{I_l}$ . Now, we provide  $k_{I_l}$  and  $f_{I_l}(\underline{x})$ . Note that if  $\underline{x} \in A_{I_l}$ , then  $\underline{x}$  has the following form:

$$\underline{x} = (x_1 \dots, x_{i_1-1}, x^*, x_{i_1+1}, \dots, x_{i_2-1}, x^*, x_{i_2+1}, \dots, x_{i_l-1}, x^*, x_{i_l+1}, \dots, x_m).$$
(29)

For a given  $\underline{x} \in \Re^m$ , we define  $g_{l_l}$  from the (m - l + 1)dimensional hyperplane  $A_{I_l}$  to  $\mathfrak{R}$  as follows:

$$g_{I_{l}}(\underline{x}) = f_{\mathrm{IK}}(x^{*}, \beta_{m+1}, \alpha) F_{\mathrm{IK}}\left(x^{*}, \sum_{i \in I_{l}} \beta_{i}, \alpha\right) \prod_{i \in I - I_{l}} f_{\mathrm{Ik}}(x_{i}, \beta_{i}, \alpha)$$
(30)

if  $x_i > x^*$  for  $i \in I - I_l$  and zero otherwise. Similar to k, we can obtain  $k_{I_l}$  as follows:

$$k_{I_{l}} = \int_{A_{I_{l}}} g_{I_{l}}(\underline{x}) d\underline{x} \sum_{\rho_{l-ll}} \int_{x_{jm-l}=0}^{\infty} \int_{x_{jm-l-1}=0}^{x_{jm-l}} \int_{x_{j1}=0}^{x_{j2}} \\ \cdot g_{I_{l}}(\underline{x}) dx^{*} dx_{j1}, \dots, dx_{jm-l} \\ = \sum_{\rho_{l-l_{l}}} \frac{\beta_{m+1}}{\sum_{i \in I_{l}} \beta_{i} + \beta_{m+1}} * \frac{\beta_{j_{1}}}{\sum_{i \in I_{l}} \beta_{i} + \beta_{m+1} + \beta_{j_{1}}} * \frac{\beta_{j_{m-l}}}{\sum_{i \in I} \beta_{i} + \beta_{m+1}}, \\ f_{I_{l}}(\underline{x}) = \frac{1}{k_{I_{l}}} g_{I_{l}}(\underline{x}).$$

$$(31)$$

4.2. Properties of MIK. In this section, we will get the marginal and conditional distributions of MIK.

**Proposition** 7. If  $\underline{X} = (X_1, \ldots, X_m) \sim MIK(m, \beta_1, \ldots, \beta_m)$  $\beta_m, \beta_{m+1}, \alpha)$ , then

(a) 
$$X_1 \sim IK(\alpha, \beta_1 + \beta_{m+1}), \ldots, X_m \sim IK(\alpha, \beta_m + \beta_{m+1}).$$

(b) The conditional distribution of  $(X_1, \ldots, X_s)$  given  $\{X_{s+1} \le x_{s+1}, \ldots, X_m \le x_m\}$  is

$$P(X_{1} \le x_{1}, \dots, X_{s} \le x_{s} | X_{s+1} \le x_{s+1}, \dots, X_{m} \le x_{m}) = \begin{cases} \prod_{j=1}^{s} F_{IK}(x_{j}, \beta_{j}, \alpha) \text{ if } z = v \\ \prod_{j=1}^{s} F_{IK}(x_{j}, \beta_{j}, \alpha) F_{IK}(z, \beta_{m+1}, \alpha) F_{IK}(v, \beta_{m+1}, \alpha) \text{ if } z < v \end{cases}$$
(32)

where 
$$z = \min\{x_1, ..., x_s\}, v = \min\{x_{s+1}, ..., x_m\}.$$
  
(c) For  $2 \le s \le m, (X_1, ..., X_s) \sim MIK(s, \beta_1, ..., \beta_s, \beta_{m+1}, \alpha).$   
(d) If  $T = \max\{X_1, ..., X_m\},$  then  $T \sim IK(\beta_1 +, ..., +\beta_{m+1}, \alpha).$ 

*Proof.* (a, c) B taking the limit for the joint cdf. (b, d) Could be directly obtained from the definition of the multivariate inverted Kumaraswamy distribution.  $\Box$ 

# 5. Estimation of the Multivariate Inverted Kumaraswamy Distribution

Although estimating the unknown parameters of a certain multivariate MO distribution is very important, no one in the literature was interested in it. Therefore, in this section, we will consider the process of estimation for MIK parameters. The proposed techniques could be applied for any multivariate MO distribution. Here, we will apply both maximum likelihood and Bayesian approaches.

5.1. Using Maximum Likelihood Approach. In this section, for simplification, we consider the case when we have three random variables  $X_1, X_2$ , and  $X_3$ . Applying Proposition 6, we have the following cdf:

$$F_{\underline{X}}(\underline{x}) = \prod_{i=1}^{4} F_{\mathrm{IK}}(x_i, \beta_i, \alpha).$$
(33)

The cdf can be rewritten as

$$F_{X_1,X_2,X_3}(x_1,x_2,x_3) = \begin{cases} F_1(x_1,x_2,x_3), & \text{if } x_1 < x_2 < x_3 \text{ or } x_1 < x_3 < x_2, \\ F_2(x_1,x_2,x_3), & \text{if } x_2 < x_1 < x_3 \text{ or } x_2 < x_3 < x_1, \\ F_3(x_1,x_2,x_3), & \text{if } x_3 < x_1 < x_2 \text{ or } x_3 < x_2 < x_1 \\ F_4(x,x_3), & \text{if } x_1 = x_2 = x < x_3, \\ F_5(x,x_2), & \text{if } x_1 = x_3 = x < x_2, \\ F_6(x,x_2), & \text{if } x_1 = x_2 = x_3 = x, \\ F_7(x), & \text{if } x_1 = x_2 = x_3 = x, \\ F_8(x,x_3), & \text{if } x_1 = x_2 = x > x_3, \\ F_9(x,x_2), & \text{if } x_1 = x_3 = x > x_2, \\ F_{10}(x,x_1), & \text{if } x_2 = x_3 = x > x_1, \end{cases}$$
(34)

where

$$\begin{split} F_{1}(x_{1}, x_{2}, x_{3}) &= F_{IK}(x_{1}, \beta_{1} + \beta_{4}, \alpha)F_{IK}(x_{2}, \beta_{2}, \alpha)F_{IK}(x_{3}, \beta_{3}, \alpha), \\ F_{2}(x_{1}, x_{2}, x_{3}) &= F_{IK}(x_{1}, \beta_{1}, \alpha)F_{IK}(x_{2}, \beta_{2} + \beta_{4}, \alpha)F_{IK}(x_{3}, \beta_{3}, \alpha), \\ F_{3}(x_{1}, x_{2}, x_{3}) &= F_{IK}(x_{1}, \beta_{1}, \alpha)F_{IK}(x_{2}, \beta_{2}, \alpha)F_{IK}(x_{3}, \beta_{3} + \beta_{4}, \alpha), \\ F_{4}(x, x_{3}) &= F_{IK}(x, \beta_{1} + \beta_{2} + \beta_{4}, \alpha)F_{IK}(x_{3}, \beta_{3}, \alpha), \\ F_{5}(x, x_{2}) &= F_{IK}(x, \beta_{1} + \beta_{3} + \beta_{4}, \alpha)F_{IK}(x_{2}, \beta_{2}, \alpha), \\ F_{6}(x, x_{2}) &= F_{IK}(x, \beta_{2} + \beta_{3} + \beta_{4}, \alpha)F_{IK}(x_{1}, \beta_{1}, \alpha), \\ F_{7}(x) &= F_{IK}(x, \beta_{1} + \beta_{2} + \beta_{3} + \beta_{4}, \alpha), \\ F_{8}(x, x_{3}) &= F_{IK}(x, \beta_{1} + \beta_{2}, \alpha)F_{IK}(x_{3}, \beta_{3} + \beta_{4}, \alpha), \\ F_{9}(x, x_{2}) &= F_{IK}(x, \beta_{1} + \beta_{3}, \alpha)F_{IK}(x_{2}, \beta_{2} + \beta_{4}, \alpha), \\ F_{10}(x, x_{1}) &= F_{IK}(x, \beta_{2} + \beta_{3}, \alpha)F_{IK}(x_{1}, \beta_{1} + \beta_{4}, \alpha). \end{split}$$

$$(35)$$

The pdf can be obtained by taking the derivative, except for  $f_{10}$  where we should take into consideration that the sum of all probabilities equals one.

Now, suppose  $\{(x_{11}, x_{21}, x_{31}), \ldots, (x_{1n}, x_{2n}, x_{3n})\}$  is a random sample of size *n* from MIK  $(\alpha, \beta_1, \beta_2, \beta_3, \beta_4)$ ; the problem is to find the ML estimators of the unknown parameters. Consider the following notation:

$$I_{1} = \{i; x_{1i} < x_{2i} < x_{3i}\},$$

$$I_{2} = \{i; x_{1i} < x_{3i} < x_{2i}\},$$

$$I_{3} = \{i; x_{2i} < x_{1i} < x_{3i}\},$$

$$I_{4} = \{i; x_{2i} < x_{1i} < x_{2i}\},$$

$$I_{5} = \{i; x_{3i} < x_{1i} < x_{2i}\},$$

$$I_{6} = \{i; x_{3i} < x_{2i} < x_{1i}\},$$

$$I_{7} = \{i; x_{1i} = x_{2i} = x_{i} < x_{3i}\},$$

$$I_{8} = \{i; x_{1i} = x_{3i} = x_{i} < x_{2i}\},$$

$$I_{9} = \{i; x_{1i} = x_{2i} = x_{3i} = x_{i}\},$$

$$I_{10} = \{i; x_{1i} = x_{2i} = x_{3i} = x_{i}\},$$

$$I_{11} = \{i; x_{1i} = x_{2i} = x_{i} > x_{3i}\},$$

$$I_{12} = \{i; x_{1i} = x_{3i} = x_{i} > x_{2i}\},$$

$$I_{13} = \{i; x_{2i} = x_{3i} = x_{i} > x_{1i}\},$$

$$\left|I_{j}\right| = n_{j}, j = 1, 2, \dots, 13, \sum_{j=1}^{13} n_{j} = n,$$

where  $|I_j|$  denotes the cardinality of the set  $I_j$ , for j = 1, 2, ..., 13.

The log likelihood function of the sample of size n is given by

$$\begin{split} \log(L(\underline{\theta})) &= \sum_{i \in I_1 \cup I_2} \log \left\{ \alpha^3 (\beta_1 + \beta_4) \beta_2 \beta_3 (1 + x_{1i})^{-(\alpha+1)} (1 - (1 + x_{1i})^{-\alpha})^{\beta_1 + \beta_4 - 1} X (1 + x_{2i})^{-(\alpha+1)} \\ &\cdot (1 - (1 + x_{2i})^{-\alpha})^{\beta_2 - 1} (1 + x_{3i})^{-(\alpha+1)} X (1 - (1 + x_{1i})^{-\alpha})^{\beta_1 - 1} \right\} \\ &+ \sum_{i \in I_1 \cup I_4} \log \left\{ \alpha^3 (\beta_2 + \beta_4) \beta_1 \beta_3 (1 + x_{1i})^{-(\alpha+1)} (1 - (1 + x_{1i})^{-\alpha})^{\beta_1 - 1} X (1 + x_{2i})^{-(\alpha+1)} (1 - (1 + x_{2i})^{-\alpha})^{\beta_2 + \beta_4 - 1} (1 + x_{3i})^{-(\alpha+1)} \right. \\ &\cdot X (1 - (1 + x_{3i})^{-\alpha})^{\beta_3 - 1} \right\} \\ &+ \sum_{i \in I_2 \cup I_4} \log \left\{ \alpha^3 (\beta_3 + \beta_4) \beta_1 \beta_2 (1 + x_{1i})^{-(\alpha+1)} (1 - (1 + x_{1i})^{-\alpha})^{\beta_1 - 1} X (1 + x_{2i})^{-(\alpha+1)} (1 - (1 + x_{2i})^{-\alpha})^{\beta_2 - 1} (1 + x_{3i})^{-(\alpha+1)} \right. \\ &\cdot X (1 - (1 + x_{3i})^{-\alpha})^{\beta_3 + \beta_4 - 1} \right\} \\ &+ \sum_{i \in I_2} \log \left\{ \alpha^2 (\beta_1 + \beta_2 + \beta_4) \beta_3 (1 + x_i)^{-(\alpha+1)} (1 - (1 + x_i)^{-\alpha})^{\beta_1 + \beta_2 + \beta_4 - 1} X (1 + x_{2i})^{-(\alpha+1)} (1 - (1 + x_{2i})^{-\alpha})^{\beta_3 - 1} \right\} \\ &+ \sum_{i \in I_2} \log \left\{ \alpha^2 (\beta_1 + \beta_2 + \beta_4) \beta_2 (1 + x_i)^{-(\alpha+1)} (1 - (1 + x_i)^{-\alpha})^{\beta_1 + \beta_2 + \beta_4 - 1} X (1 + x_{2i})^{-(\alpha+1)} (1 - (1 + x_{2i})^{-\alpha})^{\beta_3 - 1} \right\} \\ &+ \sum_{i \in I_3} \log \left\{ \alpha^2 (\beta_1 + \beta_3 + \beta_4) \beta_2 (1 + x_i)^{-(\alpha+1)} (1 - (1 + x_i)^{-\alpha})^{\beta_1 + \beta_2 + \beta_4 - 1} X (1 + x_{2i})^{-(\alpha+1)} (1 - (1 + x_{2i})^{-\alpha})^{\beta_1 - 1} \right\} \\ &+ \sum_{i \in I_4} \log \left\{ \alpha^2 (\beta_1 + \beta_2) (\beta_2 + \beta_4) (\beta_1 (1 + x_i)^{-(\alpha+1)} (1 - (1 + x_i)^{-\alpha})^{\beta_1 + \beta_4 + \beta_4 - 1} X (1 + x_{2i})^{-(\alpha+1)} (1 - (1 + x_{1i})^{-\alpha})^{\beta_1 - 1} \right\} \\ &+ \sum_{i \in I_{10}} \log \left\{ \alpha^2 (\beta_1 + \beta_2) (\beta_3 + \beta_4) (1 + x_i)^{-(\alpha+1)} (1 - (1 + x_i)^{-\alpha})^{\beta_1 + \beta_2 - 1} X (1 + x_{3i})^{-(\alpha+1)} (1 - (1 + x_{3i})^{-\beta_1 + \beta_4 - 1} \right\} \\ &+ \sum_{i \in I_{11}} \log \left\{ \alpha^2 (\beta_1 + \beta_3) (\beta_2 + \beta_4) (1 + x_i)^{-(\alpha+1)} (1 - (1 + x_i)^{-\alpha})^{\beta_1 + \beta_2 - 1} X (1 + x_{2i})^{-(\alpha+1)} (1 - (1 + x_{3i})^{-\beta_1 + \beta_4 - 1} \right\} \\ &+ \sum_{i \in I_{11}} \log \left\{ \alpha^2 (\beta_1 + \beta_3) (\beta_2 + \beta_4) (1 + x_i)^{-(\alpha+1)} (1 - (1 + x_i)^{-\alpha})^{\beta_1 + \beta_2 - 1} X (1 + x_{2i})^{-(\alpha+1)} (1 - (1 + x_{2i})^{-\beta_1 + \beta_4 - 1} \right\} \\ &+ \sum_{i \in I_{11}} \log \left\{ \alpha^2 (\beta_1 + \beta_3) (\beta_2 + \beta_4) (1 + x_i)^{-(\alpha+1)} (1 - (1 + x_i)^{-\alpha})^{\beta_1 + \beta_2 - 1}$$

where 
$$\underline{\theta} = (\alpha, \beta_1, \beta_2, \beta_3, \beta_4).$$
  

$$S = (\beta_1 + \beta_2 + \beta_3 + \beta_4) - \frac{\beta_3(\beta_1 + \beta_2)}{\beta_1 + \beta_2 + \beta_4} - \frac{\beta_2(\beta_1 + \beta_3)}{\beta_1 + \beta_3 + \beta_4} - \frac{\beta_1(\beta_2 + \beta_3)}{\beta_3 + \beta_2 + \beta_4} - 3(\beta_1 + \beta_2 + \beta_3).$$
(38)

It is seen that the ML estimates could not be obtained in explicit forms, and hence we need to use numerical analysis to obtain them.

5.2. Using Bayesian Approach. Let  $(X_1, X_2, X_3)$  be three random variables from MIK  $(\underline{\theta})$ , where  $\underline{\theta} = (\alpha, \beta_1, \beta_2, \beta_3, \beta_4)$ 

is the vector of unknown parameters. The posterior pdf can be obtained as follows:

$$P(\underline{\theta} \mid (X_1, X_2, X_3)) \propto L((X_1, X_2, X_3); \underline{\theta}) P(\underline{\theta}), \quad (39)$$

where  $P(\underline{\theta})$  is the prior distribution.

We considered a gamma prior distribution with the following pdf:

$$P(\beta_i, a_i, b_i) \propto \beta_i^{a_i - 1} exp(-b_i\beta_i),$$
  

$$P(\alpha, a_4, b_4) \propto \alpha^{a_4 - 1} exp(-b_4\alpha),$$
(40)

where i = 1, 2, 3, 4 and  $a_i, b_i, a_4, b_4$  are the hyperparameters. The posterior pdf has the following form:

$$\begin{split} P(\underline{\theta} \mid \underline{X}) & \propto \prod_{i \in I_{1} \cup I_{1}} \alpha^{3} (\beta_{1} + \beta_{4}) \beta_{2} \beta_{3} (1 + x_{1i})^{-(\alpha+1)} (1 - (1 + x_{1i})^{-\alpha} \beta_{1}^{\beta_{1}+\beta_{1}-1} \\ & \cdot X (1 + x_{2i})^{-(\alpha+1)} (1 - (1 + x_{2i})^{-\alpha})^{\beta_{3}-1} (1 + x_{3i})^{-(\alpha+1)} X (1 - (1 + x_{3i})^{-\alpha})^{\beta_{3}-1} \\ & \cdot X \prod_{i \in I_{3} \cup I_{4}} \alpha^{3} (\beta_{2} + \beta_{4}) \beta_{1} \beta_{5} (1 + x_{1i})^{-(\alpha+1)} (1 - (1 + x_{3i})^{-\alpha})^{\beta_{1}-1} \\ & \cdot X (1 + x_{2i})^{-(\alpha+1)} (1 - (1 + x_{2i})^{-\alpha})^{\beta_{2}+\beta_{4}-1} (1 + x_{3i})^{-(\alpha+1)} X (1 - (1 + x_{3i})^{-\alpha})^{\beta_{3}-1} \\ & \cdot X \prod_{i \in I_{3} \cup I_{4}} \alpha^{3} (\beta_{3} + \beta_{4}) \beta_{1} \beta_{2} (1 + x_{1i})^{-(\alpha+1)} (1 - (1 + x_{1i})^{-\alpha})^{\beta_{1}-1} \\ & \cdot X \prod_{i \in I_{3} \cup I_{4}} \alpha^{2} (\beta_{1} + \beta_{2} + \beta_{4}) \beta_{3} (1 + x_{i})^{-(\alpha+1)} (1 - (1 + x_{3i})^{-\alpha})^{\beta_{1}+\beta_{2}+\beta_{4}-1} X (1 + x_{3i})^{-(\alpha+1)} (1 - (1 + x_{3i})^{-\alpha})^{\beta_{3}-1} \\ & \cdot X \prod_{i \in I_{7}} \alpha^{2} (\beta_{1} + \beta_{2} + \beta_{4}) \beta_{2} (1 + x_{i})^{-(\alpha+1)} (1 - (1 + x_{i})^{-\alpha})^{\beta_{1}+\beta_{2}+\beta_{4}-1} X (1 + x_{2i})^{-(\alpha+1)} (1 - (1 + x_{2i})^{-\alpha})^{\beta_{2}-1} \\ & \cdot X \prod_{i \in I_{7}} \alpha^{2} (\beta_{1} + \beta_{3} + \beta_{4}) \beta_{2} (1 + x_{i})^{-(\alpha+1)} (1 - (1 + x_{i})^{-\alpha})^{\beta_{1}+\beta_{2}+\beta_{4}-1} X (1 + x_{2i})^{-(\alpha+1)} (1 - (1 + x_{2i})^{-\alpha})^{\beta_{1}-1} \\ & \cdot X \prod_{i \in I_{9}} \alpha^{2} (\beta_{2} + \beta_{3} + \beta_{4}) \beta_{1} (1 + x_{i})^{-(\alpha+1)} (1 - (1 + x_{i})^{-\alpha})^{\beta_{1}+\beta_{2}+\beta_{4}-1} X (1 + x_{1i})^{-(\alpha+1)} (1 - (1 + x_{1i})^{-\alpha})^{\beta_{1}-1} \\ & \cdot X \prod_{i \in I_{9}} \alpha^{2} (\beta_{2} + \beta_{3} + \beta_{4}) (\beta_{1} (1 + x_{i})^{-(\alpha+1)} (1 - (1 + x_{i})^{-\alpha})^{\beta_{1}+\beta_{4}-1} X (1 + x_{2i})^{-(\alpha+1)} (1 - (1 + x_{2i})^{-\alpha})^{\beta_{1}+\beta_{4}-1} \\ & \cdot X \prod_{i \in I_{10}} \alpha^{2} (\beta_{1} + \beta_{3}) (\beta_{2} + \beta_{4}) (1 + x_{i})^{-(\alpha+1)} (1 - (1 + x_{i})^{-\alpha})^{\beta_{1}+\beta_{4}-1} X (1 + x_{2i})^{-(\alpha+1)} (1 - (1 + x_{2i})^{-\alpha})^{\beta_{1}+\beta_{4}-1} \\ & \cdot X \prod_{i \in I_{10}} \alpha^{2} (\beta_{1} + \beta_{3}) (\beta_{2} + \beta_{4}) (1 + x_{i})^{-(\alpha+1)} (1 - (1 + x_{i})^{-\alpha})^{\beta_{1}+\beta_{4}-1} X (1 + x_{2i})^{-(\alpha+1)} (1 - (1 + x_{2i})^{-\alpha})^{\beta_{1}+\beta_{4}-1} \\ & \cdot X \prod_{i \in I_{10}} \alpha^{2} (\beta_{i} + \beta_{3}) (\beta_{i} + \beta_{4}) (1 + x_{i})^{-(\alpha+1)} (1 - (1 + x_{i})^{-\alpha})^{\beta_{1}+\beta_{4}-1}$$

As in the bivariate case, Bayesian estimation will be obtained numerically using MCMC which is illustrated in the next section.

#### 6. Numerical Analysis

In this section, both simulation and MCMC techniques are carried out to investigate the performance of the derived BIK and MIK distributions. The estimation is performed using both ML and Bayesian approaches. Three real datasets are analyzed in case of BIK and another one for the case of MIK.

6.1. For BIK Distribution. In this section, we perform a simulation study to get the estimates of the unknown parameters of BIK distribution. Also, three real datasets are analyzed.

*6.1.1. A Simulation Study.* Here, we present an algorithm to generate BIK distribution (Algorithm 1). To perform a simulation study, we first need to select initial values for the

parameters. Here, the following eight different populations are considered:

(i) Case 1:  $\alpha = 0.2, \beta_1 = 0.2, \beta_2 = 0.2, \beta_3 = 0.2.$ (ii) Case 2:  $\alpha = 0.5, \beta_1 = 0.5, \beta_2 = 0.5, \beta_3 = 0.5.$ (iii) Case 3:  $\alpha = 0.8, \beta_1 = 0.8, \beta_2 = 0.8, \beta_3 = 0.8.$ (iv) Case 4:  $\alpha = 1.5, \beta_1 = 1.2, \beta_2 = 1.3, \beta_3 = 2.5.$ (v) Case 5:  $\alpha = 2, \beta_1 = 2, \beta_2 = 2, \beta_3 = 2.$ (vi) Case 6:  $\alpha = 2, \beta_1 = 2.5, \beta_2 = 3, \beta_3 = 3.5.$ (vii) Case 7:  $\alpha = 2.5, \beta_1 = 2.5, \beta_2 = 3, \beta_3 = 2.5.$ (viii) Case 8:  $\alpha = 3.5, \beta_1 = 4, \beta_2 = 3.5, \beta_3 = 3.5.$ 

The parameters are selected to cover different shapes of the distribution. It can be seen from Figure 1 that

- (i) For cases 1 and 2, the surface plot of the absolutely continuous part of the joint probability density function is decreasing.
- (ii) For cases 3 to 8, the surface plot of the absolutely continuous part of the joint probability density function is increasing till it reaches the mode; then, it is decreasing.

The following algorithm is to generate  $(X_1, X_2)$  from BIK distribution. Step 1: generate  $U_1, U_2$ , and  $U_3$  from uniform (0, 1). Step 2: compute  $T_1 = (1 - U_1^{1/\beta_1})^{1/\alpha}$ ,  $T_2 = (1 - U_2^{1/\beta_2})^{1/\alpha}$ , and  $T_3 = (1 - U_3^{1/\beta_3})^{1/\alpha}$ . Step 3: define  $Z_1 = 1/T_1 - 1$ ,  $Z_2 = 1/T_2 - 1$ , and  $Z_3 = 1/T_3 - 1$ . Step 4: obtain  $X_1 = \max(Z_1, Z_3)$ ,  $X_2 = \max(Z_2, Z_3)$ .

#### ALGORITHM 1: An Algorithm to Generate BIK Distribution.



FIGURE 1: Different shapes of the absolutely continuous part of BIK pdf. (a)  $\alpha = 0.2$ ,  $\beta_1 = 0.2$ ,  $\beta_2 = 0.2$ ,  $\beta_3 = 0.2$ ; (b)  $\alpha = 0.5$ ,  $\beta_1 = 0.5$ ,  $\beta_2 = 0.5$ ,  $\beta_3 = 0.5$ ; (c)  $\alpha = 0.8$ ,  $\beta_1 = 0.8$ ,  $\beta_2 = 0.8$ ,  $\beta_3 = 0.8$ ; (d)  $\alpha = 2$ ,  $\beta_1 = 2$ ,  $\beta_2 = 2$ ,  $\beta_3 = 2$ ; (e)  $\alpha = 1.5$ ,  $\beta_1 = 1.2$ ,  $\beta_2 = 1.3$ ,  $\beta_3 = 2.5$ ; (f)  $\alpha = 2$ ,  $\beta_1 = 2.5$ ,  $\beta_2 = 3$ ,  $\beta_3 = 3.5$ ; (g)  $\alpha = 2.5$ ,  $\beta_1 = 2.5$ ,  $\beta_2 = 3$ ,  $\beta_3 = 2.5$ ; (h)  $\alpha = 3.5$ ,  $\beta_1 = 4$ ,  $\beta_2 = 3.5$ ,  $\beta_3 = 3.5$ .

(1) Maximum Likelihood Approach. The maximum likelihood estimates of the model parameters are obtained by maximizing the log likelihood function given by equation (15). Monte Carlo simulation is performed using R package

with 1000 replications and three different sample sizes n = 30, 50, and 70 and eight different populations.

Absolute bias (ABias), mean square error (MSE), confidence width (CW), and coverage probability (CP) are obtained

TABLE 1: The results of MLEs and Bayesian estimates.

|                                                             |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | MLE Bayesian |           |           | esian |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|-----------|-----------|-------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                             |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | α     | $eta_1$      | $\beta_2$ | $\beta_3$ | α     | $eta_1$ | $\beta_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\beta_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             |                                                                                                            | ABias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.020 | 0.015        | 0.015     | 0.010     | 0.016 | 0.012   | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                     | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.003 | 0.004        | 0.004     | 0.003     |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                             | n = 50                                                                                                     | CW (CL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.214 | 0.248        | 0.248     | 0.248     | 0.213 | 0.243   | 0.239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $β_2$ $β_3$<br>008 0.012<br>004 0.003<br>239 0.230<br>949 0.951<br>004 0.009<br>002 0.002<br>185 0.179<br>949 0.942<br>004 0.007<br>002 0.001<br>156 0.143<br>949 0.948<br>027 0.038<br>030 0.025<br>659 0.587<br>945 0.951<br>026 0.025<br>018 0.014<br>504 0.448<br>946 0.937<br>017 0.019<br>012 0.010<br>418 0.375<br>951 0.946<br>073 0.060<br>091 0.068<br>133 0.979<br>950 0.951<br>049 0.040<br>050 0.038<br>850 0.744<br>948 0.940<br>030 0.030<br>033 0.026<br>703 0.619<br>952 0.946<br>162 0.137<br>447 0.664<br>417 3.063<br>930 0.900<br>139 0.258<br>416 1.941<br>950 0.950                                                                                                                                                                                                                                                                                                                                         |
|                                                             | n = 30<br>n = 50<br>n = 70<br>n = 30<br>n = 70<br>n = 30<br>n = 50<br>n = 70<br>n = 50<br>n = 50<br>n = 50 | CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.950 | 0.938        | 0.957     | 0.948     | 0.943 | 0.932   | 0.949                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             |                                                                                                            | ABias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.011 | 0.009        | 0.008     | 0.007     | 0.010 | 0.009   | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\alpha = 0.2 \beta = 0.2 \beta = 0.2 \beta = 0.2$          | <i>n</i> = 50                                                                                              | MSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.002 | 0.002        | 0.002     | 0.002     | 0.002 | 0.002   | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\alpha = 0.2, p_1 = 0.2, p_2 = 0.2, p_3 = 0.2$             | n = 50                                                                                                     | CW (CL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.176 | 0.176        | 0.176     | 0.176     | 0.162 | 0.188   | 0.185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $β_3$ 0.0120.0030.2300.9510.0090.0020.1790.9420.0070.0100.1430.9480.0250.5870.9510.0250.0140.4480.9370.0100.3750.9460.0600.0680.9790.9510.0400.0380.7440.9460.1370.6643.0630.9700.0900.2581.9410.960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                             |                                                                                                            | CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.954 | 0.940        | 0.938     | 0.951     | 0.956 | 0.943   | 0.949                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             |                                                                                                            | ABias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.010 | 0.006        | 0.006     | 0.006     | 0.008 | 0.006   | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             | n - 70                                                                                                     | MSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.001 | 0.002        | 0.002     | 0.001     | 0.001 | 0.002   | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             | n = 70                                                                                                     | CW (CL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.124 | 0.176        | 0.176     | 0.124     | 0.136 | 0.157   | 0.185         0.179           0.949         0.942           0.004         0.007           0.002         0.001           0.156         0.143           0.949         0.948           0.027         0.038           0.030         0.025           0.659         0.587           0.945         0.951           0.026         0.025           0.018         0.014           0.504         0.448           0.946         0.937           0.017         0.019           0.012         0.010           0.418         0.375           0.951         0.946           0.073         0.060           0.091         0.688           1.133         0.979           0.950         0.951           0.049         0.040           0.050         0.038           0.850         0.744           0.948         0.940 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                             |                                                                                                            | СР                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.952 | 0.957        | 0.946     | 0.951     | 0.958 | 0.945   | 0.949                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             |                                                                                                            | ABias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.032 | 0.048        | 0.046     | 0.032     | 0.028 | 0.041   | 0.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             |                                                                                                            | MSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.011 | 0.034        | 0.034     | 0.026     | 0.011 | 0.031   | 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             | n = 50                                                                                                     | CW (CL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.392 | 0.702        | 0.702     | 0.620     | 0.394 | 0.664   | 0.659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             |                                                                                                            | CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.947 | 0.945        | 0.956     | 0.951     | 0.942 | 0.930   | 0.945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                             |                                                                                                            | ABias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.018 | 0.028        | 0.026     | 0.022     | 0.020 | 0.027   | 0.026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\alpha = 0.5 \beta = 0.5 \beta = 0.5 \beta = 0.5$          | n = 50                                                                                                     | MSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.006 | 0.018        | 0.018     | 0.014     | 0.006 | 0.017   | 0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $a = 0.5, p_1 = 0.5, p_2 = 0.5, p_3 = 0.5$                  | n = 50                                                                                                     | CW (CL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.304 | 0.512        | 0.512     | 0.464     | 0.299 | 0.501   | 0.504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             |                                                                                                            | CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.948 | 0.944        | 0.945     | 0.957     | 0.954 | 0.949   | 0.946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \beta_3 \\ \hline 0.012 \\ 0.003 \\ 0.230 \\ 0.951 \\ 0.009 \\ 0.002 \\ 0.179 \\ 0.942 \\ 0.007 \\ 0.001 \\ 0.143 \\ 0.948 \\ 0.025 \\ 0.587 \\ 0.951 \\ 0.025 \\ 0.014 \\ 0.448 \\ 0.937 \\ 0.0951 \\ 0.025 \\ 0.014 \\ 0.448 \\ 0.937 \\ 0.019 \\ 0.010 \\ 0.375 \\ 0.946 \\ 0.060 \\ 0.068 \\ 0.979 \\ 0.951 \\ 0.040 \\ 0.038 \\ 0.744 \\ 0.946 \\ 0.060 \\ 0.068 \\ 0.979 \\ 0.951 \\ 0.040 \\ 0.038 \\ 0.744 \\ 0.946 \\ 0.030 \\ 0.066 \\ 0.061 \\ 0.066 \\ 0.061 \\ 0.060 \\ 0.068 \\ 0.979 \\ 0.951 \\ 0.060 \\ 0.060 \\ 0.068 \\ 0.979 \\ 0.951 \\ 0.060 \\ 0.060 \\ 0.068 \\ 0.979 \\ 0.951 \\ 0.060 \\ 0.060 \\ 0.038 \\ 0.744 \\ 0.940 \\ 0.030 \\ 0.026 \\ 0.619 \\ 0.946 \\ 0.137 \\ 0.664 \\ 3.063 \\ 0.960 \\ 0.091 \\ 0.369 \\ 2.043 \\ 0.970 \\ 0.090 \\ 0.258 \\ 1.941 \\ 0.960 \\ \end{array}$                                                                                              |
|                                                             |                                                                                                            | ABias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.017 | 0.019        | 0.021     | 0.019     | 0.013 | 0.021   | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             | n - 70                                                                                                     | MSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.004 | 0.012        | 0.012     | 0.010     | 0.004 | 0.012   | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             | <i>n</i> = 70                                                                                              | CW (CL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.248 | 0.430        | 0.430     | 0.392     | 0.250 | 0.417   | 0.418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             |                                                                                                            | СР                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.945 | 0.958        | 0.948     | 0.950     | 0.951 | 0.929   | 0.951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             | <i>n</i> = 30                                                                                              | ABias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.045 | 0.088        | 0.086     | 0.066     | 0.037 | 0.072   | 0.073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             |                                                                                                            | MSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.022 | 0.101        | 0.099     | 0.076     | 0.022 | 0.090   | 0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             |                                                                                                            | CW (CL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.554 | 1.196        | 1.188     | 1.052     | 0.557 | 1.129   | 1.133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             |                                                                                                            | CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.941 | 0.951        | 0.954     | 0.946     | 0.940 | 0.939   | 0.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             |                                                                                                            | ABias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.026 | 0.051        | 0.049     | 0.040     | 0.026 | 0.059   | 0.049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\alpha = 0.8 \beta = 0.8 \beta = 0.8 \beta = 0.8$          | n - 50                                                                                                     | MSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.013 | 0.052        | 0.051     | 0.040     | 0.013 | 0.052   | 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $a = 0.8, p_1 = 0.8, p_2 = 0.8, p_3 = 0.8$                  | n = 50                                                                                                     | CW (CL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.430 | 0.868        | 0.868     | 0.764     | 0.425 | 0.854   | 0.850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\alpha = 0.8, \beta_1 = 0.8, \beta_2 = 0.8, \beta_3 = 0.8$ |                                                                                                            | CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.950 | 0.944        | 0.941     | 0.956     | 0.956 | 0.948   | 0.948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             |                                                                                                            | ABias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.024 | 0.036        | 0.039     | 0.035     | 0.019 | 0.037   | 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             | n = 70                                                                                                     | MSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.009 | 0.034        | 0.036     | 0.028     | 0.009 | 0.034   | 0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             | <i>n</i> = 70                                                                                              | CW (CL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.350 | 0.712        | 0.722     | 0.644     | 0.358 | 0.703   | 0.703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             |                                                                                                            | СР                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.944 | 0.956        | 0.949     | 0.949     | 0.958 | 0.940   | 0.952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             |                                                                                                            | ABias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.068 | 0.142        | 0.158     | 0.307     | 0.023 | 0.120   | 0.162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             | m = 20                                                                                                     | MSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.062 | 0.391        | 0.442     | 0.913     | 0.059 | 0.355   | 0.447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             | n = 30                                                                                                     | CW (CL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.936 | 2.388        | 2.532     | 3.548     | 0.924 | 2.207   | 2.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             |                                                                                                            | CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.950 | 0.940        | 0.950     | 0.950     | 0.940 | 0.950   | 0.930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             |                                                                                                            | ABias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.046 | 0.099        | 0.111     | 0.191     | 0.018 | 0.076   | 0.103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\alpha = 15 \beta = 12 \beta = 13 \beta = 25$              | m = 50                                                                                                     | ABIAS         0.017         0.019         0.021         0.019         0.013         0.021           MSE         0.004         0.012         0.012         0.010         0.004         0.012           CW (CL)         0.248         0.430         0.430         0.392         0.250         0.417           CP         0.945         0.958         0.948         0.950         0.951         0.929           ABias         0.045         0.088         0.086         0.066         0.037         0.072           MSE         0.022         0.101         0.099         0.076         0.022         0.090           CW (CL)         0.554         1.196         1.188         1.052         0.557         1.129           CP         0.941         0.951         0.954         0.946         0.940         0.939           ABias         0.026         0.051         0.049         0.040         0.026         0.059           MSE         0.013         0.052         0.051         0.040         0.013         0.052           CW (CL)         0.430         0.868         0.868         0.764         0.425         0.854           CP         0.950         0.944< | 0.219 | 0.369        |           |           |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\mu = 1.3, \mu_1 = 1.2, \mu_2 = 1.3, \mu_3 = 2.3$          | n = 50                                                                                                     | CW (CL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.712 | 1.722        | 1.834     | 2.504     | 0.703 | 1.633   | 1.738                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             |                                                                                                            | CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.960 | 0.950        | 0.950     | 0.960     | 0.960 | 0.920   | 0.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             |                                                                                                            | ABias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.039 | 0.068        | 0.082     | 0.157     | 0.013 | 0.068   | 0.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             | n - 70                                                                                                     | MSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.026 | 0.134        | 0.153     | 0.301     | 0.023 | 0.131   | 0.139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 002         0.002           185         0.179           949         0.942           004         0.007           002         0.001           156         0.143           949         0.948           027         0.038           030         0.025           659         0.587           945         0.951           026         0.025           018         0.014           504         0.448           946         0.937           017         0.019           012         0.010           418         0.375           951         0.946           073         0.060           091         0.068           133         0.979           950         0.951           049         0.440           050         0.38           850         0.744           948         0.940           030         0.030           033         0.026           703         0.619           952         0.946           162         0.137           447 |
|                                                             | n - 70                                                                                                     | CW (CL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.608 | 1.408        | 1.498     | 1.627     | 0.586 | 1.364   | 1.416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             |                                                                                                            | CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.930 | 0.940        | 0.940     | 0.960     | 0.910 | 0.940   | 0.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

TABLE 1: Continued.

| $\alpha  \beta_1  \beta_2  \beta_3  \alpha  \beta_1  \beta_2  \beta_3 \\ ABias  0.094  0.296  0.295  0.237  0.060  0.264  0.247  0.147 \\ MSE  0.099  0.890  0.892  0.680  0.094  0.811  0.790  0.519 \\ CW (CL)  1.176  3.510  3.518  3.096  1.166  3.312  3.237  2.723 \\ CP  0.943  0.949  0.950  0.952  0.949  0.931  0.948  0.952 \\ ABias  0.055  0.169  0.166  0.136  0.040  0.185  0.169  0.101 \\ MSE  0.055  0.427  0.428  0.326  0.055  0.432  0.418  0.290 \\ CW (CL)  1.176  3.510  3.518  3.096  0.898  2.443  2.388  2.050 \\ CP  0.953  0.946  0.941  0.961  0.952  0.946  0.945  0.952 \\ CP  0.953  0.946  0.941  0.961  0.952  0.946  0.945  0.952 \\ CP  0.953  0.946  0.941  0.961  0.952  0.946  0.945  0.952 \\ CP  0.942  0.553  0.945  0.226  0.038  0.277  0.263  0.195 \\ CP  0.942  0.553  0.945  0.942  0.961  0.942  0.949  0.942 \\ CV (CL)  0.754  2.022  2.030  1.804  0.753  1.979  1.948  1.695 \\ CP  0.942  0.953  0.945  0.942  0.961  0.942  0.949  0.942 \\ CW (CL)  1.122  5.088  5.996  5.840  0.843  4.543  5.563  3.387 \\ CP  0.950  0.950  0.950  0.950  0.950  0.950  0.840  0.938 \\ ABias  0.051  0.226  0.279  0.219  1.497  2.411  0.908 \\ CW (CL)  1.122  5.088  5.996  5.840  0.843  4.543  5.563  3.387 \\ CP  0.950  0.950  0.950  0.950  0.950  0.950  0.942  0.942  0.942  0.943 \\ CW (CL)  1.122  5.088  5.996  0.950  0.950  0.950  0.800  0.800  0.808 \\ CP  0.950  0.950  0.950  0.950  0.942  0.950  0.800  0.808  0.383 \\ ABias  0.053  0.226  0.279  0.219  1.497  2.411  0.908 \\ CW (CL)  1.122  5.088  5.996  5.840  0.843  4.543  5.563  3.387 \\ CP  0.950  0.950  0.950  0.950  0.950  0.942  0.950  0.800  0.938 \\ ABias  0.053  0.226  0.279  0.219  0.197  0.304  0.055 \\ ABias  0.053  0.226  0.279  0.219  0.197  0.304  0.055 \\ CW (CL)  0.858  3.548  4.141  4.006  0.842  3.376  3.996  3.541 \\ CW (CL)  0.858  3.548  4.141  4.006  0.842  3.376  3.996  3.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           |               |         |       | MLE Bayesian |           |           | esian |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------|---------|-------|--------------|-----------|-----------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\alpha = 2, \beta_1 = 2, \ \beta_2 = 2, \beta_3 = 2$ $n = 30$ $ABias 0.094 0.296 0.295 0.237 0.060 0.264 0.247 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.141 0.166 0.151 0.094 0.911 0.948 0.952 0.949 0.931 0.948 0.952 0.949 0.931 0.948 0.952 0.949 0.950 0.952 0.949 0.931 0.948 0.952 0.949 0.931 0.948 0.952 0.481 0.145 0.169 0.101 0.145 0.169 0.101 0.185 0.169 0.101 0.185 0.169 0.101 0.185 0.169 0.101 0.185 0.169 0.101 0.185 0.169 0.101 0.185 0.169 0.101 0.185 0.169 0.101 0.185 0.169 0.101 0.185 0.169 0.101 0.013 0.120 0.118 0.290 0.11 0.063 0.946 0.941 0.961 0.952 0.946 0.945 0.955 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.952 0.946 0.945 0.942 0.961 0.942 0.949 0.942 0.961 0.942 0.949 0.942 0.961 0.942 0.949 0.942 0.953 0.945 0.942 0.961 0.942 0.949 0.942 0.949 0.942 0.953 0.945 0.942 0.961 0.942 0.949 0.942 0.961 0.942 0.949 0.942 0.961 0.942 0.949 0.942 0.961 0.942 0.949 0.942 0.961 0.942 0.949 0.942 0.961 0.942 0.949 0.942 0.960 0.945 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0$                                                                                                                                                                                                                                                                                         |                                                           |               |         | α     | $eta_1$      | $\beta_2$ | $\beta_3$ | α     | $eta_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\beta_2$                                                                                                                                                                                                                                                                    | $\beta_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\alpha = 2, \beta_1 = 2, \ \beta_2 = 2, \beta_3 = 2$ $n = 30$ $m = 50$                                                                                                                                                                                                                                                                                            |                                                           |               | ABias   | 0.094 | 0.296        | 0.295     | 0.237     | 0.060 | 0.264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.247                                                                                                                                                                                                                                                                        | 0.147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\alpha = 2, \beta_1 = 2, \beta_2 = 2, \beta_3 = 2$ $n = 50$ $\alpha = 2, \beta_1 = 2, \beta_2 = 2, \beta_3 = 2$ $n = 50$ $\alpha = 2, \beta_1 = 2, \beta_2 = 2, \beta_3 = 2$ $\alpha = 2, \beta_1 = 2, \beta_2 = 3, \beta_3 = 3.5$ $\alpha = 2, \beta_1 = 2.5, \beta_2 = 3, \beta_3 = 3.5$ $CW (CL) = 1.176 = 3.510 = 3.518 = 3.096 = 1.166 = 3.312 = 3.237 = 2.723 = 2.723 = 2.723 = 2.723 = 0.949 = 0.948 = 0.952 = 0.949 = 0.931 = 0.948 = 0.952 = 0.949 = 0.948 = 0.952 = 0.946 = 0.166 = 0.136 = 0.040 = 0.185 = 0.169 = 0.166 = 0.136 = 0.040 = 0.185 = 0.169 = 0.166 = 0.136 = 0.040 = 0.185 = 0.169 = 0.166 = 0.136 = 0.040 = 0.185 = 0.169 = 0.160 = 0.166 = 0.136 = 0.040 = 0.185 = 0.169 = 0.160 = 0.166 = 0.136 = 0.040 = 0.185 = 0.040 = 0.185 = 0.040 = 0.951 = 0.942 = 0.951 = 0.941 = 0.951 = 0.951 = 0.941 = 0.951 = 0.941 = 0.951 = 0.941 = 0.951 = 0.941 = 0.951 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.941 = 0.9$                                                                                                                                                                                                                     |                                                           | n - 30        | MSE     | 0.099 | 0.890        | 0.892     | 0.680     | 0.094 | Bayesia $β_1$ 0.264         0           0.811         0           3.312         3           0.931         0           0.185         0           0.432         0           2.443         2           0.946         0           0.277         0           0.277         0           0.946         0           0.277         0           0.946         0           0.277         0           0.946         0           0.277         0           0.946         0           0.947         0           0.948         0           0.950         0           0.197         0           0.185         1           3.376         3           0.910         0           0.166         0           0.770         3           0.930         0           0.374         0           0.374         0           0.435         1           4.375         5           0.903         0 | 0.790                                                                                                                                                                                                                                                                        | 0.519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\alpha = 2, \beta_1 = 2, \beta_2 = 2, \beta_3 = 2$ $n = 50$ $n $                                                                                                                                                                                                                                                                                         |                                                           | n = 50        | CW (CL) | 1.176 | 3.510        | 3.518     | 3.096     | 1.166 | 3.312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.237                                                                                                                                                                                                                                                                        | 2.723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $ \alpha = 2, \beta_1 = 2, \beta_2 = 2, \beta_3 = 2 $ $ n = 50 $ $ n = $                                                                                                                                                                                                                                                                                         |                                                           |               | СР      | 0.943 | 0.949        | 0.950     | 0.952     | 0.949 | 0.931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.948                                                                                                                                                                                                                                                                        | $β_3$ 7         0.147           9         0.519           7         2.723           8         0.952           9         0.101           8         0.290           8         2.050           5         0.952           1         0.063           3         0.195           3         1.695           9         0.942           5         0.178           1         0.908           3         3.387           9         0.942           5         0.178           1         0.908           3         3.387           9         0.942           5         0.950           7         0.865           3         3.545           5         0.950           9         0.911           3         0.607           5         0.955           2         0.108           7         0.496           7         1.682           5         0.950           2         0.2697           5         0.950 </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $ \alpha = 2, \beta_1 = 2, \beta_2 = 2, \beta_3 = 2 $ $ n = 50 $ $ m = 50 $ $ MSE \\ CW (CL) \\ 1.176 \\ .176 \\ .0427 \\ .0428 \\ .0428 \\ .0326 \\ .055 \\ .0432 \\ .0432 \\ .0418 \\ .055 \\ .0432 \\ .0418 \\ .0590 \\ .0418 \\ .040 \\ .055 \\ .0432 \\ .0418 \\ .059 \\ .0418 \\ .040 \\ .051 \\ .031 \\ .0129 \\ .031 \\ .0129 \\ .041 \\ .041 \\ .041 \\ .040 \\ .041 \\ .051 \\ .031 \\ .0129 \\ .041 \\ .041 \\ .040 \\ .040 \\ .040 \\ .040 \\ .041 \\ .041 \\ .040 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041 \\ .041$ |                                                           |               | ABias   | 0.055 | 0.169        | 0.166     | 0.136     | 0.040 | 0.185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.169                                                                                                                                                                                                                                                                        | 0.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\alpha = 2, \beta_1 = 2, \beta_2 = 2, \beta_3 = 2$ $n = 30$ $CW (CL) 1.176 3.510 3.518 3.096 0.898 2.443 2.388 2.050 CP 0.953 0.946 0.941 0.961 0.952 0.946 0.945 0.952 ABias 0.051 0.123 0.119 0.051 0.031 0.129 0.101 0.063 0.898 0.277 0.263 0.195 CW (CL) 0.754 2.022 2.030 1.804 0.753 1.979 1.948 1.695 CP 0.942 0.953 0.945 0.942 0.961 0.942 0.949 0.942 0.942 0.953 0.945 0.942 0.961 0.942 0.949 0.942 0.942 0.953 0.945 0.942 0.961 0.942 0.949 0.942 0.942 0.953 0.945 0.942 0.961 0.942 0.949 0.942 0.949 0.942 0.953 0.945 0.942 0.961 0.942 0.949 0.942 0.949 0.942 0.961 0.942 0.949 0.942 0.949 0.942 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.942 0.950 0.880 0.938 0.938 0.277 0.304 0.995 0.950 0.950 0.950 0.950 0.942 0.950 0.880 0.938 0.938 0.938 0.935 0.950 0.950 0.950 0.950 0.942 0.950 0.880 0.938 0.938 0.935 0.945 0.942 0.950 0.880 0.938 0.938 0.935 0.945 0.942 0.950 0.942 0.950 0.880 0.938 0.938 0.950 0.950 0.950 0.950 0.942 0.950 0.880 0.938 0.938 0.950 0.950 0.950 0.950 0.942 0.950 0.880 0.938 0.938 0.950 0.950 0.950 0.950 0.942 0.950 0.880 0.938 0.938 0.950 0.950 0.950 0.942 0.950 0.880 0.938 0.938 0.950 0.950 0.950 0.942 0.950 0.880 0.938 0.938 0.950 0.950 0.950 0.950 0.942 0.950 0.880 0.938 0.938 0.950 0.950 0.950 0.950 0.942 0.950 0.880 0.938 0.938 0.950 0.950 0.950 0.950 0.942 0.950 0.880 0.938 0.938 0.950 0.950 0.950 0.950 0.942 0.950 0.880 0.938 0.938 0.950 0.950 0.950 0.950 0.942 0.950 0.880 0.938 0.938 0.950 0.950 0.950 0.950 0.942 0.950 0.880 0.938 0.938 0.950 0.950 0.950 0.950 0.942 0.950 0.880 0.938 0.938 0.950 0.950 0.950 0.950 0.942 0.950 0.880 0.938 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.95$                                                                                                                                                                                                                                                                                         | $\alpha = 2\beta = 2\beta = 2\beta = 2\beta = 2$          | m = 50        | MSE     | 0.055 | 0.427        | 0.428     | 0.326     | 0.055 | 0.432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.418                                                                                                                                                                                                                                                                        | 0.290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\alpha = 2, \beta_1 = 2.5, \beta_2 = 3, \beta_3 = 3.5$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $a = 2, p_1 = 2, p_2 = 2, p_3 = 2$                        | n = 50        | CW (CL) | 1.176 | 3.510        | 3.518     | 3.096     | 0.898 | 2.443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.388                                                                                                                                                                                                                                                                        | $β_3$<br>0.147<br>0.519<br>2.723<br>0.952<br>0.101<br>0.290<br>2.050<br>0.952<br>0.063<br>0.195<br>1.695<br>0.942<br>0.178<br>0.908<br>3.387<br>0.938<br>0.095<br>0.865<br>0.3541<br>0.950<br>0.091<br>0.607<br>0.950<br>0.091<br>0.607<br>0.950<br>0.095<br>0.168<br>0.891<br>3.545<br>0.955<br>0.108<br>0.955<br>0.108<br>0.168<br>0.891<br>3.545<br>0.955<br>0.108<br>0.168<br>0.891<br>0.2997<br>0.960<br>0.168<br>0.891<br>0.2997<br>0.960<br>0.168<br>0.333<br>2.217<br>0.950<br>0.103<br>2.217<br>0.950<br>0.103<br>2.217<br>0.950<br>0.103<br>2.217<br>0.950<br>0.108<br>0.333<br>2.217<br>0.950<br>0.108<br>0.333<br>2.217<br>0.950<br>0.108<br>0.333<br>2.217<br>0.950<br>0.108<br>0.333<br>2.217<br>0.950<br>0.108<br>0.095<br>0.069<br>0.069<br>0.069<br>0.069<br>0.069<br>0.069<br>0.069<br>0.069<br>0.069<br>0.069<br>0.069<br>0.069<br>0.069<br>0.069<br>0.069<br>0.069<br>0.069<br>0.069<br>0.069<br>0.069<br>0.055<br>0.0955<br>0.0496<br>0.0955<br>0.0496<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0950<br>0.0095<br>0.00950<br>0.0095<br>0.0095<br>0.0095<br>0.0095<br>0.0095<br>0.0095<br>0.00950<br>0.0095<br>0.0095<br>0.0095<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.00950<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.000000<br>0.00000000 |
| $\alpha = 2, \beta_1 = 2.5, \beta_2 = 3, \beta_3 = 3.5$ ABias AB                                                                                                                                                                                                                                                                                          |                                                           |               | СР      | 0.953 | 0.946        | 0.941     | 0.961     | 0.952 | 0.946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.945                                                                                                                                                                                                                                                                        | 0.952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\alpha = 2, \beta_1 = 2.5, \beta_2 = 3, \beta_3 = 3.5$ $MSE \\ n = 70$ $MSE \\ CW (CL) \\ 0.754 \\ CW (CL) \\ 0.754 \\ CP \\ 0.942 \\ 0.953 \\ 0.953 \\ 0.945 \\ 0.945 \\ 0.945 \\ 0.942 \\ 0.961 \\ 0.942 \\ 0.961 \\ 0.942 \\ 0.942 \\ 0.949 \\ 0.942 \\ 0.949 \\ 0.942 \\ 0.949 \\ 0.942 \\ 0.949 \\ 0.942 \\ 0.942 \\ 0.953 \\ 0.945 \\ 0.945 \\ 0.945 \\ 0.945 \\ 0.942 \\ 0.961 \\ 0.961 \\ 0.968 \\ 0.089 \\ 1.832 \\ 2.583 \\ 2.476 \\ 0.219 \\ 1.497 \\ 2.411 \\ 0.908 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.950 \\ 0.950 \\ 0.950 \\ 0.950 \\ 0.950 \\ 0.950 \\ 0.950 \\ 0.950 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.988 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.941 \\ 0.942 \\ 0.950 \\ 0.950 \\ 0.950 \\ 0.950 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.980 \\ 0.880 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.941 \\ 0.949 \\ 0.815 \\ 1.197 \\ 0.865 \\ 0.966 \\ 0.842 \\ 0.376 \\ 0.996 \\ 0.842 \\ 0.966 \\ 0.842 \\ 0.966 \\ 0.842 \\ 0.966 \\ 0.842 \\ 0.966 \\ 0.966 \\ 0.966 \\ 0.966 \\ 0.966 \\ 0.986 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.938 \\ 0.945 \\ 0.940 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.942 \\ 0.950 \\ 0.940 \\ 0.815 \\ 0.96 \\ 0.96 \\ 0.96 \\ 0.96 \\ 0.96 \\ 0.96 \\ 0.96 \\ 0.96 \\ 0.96 \\ 0.96 \\ 0.96 \\ 0.96 \\ 0.96 \\ 0.96 \\ 0.96 \\ 0.96 \\$                             |                                                           |               | ABias   | 0.051 | 0.123        | 0.119     | 0.051     | 0.031 | 0.129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.101                                                                                                                                                                                                                                                                        | 0.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\alpha = 2, \beta_1 = 2.5, \beta_2 = 3, \beta_3 = 3.5$ $CW (CL) 0.754 2.022 2.030 1.804 0.753 1.979 1.948 1.695 CP 0.942 0.953 0.945 0.942 0.961 0.942 0.949 0.942 0.942 0.942 0.949 0.942 0.942 0.942 0.949 0.942 0.942 0.942 0.949 0.942 0.942 0.942 0.949 0.942 0.942 0.942 0.949 0.942 0.942 0.949 0.942 0.942 0.942 0.949 0.942 0.942 0.949 0.942 0.942 0.949 0.942 0.942 0.949 0.942 0.949 0.942 0.940 0.942 0.949 0.942 0.940 0.942 0.949 0.942 0.949 0.942 0.940 0.942 0.949 0.942 0.949 0.942 0.940 0.942 0.949 0.942 0.940 0.942 0.940 0.942 0.949 0.942 0.940 0.942 0.940 0.942 0.940 0.942 0.940 0.942 0.940 0.942 0.940 0.942 0.940 0.942 0.940 0.942 0.940 0.941 0.940 0.941 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.$                                                                                                                                                                                                                                                                                         |                                                           | n - 70        | MSE     | 0.040 | 0.281        | 0.285     | 0.226     | 0.038 | 0.277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.263                                                                                                                                                                                                                                                                        | 0.195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\alpha = 2, \beta_1 = 2.5, \beta_2 = 3, \beta_3 = 3.5$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                           | n = 70        | CW (CL) | 0.754 | 2.022        | 2.030     | 1.804     | 0.753 | 1.979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.948                                                                                                                                                                                                                                                                        | 1.695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\alpha = 2, \beta_1 = 2.5, \beta_2 = 3, \beta_3 = 3.5$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                           |               | CP      | 0.942 | 0.953        | 0.945     | 0.942     | 0.961 | 0.942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.949                                                                                                                                                                                                                                                                        | 0.942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $ \alpha = 2, \beta_1 = 2.5, \beta_2 = 3, \beta_3 = 3.5 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           |               | ABias   | 0.086 | 0.383        | 0.493     | 0.507     | 0.037 | 0.268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.426                                                                                                                                                                                                                                                                        | 0.178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $ \alpha = 2, \beta_1 = 2.5, \beta_2 = 3, \beta_3 = 3.5 $<br>$ \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                           | 20            | MSE     | 0.089 | 1.832        | 2.583     | 2.476     | 0.219 | 1.497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.411                                                                                                                                                                                                                                                                        | 0.908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\alpha = 2, \beta_1 = 2.5, \beta_2 = 3, \beta_3 = 3.5$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                           | n = 30        | CW (CL) | 1.122 | 5.088        | 5.996     | 5.840     | 0.843 | 4.543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.563                                                                                                                                                                                                                                                                        | 3.387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\alpha = 2, \beta_1 = 2.5, \beta_2 = 3, \beta_3 = 3.5 \qquad n = 50 \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           |               | CP      | 0.950 | 0.950        | 0.950     | 0.950     | 0.942 | 0.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\beta_2$ 0.24700.79003.23720.94800.16900.41802.38820.94500.10100.26301.94810.94900.42602.41105.56330.88000.30401.19703.99630.93000.14900.68803.11620.93000.41801.93800.26200.97703.65720.88600.16600.53603.12716.35640.95500.35701.60614.64130.93200.23201.01203.77330.9570 | 0.938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\alpha = 2, \beta_1 = 2.5, \beta_2 = 3, \beta_3 = 3.5 \qquad n = 50 \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           |               | ABias   | 0.053 | 0.226        | 0.279     | 0.297     | 0.019 | 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.304                                                                                                                                                                                                                                                                        | 0.095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\alpha = 2, \beta_1 = 2.5, \beta_2 = 5, \beta_3 = 5.5$ $n = 50$ CW (CL) 0.858 3.548 4.141 4.006 0.842 3.376 3.996 3.541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\alpha = 2, \beta_1 = 2.5, \beta_2 = 3, \beta_3 = 3.5$   |               | MSE     | 0.051 | 0.870        | 1.194     | 1.132     | 0.049 | 0.815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.197                                                                                                                                                                                                                                                                        | 0.865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                           | n = 50        | CW (CL) | 0.858 | 3.548        | 4.141     | 4.006     | 0.842 | 3.376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.996                                                                                                                                                                                                                                                                        | 3.541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CP 0.950 0.940 0.940 0.970 0.930 0.910 0.930 0.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                           |               | CP      | 0.950 | 0.940        | 0.940     | 0.970     | 0.930 | 0.910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.930                                                                                                                                                                                                                                                                        | $β_3$<br>0.147<br>0.519<br>2.723<br>0.952<br>0.101<br>0.290<br>2.050<br>0.952<br>0.063<br>0.195<br>1.695<br>0.942<br>0.178<br>0.908<br>3.387<br>0.938<br>0.0955<br>0.865<br>3.541<br>0.950<br>0.0607<br>2.997<br>0.960<br>0.168<br>0.891<br>3.545<br>0.955<br>0.108<br>0.496<br>2.697<br>0.955<br>0.108<br>0.496<br>2.697<br>0.955<br>0.108<br>0.496<br>2.697<br>0.952<br>0.069<br>0.333<br>2.217<br>0.950<br>0.115<br>1.682<br>4.974<br>0.956<br>0.133<br>1.038<br>3.905<br>0.963<br>0.060<br>0.701<br>3.240<br>0.953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ABias 0.049 0.173 0.236 0.244 0.014 0.166 0.149 0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                           |               | ABias   | 0.049 | 0.173        | 0.236     | 0.244     | 0.014 | 0.166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.149                                                                                                                                                                                                                                                                        | 0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MSE 0.036 0.574 0.800 0.766 0.033 0.543 0.688 0.607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |               | MSE     | 0.036 | 0.574        | 0.800     | 0.766     | 0.033 | 0.543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.688                                                                                                                                                                                                                                                                        | 0.607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| n = 70 CW (CL) 0.712 2.894 3.382 3.294 0.697 2.770 3.116 2.997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           | n = 70        | CW (CL) | 0.712 | 2.894        | 3.382     | 3.294     | 0.697 | 2.770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.116                                                                                                                                                                                                                                                                        | 2.997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CP 0.940 0.940 0.950 0.960 0.950 0.930 0.930 0.960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                           |               | CP      | 0.940 | 0.940        | 0.950     | 0.960     | 0.950 | 0.930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.930                                                                                                                                                                                                                                                                        | 0.960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ABias 0.111 0.390 0.489 0.326 0.067 0.374 0.418 0.168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                           | <i>n</i> = 30 | ABias   | 0.111 | 0.390        | 0.489     | 0.326     | 0.067 | 0.374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.418                                                                                                                                                                                                                                                                        | 0.168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MSE 0.140 1.535 2.191 1.234 0.134 1.435 1.938 0.891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |               | MSE     | 0.140 | 1.535        | 2.191     | 1.234     | 0.134 | 1.435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.938                                                                                                                                                                                                                                                                        | 0.891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| n=30 CW (CL) 1.402 4.610 5.476 4.164 1.395 4.375 5.016 3.545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                           |               | CW (CL) | 1.402 | 4.610        | 5.476     | 4.164     | 1.395 | 4.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.016                                                                                                                                                                                                                                                                        | 3.545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CP 0.943 0.950 0.954 0.947 0.946 0.903 0.915 0.955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                           |               | CP      | 0.943 | 0.950        | 0.954     | 0.947     | 0.946 | 0.903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.915                                                                                                                                                                                                                                                                        | 0.955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ABias 0.068 0.232 0.279 0.183 0.041 0.236 0.262 0.108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                           |               | ABias   | 0.068 | 0.232        | 0.279     | 0.183     | 0.041 | 0.236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.262                                                                                                                                                                                                                                                                        | 0.108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MSE 0.079 0.737 1.017 0.577 0.078 0.725 0.977 0.496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           | 50            | MSE     | 0.079 | 0.737        | 1.017     | 0.577     | 0.078 | 0.725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.977                                                                                                                                                                                                                                                                        | 0.496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\alpha = 2.5, \beta_1 = 2.5, \beta_2 = 3, \beta_3 = 2.5$ $n = 50$ CW (CL) 1.066 3.240 3.798 2.892 1.074 3.167 3.657 2.697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\alpha = 2.5, \beta_1 = 2.5, \beta_2 = 3, \beta_3 = 2.5$ | n = 50        | CW (CL) | 1.066 | 3.240        | 3.798     | 2.892     | 1.074 | 3.167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              | 2.697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CP 0.950 0.940 0.949 0.961 0.949 0.917 0.886 0.952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                           |               | CP      | 0.950 | 0.940        | 0.949     | 0.961     | 0.949 | 0.917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.886                                                                                                                                                                                                                                                                        | 0.952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ABias 0.060 0.164 0.214 0.160 0.028 0.166 0.166 0.069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                           |               | ABias   | 0.060 | 0.164        | 0.214     | 0.160     | 0.028 | 0.166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.166                                                                                                                                                                                                                                                                        | 0.069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MSE 0.057 0.479 0.669 0.399 0.037 0.472 0.622 0.333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |               | MSE     | 0.057 | 0.479        | 0.669     | 0.399     | 0.037 | 0.472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.622                                                                                                                                                                                                                                                                        | 0.333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| n = 70 CW (CL) 0.902 2.636 3.094 2.394 0.903 2.581 2.972 2.217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           | n = 70        | CW (CL) | 0.902 | 2.636        | 3.094     | 2.394     | 0.903 | 2.581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.972                                                                                                                                                                                                                                                                        | 2.217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CP 0.948 0.950 0.950 0.943 0.966 0.887 0.883 0.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                           |               | CP      | 0.948 | 0.950        | 0.950     | 0.943     | 0.966 | 0.887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.883                                                                                                                                                                                                                                                                        | 0.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ABias 0.152 0.717 0.607 0.533 0.068 0.663 0.536 0.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                           |               | ABias   | 0.152 | 0.717        | 0.607     | 0.533     | 0.068 | 0.663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.536                                                                                                                                                                                                                                                                        | 0.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MSE 0.257 4.574 3.552 2.888 0.237 4.168 3.127 1.682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |               | MSE     | 0.257 | 4.574        | 3.552     | 2.888     | 0.237 | 4.168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.127                                                                                                                                                                                                                                                                        | 1.682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| n=30 CW (CL) 1.896 7.898 6.994 6.322 1.873 7.403 6.356 4.974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                           | n = 30        | CW (CL) | 1.896 | 7.898        | 6.994     | 6.322     | 1.873 | 7.403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.356                                                                                                                                                                                                                                                                        | 4.974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CP 0.938 0.949 0.954 0.836 0.928 0.955 0.956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                           |               | CP      | 0.938 | 0.949        | 0.949     | 0.954     | 0.836 | 0.928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.955                                                                                                                                                                                                                                                                        | $β_3$<br>0.147<br>0.519<br>2.723<br>0.952<br>0.101<br>0.290<br>2.050<br>0.952<br>0.063<br>0.195<br>1.695<br>0.942<br>0.178<br>0.908<br>3.387<br>0.938<br>0.995<br>0.865<br>3.541<br>0.950<br>0.091<br>0.607<br>2.997<br>0.960<br>0.168<br>0.891<br>3.545<br>0.955<br>0.108<br>0.496<br>2.697<br>0.952<br>0.108<br>0.496<br>2.697<br>0.952<br>0.108<br>0.496<br>2.697<br>0.952<br>0.108<br>0.496<br>2.697<br>0.955<br>0.108<br>0.496<br>2.697<br>0.955<br>0.108<br>0.496<br>2.697<br>0.955<br>0.108<br>0.496<br>2.697<br>0.955<br>0.108<br>0.496<br>2.697<br>0.955<br>0.108<br>0.496<br>2.697<br>0.955<br>0.108<br>0.496<br>2.697<br>0.955<br>0.108<br>0.496<br>2.697<br>0.955<br>0.108<br>0.496<br>0.333<br>2.217<br>0.950<br>0.115<br>1.682<br>4.974<br>0.956<br>0.133<br>1.038<br>3.905<br>0.963<br>0.060<br>0.701<br>3.240<br>0.953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ABias 0.091 0.414 0.352 0.289 0.053 0.438 0.357 0.133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                           |               | ABias   | 0.091 | 0.414        | 0.352     | 0.289     | 0.053 | 0.438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.357                                                                                                                                                                                                                                                                        | 0.133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MSE 0.143 2.075 1.637 1.277 0.141 2.080 1.606 1.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |               | MSE     | 0.143 | 2.075        | 1.637     | 1.277     | 0.141 | 2.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.606                                                                                                                                                                                                                                                                        | 1.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\alpha = 3.5, \beta_1 = 4, \beta_2 = 3.5, \beta_3 = 3.5$ $n = 50$ CW (CL) 1.440 5.410 4.822 4.282 1.448 5.311 4.641 3.905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\alpha = 3.5, \beta_1 = 4, \beta_2 = 3.5, \beta_3 = 3.5$ | n = 50        | CW (CL) | 1.440 | 5.410        | 4.822     | 4.282     | 1.448 | 5.311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.641                                                                                                                                                                                                                                                                        | 3.905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CP 0.952 0.947 0.934 0.966 0.761 0.919 0.932 0.963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                           |               | CP      | 0.952 | 0.947        | 0.934     | 0.966     | 0.761 | 0.919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.932                                                                                                                                                                                                                                                                        | 0.963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ABias 0.082 0.309 0.268 0.259 0.031 0.283 0.232 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                           |               | ABias   | 0.082 | 0.309        | 0.268     | 0.259     | 0.031 | 0.283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.232                                                                                                                                                                                                                                                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MSE 0.103 1.352 1.066 0.883 0.099 1.297 1.012 0.701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |               | MSE     | 0.103 | 1.352        | 1.066     | 0.883     | 0.099 | 1.297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.012                                                                                                                                                                                                                                                                        | 0.701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| n = 70 CW (CL) 1.214 4.394 3.908 3.542 1.222 4.275 3.773 3.240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           | n = 70        | CW (CL) | 1.214 | 4.394        | 3.908     | 3.542     | 1.222 | 4.275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.773                                                                                                                                                                                                                                                                        | 3.240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CP 0.940 0.951 0.945 0.953 0.696 0.928 0.957 0.953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                           |               | CP      | 0.940 | 0.951        | 0.945     | 0.953     | 0.696 | 0.928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.957                                                                                                                                                                                                                                                                        | 0.953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

and presented in Table 1. The numerical steps and the corresponding equations are explained in detail in Appendix B.1.

(2) Bayesian Approach. Using Bayesian approach under square error loss function, the Bayesian estimator is the posterior mean. However, it is hard to obtain the posterior mean theoretically as we have four parameters to estimate. One can use Markov Chain Monte Carlo (MCMC) simulation method to obtain it numerically.

The MCMC method uses simulation techniques to obtain a Markov sequence such that it has a limiting distribution. In the Bayesian approach, the limiting distribution is the posterior pdf as it includes all needed information about the parameters  $\underline{\theta}$ .

Here, the MCMC method can be used to set up a Markov chain of parameters  $\underline{\theta}$  with distribution  $P(\underline{\theta} \mid (X_1, X_2))$ . The mean of the sequence can be considered as the posterior mean.

To perform MCMC, we used both R and WinBugs packages. Gamma prior is used with the same three sample sizes and eight populations used in ML approach. The R package with 1000 replications is used, and for each replication, WinBugs is used with 1000 replications to generate the sequence of Markov chain.

We used the Geweke test to examine the convergence of the generated Markov chain sequence. Geweke statistic  $(z_n)$ converges to normal distribution for large sample sizes. Hence, large absolute values of  $z_n$  are considered as a rejection for convergence. Only those converged sequences are used in the analysis. For more details about the Geweke test, see [16].

ABias, MSE, confidence length (CL), and CP are obtained and presented in Table 1. The numerical steps and the corresponding equations are explained in detail in Appendix B.1.

From Table 1, it can be seen that under different combinations of the parameters and for different sample sizes, ABias and MSE are relatively small. This indicates that both Bayesian and ML approaches work efficiently in estimating the parameters of BIK.

Comparing ML and Bayesian estimates, it is found that Bayesian estimates have less than or equal mean square error (MSE) than ML ones. This is clear from Figure 2.

Also, it can be seen that as the sample size (n) increases, the ABias, MSE, CW, and CL decrease for both ML and Bayesian as seen from Figure 3. Moreover, it can be seen that for most cases, the CP is around 0.95.

*6.1.2. Real Datasets.* Here, we analyze three real datasets to show the applicability of BIK in several fields like sports, engineering, and medicine.

(1) Football Data. The dataset has been obtained from Meintanis [23]; he used the bivariate MO exponential distribution (BE) to analyze the data. The data are about football (soccer) where at least one goal scored by the home team and at least one goal scored directly from a penalty kick, a foul kick, or any other direct kick (all of them together will be called as kick goal) by any team have been considered. Here, the variables are the time in minutes of the first kick goal scored by any team  $(X_1)$  and the time of the first goal of any type scored by the home team  $(X_2)$ .

The bivariate dataset has the following structure:  $X_1 < X_2$ ,  $X_1 = X_2$ , and  $X_1 > X_2$ . Since,  $X_1 = X_2$  has a positive probability, we need a singular distribution to analyze this dataset. Here, we analyze the data using BIK distribution defined by equation (4). All the data points have been divided by 100. This is not going to make any difference in the statistical inference.

First, before analyzing the data, we fit inverted Kumaraswamy distribution to  $X_1$ ,  $X_2$  and max  $(X_1, X_2)$ . To guess the initial values for the parameters of BIK model, the MLEs of the shape parameters  $(\alpha, \beta)$  of the respective inverted Kumaraswamy distribution for  $X_1$ ,  $X_2$  and max  $(X_1, X_2)$  are obtained. To check the model's fitness, we first need to illustrate goodness-of-fit tests.

Goodness-of-fit (GOF) tests are hypothesis tests regarding the distribution of some random variable (X) in a population. The objective of applying GOF tests is to measure how well the data agree with a given distribution as its population. For example, if we want to examine if the random variable (X) follows distribution  $F_0(x)$ , then the null hypothesis is

$$H_0: F(x) = F_0(x).$$
(42)

One approach for applying GOF tests is based on the empirical distribution function (EDF)  $(F_n(x))$  which is defined as follows:

$$F_n(x) = \frac{\text{number of elements in the sample } \le x}{\text{total sample size } (n)}.$$
 (43)

This approach is based on defining a statistic to measure the discrepancy between  $F_n(x)$  and  $F_0(x)$ . The most used statistics are modified Cramér–von Mises statistic ( $W^*$ ) and Anderson–Darling statistic ( $A^*$ ) which have the following formulas:

$$W^{*} = \frac{1}{12n} + \sum_{i=1}^{n} \left[ F_{0}(x_{(i)}) - \frac{2i-1}{2n} \right]^{2},$$

$$A^{*} = -n - 2\sum_{i=1}^{n} \left[ \frac{2i-1}{2n} \ln(F_{0}(x_{(i)})) + \left(1 - \frac{2i-1}{2n}\right) \ln(1 - F_{0}(x_{(i)})) \right],$$
(44)

where  $x_{(i)}$  is the value of the *i*<sup>th</sup> order statistics in the sample.

Large values of test statistics (or small corresponding p value) lead to the rejection of the null hypothesis. For more details about GOF tests, see D'Agostnio and Stephens [24].

Here, we apply GOF tests in order to see whether the fit based on univariate inverted Kumaraswamy distributions is reasonable for this dataset. We computed the modified Cramér–von Mises statistic ( $W^*$ ) and Anderson–Darling statistic ( $A^*$ ). The values of these statistics and the corresponding p values (in brackets) for  $X_1$ ,  $X_2$ , and max ( $X_1$ ,  $X_2$ ) are illustrated in Table 2.

Based on the values of these statistics and the corresponding p values, the inverted Kumaraswamy distribution cannot be rejected for modeling the marginals and the maximum. In Table 3, the ML estimates and the posterior mean using gamma priors are obtained for the parameters of BIK. Also, credible interval length and confidence width are illustrated.

Now, we try to compare the performance of BIK, bivariate exponential (BE), and bivariate inverted Weibull (BIW) to fit this dataset. To select between models, several information criteria (IC) were presented; the main idea behind IC is to afford a balance between good fit and complexity of the model as follows:

$$IC = -2\log(L) + kp, \tag{45}$$



FIGURE 2: MSE of (a)  $\alpha = 2$ , (b)  $\beta_1 = 2$ , (c)  $\beta_2 = 2$ , and (d)  $\beta_3 = 2$ .



FIGURE 3: (a) MSE and (b) ABias for  $\alpha$ .

TABLE 2: Cramér–von Mises statistic ( $W^*$ ) and Anderson–Darling statistic ( $A^*$ ) for IK.

|       | $X_1$         | $X_2$         | $\max(X_1, X_2)$ |
|-------|---------------|---------------|------------------|
| $A^*$ | 0.966 (0.375) | 0.549 (0.696) | 1.395 (0.204)    |
| $W^*$ | 0.139 (0.426) | 0.083 (0.679) | 0.233 (0.212)    |

TABLE 3: The estimates based on ML and Bayesian approaches.

| Approach  | l                                                      | α                                                     | $\beta_1$ | $\beta_2$ | $\beta_3$ |
|-----------|--------------------------------------------------------|-------------------------------------------------------|-----------|-----------|-----------|
| MI        | MLE                                                    | 5.258                                                 | 1.763     | 0.560     | 1.411     |
| WIL       | Confidence interval width                              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1.374     |           |           |
| Derrosian | Posterior mean                                         | 4.727                                                 | 1.673     | 0.679     | 1.442     |
| Dayesian  | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1.061                                                 |           |           |           |

where k is the penalized term and p refers to number of parameters in the model.

The most commonly used IC in model selections are Akaike information criteria (AIC), Bayesian information criteria (BIC), the consistent Akaike information criteria (CAIC), and Hannan–Quinn information criteria (HQIC). Each IC has a different penalty term illustrated in the first row of Table 4.

By analyzing equation (45), we can see that the first term  $(-2\log (L))$  tends to decrease when the model provides good fit. But, the second term tends to increase as the number of parameters in the model increases. The model with the lowest IC is the best (for more details about IC, see Vrieze [25]).

The log likelihood value, AIC, BIC, CAIC, and HQIC are represented in Table 4. All of the criteria suggest that BIK provides the best fit compared with BE and BIW models. This may show the importance of BIK.

(2) Motor Data. The dataset has been obtained from [26]. The data are about failure time in days for a parallel system containing two motors. The variables are time to failure for the first motor  $(X_1)$  and time to failure for the second motor  $(X_2)$ . All data points have been divided by 1000. We applied GOF tests on IK, IW, and E distributions. From Table 5, based on the values of  $(W^*)$ ,  $(A^*)$ , and the corresponding p values, only IK distribution can be used for modeling the marginals and the maximum. Hence, only BIK can be used for modeling this dataset.

ML estimates and the posterior mean using gamma priors are obtained for the parameters of BIK. Also, credible interval length and confidence width are illustrated in Table 6.

(3) Diabetic Retinopathy Data. The dataset has been obtained from [27]. The data are used by the National Eye Institute to study the effect of laser treatment on the blindness in patients with diabetic retinopathy. At the beginning of clinical trial, for each patient, one eye is randomly selected for laser treatment. The variables are time to failure for treated eye  $(X_1)$  and time to failure for untreated eye  $(X_2)$ . All data points have been divided by 1000. We applied GOF on IK, IW, and E distributions. From Table 7, it can be seen that only IK distribution can be used for modeling the marginals

| TABLE 4: Information criteria. |  |
|--------------------------------|--|
|--------------------------------|--|

|     | 1111          |       | /inacion | ernerna.   |               |
|-----|---------------|-------|----------|------------|---------------|
|     | Log (L)       | AIC   | BIC      | CAIC       | HQIC          |
| k   | —             | 2     | $\ln(n)$ | $\ln(n+1)$ | $\ln(\ln(n))$ |
| BIK | -23.53*       | 55.06 | 61.5     | 61.61      | 57.33         |
| BE  | $-44.56^{**}$ | 95.12 | 99.95    | 100.03     | 96.82         |
| BIW | -30.25***     | 68.5  | 74.94    | 75.05      | 70.77         |
|     |               |       |          |            |               |

\*Based on the estimates in Table 3. \*\*Based on the estimates obtained by Meintanis [23]. \*\*\*Based on the estimates presented by Muhammed [9].

TABLE 5:  $(W^*)$  and  $(A^*)$  for IK, IW, and E.

| Mod  | el    | $X_1$         | $X_2$         | $\max(X_1, X_2)$              |
|------|-------|---------------|---------------|-------------------------------|
| W    | $A^*$ | 1.133 (0.294) | 0.294 (0.942) | 0.488 (0.756)                 |
| IK   | $W^*$ | 0.204 (0.261) | 0.036 (0.958) | 0.081 (0.692)                 |
| TTAT | $A^*$ | 1.491 (0.179) | 0.874 (0.429) | 7.165 (0.0003)                |
| 1 VV | $W^*$ | 0.267 (0.168) | 0.119 (0.505) | $1.509 (9.18 \times 10^{-5})$ |
| Б    | $A^*$ | 3.902 (0.009) | 3.363 (0.014) | 94.4 $(3.3 \times 10^{-5})$   |
| Е    | $W^*$ | 0.778(0.007)  | 0.672 (0.014) | 5.964 $(2.2 \times 10^{-16})$ |

TABLE 6: The estimates based on ML and Bayesian approaches.

| Approach |                              | α                                                                                         | $\beta_1$ | $\beta_2$ | $\beta_3$ |
|----------|------------------------------|-------------------------------------------------------------------------------------------|-----------|-----------|-----------|
|          | MLE                          | 16.977                                                                                    | 12.603    | 13.067    | 0.01      |
| ML       | Confidence interval<br>width | α $β_1$ $β_2$ 16.97712.60313.067010.50819.5920.0461816.95012.90013.21009.02019.15220.7200 | 18.730    |           |           |
| Bayesian | Posterior mean               | 16.950                                                                                    | 12.900    | 13.210    | 0.034     |
|          | Credible interval<br>length  | 9.020                                                                                     | 19.152    | 20.720    | 0.594     |

TABLE 7:  $(W^*)$  and  $(A^*)$  for IK, IW, and E.

| Mod | del                                       | $X_1$                          | $X_2$                                                          | $\max(X_1, X_2)$                                               |
|-----|-------------------------------------------|--------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| IK  | $A^* \\ W^*$                              | 0.662 (0.591)<br>0.092 (0.627) | $0.570 (0.676) \\ 0.099 (0.594)$                               | $0.707 (0.551) \\ 0.090 (0.635)$                               |
| IW  | $\begin{array}{c} A^* \\ W^* \end{array}$ | 2.538 (0.048)<br>0.369 (0.087) | 73.841 $(8.4 \times 10^{-6})$<br>11.41 $(2.2 \times 10^{-16})$ | 166.45 $(8.4 \times 10^{-6})$<br>18.25 $(2.2 \times 10^{-16})$ |
| Е   | $A^* \\ W^*$                              | 3.886 (0.009)<br>0.671 (0.015) | 214.7 $(8.4 \times 10^{-6})$<br>22.4 $(2.2 \times 10^{-16})$   | 271.7 $(8.4 \times 10^{-6})$<br>23.1 $(2.2 \times 10^{-16})$   |

and the maximum. Hence, only BIK can be used for modeling this dataset.

In Table 8, ML estimates and the posterior mean using gamma priors are obtained for the parameters of BIK. Also, credible interval length and confidence width are illustrated.

From these three datasets, we can conclude that the derived BIK distribution will be of great importance.

6.2. For MIK Distribution. In this section, we present numerical results of estimation using a simulation study and a real dataset.

*6.2.1. A Simulation Study.* Here, we present an algorithm to generate MIK distribution. Also, we illustrate the simulation results for both ML and Bayesian approaches (Algorithm 2).

(1) Maximum Likelihood Approach. To obtain the maximum likelihood estimates, a Monte Carlo simulation is performed

| Approach |                           | α     | $\beta_1$ | $\beta_2$ | $\beta_3$ |
|----------|---------------------------|-------|-----------|-----------|-----------|
| ML       | MLE                       | 3.830 | 2.889     | 2.570     | 0.900     |
|          | Confidence interval width | 1.288 | 2.114     | 1.952     | 1.044     |
| Demoire  | Posterior mean            | 3.586 | 2.739     | 2.3796    | 0.907     |
| Bayesian | Credible interval length  | 0.930 | 1.326     | 1.133     | 0.700     |
|          |                           |       |           |           |           |

TABLE 8: The estimates based on ML and Bayesian approaches.

The following algorithm is to generate  $(X_1, X_2, X_3)$  from MIK distribution. Step 1: generate  $U_1, U_2, U_3$ , and  $U_4$  from uniform (0, 1). Step 2: compute  $T_1 = (1 - U_1^{1/\beta_1})^{1/\alpha}$ ,  $T_2 = (1 - U_2^{1/\beta_2})^{1/\alpha}$ ,  $T_3 = (1 - U_3^{1/\beta_3})^{1/\alpha}$ , and  $T_4 = (1 - U_4^{1/\beta_4})^{1/\alpha}$ . Step 3: define  $Z_1 = 1/T_1 - 1$ ,  $Z_2 = 1/T_2 - 1$ ,  $Z_3 = 1/T_3 - 1$ , and  $Z_4 = 1/T_4 - 1$ . Step 4: obtain  $X_1 = \max(Z_1, Z_4)$ ,  $X_2 = \max(Z_2, Z_4)$ , and  $X_3 = \max(Z_3, Z_4)$ .

ALGORITHM 2: An algorithm to generate MIK distribution.

TABLE 9: The results of MLEs and Bayesian estimates for MIK.

|                                                             |               |         | MLE   |         |           |           | Bayesian |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------|---------------|---------|-------|---------|-----------|-----------|----------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                             |               |         | α     | $eta_1$ | $\beta_2$ | $\beta_3$ | α        | $eta_1$ | $\beta_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\beta_3$                                                                                                                                                                                                                                                                                                                                                                     |
|                                                             |               | ABias   | 0.046 | 0.063   | 0.050     | 0.061     | 0.045    | 0.037   | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.032                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             | m = 20        | MSE     | 0.020 | 0.045   | 0.042     | 0.045     | 0.019    | 0.040   | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.039                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             | n = 30        | CW (CL) | 0.526 | 0.794   | 0.774     | 0.794     | 0.505    | 0.761   | 0.735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.749                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             |               | CP      | 0.953 | 0.973   | 0.954     | 0.949     | 0.939    | 0.925   | 0.948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.933                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             |               | ABias   | 0.035 | 0.033   | 0.046     | 0.040     | 0.039    | 0.005   | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.019                                                                                                                                                                                                                                                                                                                                                                         |
| $\alpha = 0.9, \beta_1 = 0.9, \beta_2 = 0.9, \beta_3 = 0.9$ |               | MSE     | 0.011 | 0.023   | 0.025     | 0.025     | 0.012    | 0.021   | 0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.023                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             | n = 50        | CW (CL) | 0.392 | 0.582   | 0.594     | 0.594     | 0.391    | 0.567   | 0.573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.578                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             |               | CP      | 0.960 | 0.968   | 0.950     | 0.960     | 0.945    | 0.946   | 0.929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.943                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             | <i>n</i> = 70 | ABias   | 0.020 | 0.026   | 0.021     | 0.032     | 0.029    | 0.001   | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.006                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             |               | MSE     | 0.007 | 0.017   | 0.015     | 0.017     | 0.008    | 0.015   | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.015                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             |               | CW (CL) | 0.328 | 0.496   | 0.480     | 0.496     | 0.328    | 0.477   | 0.472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.479                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             |               | CP      | 0.945 | 0.951   | 0.958     | 0.964     | 0.930    | 0.931   | 0.933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.950                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             | n - 30        | ABias   | 0.135 | 0.083   | 0.224     | 0.089     | 0.119    | 0.043   | 0.199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.046                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             |               | MSE     | 0.084 | 0.044   | 0.282     | 0.046     | 0.078    | 0.033   | 0.248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.034                                                                                                                                                                                                                                                                                                                                                                         |
| $\alpha = 12$ $\beta = 02$ $\beta = 12$ $\beta = 02$        | n = 50        | CW (CL) | 1.008 | 0.754   | 1.888     | 0.764     | 0.977    | 0.685   | 1.756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.687                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             |               | CP      | 0.918 | 0.961   | 0.973     | 0.952     | 0.927    | 0.940   | 0.948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.935                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             |               | ABias   | 0.111 | 0.067   | 0.155     | 0.062     | 0.085    | 0.015   | 0.167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.022                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             | m = 50        | MSE     | 0.051 | 0.025   | 0.148     | 0.025     | 0.044    | 0.018   | 0.148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.018                                                                                                                                                                                                                                                                                                                                                                         |
| $u = 1.0, p_1 = 0.0, p_2 = 1.0, p_3 = 0.0$                  | n = 50        | CW (CL) | 0.774 | 0.568   | 1.380     | 0.568     | 0.749    | 0.511   | 1.335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.516                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             |               | CP      | 0.939 | 0.962   | 0.950     | 0.958     | 0.935    | 0.956   | 0.925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.938                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             | m - 70        | ABias   | 0.086 | 0.057   | 0.155     | 0.049     | 0.072    | 0.011   | 0.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.015                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             |               | MSE     | 0.034 | 0.017   | 0.113     | 0.016     | 0.031    | 0.012   | 0.094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.013                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             | n = 70        | CW (CL) | 0.644 | 0.464   | 1.170     | 0.464     | 0.628    | 0.432   | 1.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.433                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             |               | CP      | 0.914 | 0.969   | 0.930     | 0.977     | 0.919    | 0.951   | 0.928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.948                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             |               | ABias   | 0.112 | 0.210   | 0.173     | 0.219     | 0.090    | 0.195   | 0.169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.167                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             | m = 30        | MSE     | 0.064 | 0.262   | 0.236     | 0.269     | 0.060    | 0.245   | 0.229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.224                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             | n = 50        | CW (CL) | 0.886 | 1.830   | 1.780     | 1.842     | 0.884    | 1.763   | $F_2$ $P_2$ 0.020         0.0           0.037         0.0           0.735         0.7           0.948         0.9           0.020         0.0           0.022         0.0           0.573         0.5           0.929         0.9           0.005         0.0           0.1573         0.5           0.929         0.9           0.005         0.0           0.472         0.4           0.933         0.9           0.199         0.0           0.248         0.0           1.756         0.6           0.948         0.9           0.167         0.0           0.148         0.0           1.335         0.5           0.120         0.0           0.094         0.0           1.019         0.4           0.928         0.5           0.169         0.1           0.229         0.2           1.725         1.7           0.953         0.9           0.162         0.1           0.128         0.0           0.1 | 1.718                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             |               | CP      | 0.921 | 0.962   | 0.972     | 0.962     | 0.917    | 0.942   | $\begin{array}{c c} \beta_2 & \beta\\ \hline 0.020 & 0.0\\ 0.037 & 0.0\\ 0.735 & 0.7\\ 0.948 & 0.9\\ 0.020 & 0.0\\ 0.735 & 0.7\\ 0.948 & 0.9\\ 0.020 & 0.0\\ 0.022 & 0.0\\ 0.022 & 0.0\\ 0.022 & 0.0\\ 0.005 & 0.0\\ 0.015 & 0.0\\ 0.015 & 0.0\\ 0.015 & 0.0\\ 0.015 & 0.0\\ 0.0472 & 0.4\\ 0.933 & 0.9\\ 0.199 & 0.0\\ 0.248 & 0.0\\ 0.148 & 0.0\\ 0.148 & 0.0\\ 0.148 & 0.0\\ 0.094 & 0.0\\ 0.094 & 0.0\\ 0.094 & 0.0\\ 0.094 & 0.0\\ 1.019 & 0.4\\ 0.928 & 0.5\\ 0.162 & 0.1\\ 0.143 & 0.1\\ 1.324 & 1.2\\ 0.922 & 0.5\\ 0.128 & 0.0\\ 0.095 & 0.0\\ 1.090 & 1.0\\ 0.928 & 0.5\\ \end{array}$                                                                                                                                                                                                                                                                                                                     | 0.934                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             |               | ABias   | 0.081 | 0.137   | 0.150     | 0.147     | 0.074    | 0.130   | 0.162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.115                                                                                                                                                                                                                                                                                                                                                                         |
| $\alpha = 18\beta = 18\beta = 18\beta = 18\beta = 18$       | n - 50        | MSE     | 0.037 | 0.134   | 0.141     | 0.139     | 0.036    | 0.128   | 0.143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.123                                                                                                                                                                                                                                                                                                                                                                         |
| $\alpha = 1.8, p_1 = 1.6, p_2 = 1.6, p_3 = 1.8$             | n = 50        | CW (CL) | 0.678 | 1.330   | 1.346     | 1.340     | 0.677    | 1.299   | 1.324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \beta_3 \\ 0.032 \\ 0.039 \\ 0.749 \\ 0.933 \\ 0.019 \\ 0.023 \\ 0.578 \\ 0.943 \\ 0.066 \\ 0.015 \\ 0.479 \\ 0.950 \\ 0.046 \\ 0.034 \\ 0.687 \\ 0.935 \\ 0.022 \\ 0.018 \\ 0.516 \\ 0.938 \\ 0.015 \\ 0.013 \\ 0.433 \\ 0.948 \\ 0.167 \\ 0.224 \\ 1.718 \\ 0.934 \\ 0.115 \\ 0.123 \\ 1.288 \\ 0.952 \\ 0.091 \\ 0.084 \\ 1.074 \\ 0.946 \\ \end{array}$ |
|                                                             |               | CP      | 0.951 | 0.972   | 0.944     | 0.965     | 0.944    | 0.964   | 0.922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.952                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             |               | ABias   | 0.059 | 0.113   | 0.116     | 0.122     | 0.054    | 0.097   | 0.128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.091                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             | n - 70        | MSE     | 0.024 | 0.092   | 0.093     | 0.095     | 0.024    | 0.086   | 0.095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.084                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             | n = 70        | CW (CL) | 0.568 | 1.102   | 1.108     | 1.368     | 0.562    | 1.075   | 0.7.55       0         0.948       0         0.020       0         0.022       0         0.573       0         0.929       0         0.005       0         0.015       0         0.472       0         0.933       0         0.199       0         0.472       0         0.933       0         0.199       0         0.248       0         0.167       0         0.948       0         0.167       0         0.120       0         0.120       0         0.925       0         0.120       0         0.928       0         0.169       0         0.229       0         1.725       1         0.953       0         0.162       0         0.143       0         1.324       1         0.922       0         0.128       0         0.128       0         0.995       0         1.090       1         0.928 <t< td=""><td>1.074</td></t<>                                                                               | 1.074                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             |               | CP      | 0.932 | 0.952   | 0.949     | 0.959     | 0.941    | 0.941   | 0.928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.946                                                                                                                                                                                                                                                                                                                                                                         |

|                                                                                                                                                                                                                                   |               |         |       | М         | LE        |           | Bayesian |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|-------|-----------|-----------|-----------|----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                   |               |         | α     | $\beta_1$ | $\beta_2$ | $\beta_3$ | α        | $eta_1$ | $\beta_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\beta_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                   |               | ABias   | 0.119 | 0.159     | 0.208     | 0.273     | 0.084    | 0.130   | 0.189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   |               | MSE     | 0.076 | 0.179     | 0.310     | 0.367     | 0.066    | 0.143   | yesian $\beta_2$ $\beta_3$ 0.1890.1960.2800.2861.9001.9240.9520.9450.1570.1240.1650.1570.1570.1240.1650.1541.4441.4350.9270.9540.1040.0970.1050.1041.1881.1890.9500.9500.2400.2090.4410.4102.3662.3400.9540.9500.2000.1320.2570.2191.8041.7510.9250.9550.1390.1170.1650.1561.4811.4690.9500.9560.1410.1380.1490.1491.3881.3870.9550.9500.1020.0940.1520.0821.0431.0440.9230.9530.1050.0620.0630.540.8780.8620.9210.9660.2930.2490.7160.6583.0252.9750.9610.9560.2810.1740.4510.3672.3452.2480.9290.958                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                   | n = 50        | CW (CL) | 0.976 | 1.478     | 2.026     | 2.118     | 0.940    | 1.371   | 1.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c cccc} & \beta_3 \\ \hline \\ 89 & 0.196 \\ \hline \\ 80 & 0.286 \\ \hline \\ 900 & 1.924 \\ \hline \\ 952 & 0.945 \\ \hline \\ 57 & 0.124 \\ \hline \\ 65 & 0.154 \\ \hline \\ 144 & 1.435 \\ \hline \\ 927 & 0.954 \\ \hline \\ 04 & 0.097 \\ \hline \\ 05 & 0.104 \\ \hline \\ 88 & 1.189 \\ \hline \\ 950 & 0.950 \\ \hline \\ 140 & 0.209 \\ \hline \\ 141 & 0.410 \\ \hline \\ 950 & 0.950 \\ \hline \\ 240 & 0.209 \\ \hline \\ 141 & 0.410 \\ \hline \\ 950 & 0.950 \\ \hline \\ 900 & 0.132 \\ \hline \\ 950 & 0.950 \\ \hline \\ 900 & 0.132 \\ \hline \\ 950 & 0.950 \\ \hline \\ 900 & 0.132 \\ \hline \\ 950 & 0.950 \\ \hline \\ 900 & 0.132 \\ \hline \\ 950 & 0.950 \\ \hline \\ 900 & 0.132 \\ \hline \\ 950 & 0.950 \\ \hline \\ 900 & 0.132 \\ \hline \\ 957 & 0.219 \\ \hline \\ 904 & 1.751 \\ \hline \\ 925 & 0.955 \\ \hline \\ 900 & 0.132 \\ \hline \\ 957 & 0.219 \\ \hline \\ 904 & 1.751 \\ \hline \\ 955 & 0.950 \\ \hline \\ 950 & 0.956 \\ \hline \\ 950 & 0.956 \\ \hline \\ 950 & 0.02 \\ \hline \\ 950 & 0.950 \\ \hline \\ 950 & 0.956 \\ \hline \\ 93 & 0.249 \\ \hline \\ 93 & 0.249 \\ \hline \\ 93 & 0.249 \\ \hline \\ 94 & 0.956 \\ \hline \\ 948 & 0.956 \\ \hline \end{array}$                                                                              |
|                                                                                                                                                                                                                                   |               | CP      | 0.923 | 0.964     | 0.979     | 0.964     | 0.923    | 0.945   | 0.952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   |               | ABias   | 0.092 | 0.103     | 0.173     | 0.176     | 0.075    | 0.092   | 0.157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\alpha = 2 \beta = 15 \beta = 2 \beta = 2$                                                                                                                                                                                       | <i>m</i> – 50 | MSE     | 0.044 | 0.086     | 0.181     | 0.067     | 0.041    | 0.080   | 0.165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\alpha = 2, p_1 = 1.5, p_2 = 2, p_3 = 2$                                                                                                                                                                                         | n = 50        | CW (CL) | 0.744 | 1.074     | 1.524     | 1.524     | 0.726    | 1.036   | 1.444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $β_3$<br>0.196<br>0.286<br>1.924<br>0.945<br>0.124<br>0.154<br>1.435<br>0.954<br>0.097<br>0.104<br>1.189<br>0.950<br>0.209<br>0.410<br>2.340<br>0.950<br>0.132<br>0.219<br>1.751<br>0.955<br>0.117<br>0.156<br>1.469<br>0.956<br>0.138<br>0.149<br>1.387<br>0.950<br>0.094<br>0.0950<br>0.094<br>0.0950<br>0.094<br>0.0950<br>0.138<br>0.149<br>1.387<br>0.950<br>0.094<br>0.0950<br>0.094<br>0.0950<br>0.094<br>0.055<br>0.124<br>0.956<br>0.138<br>0.149<br>1.387<br>0.956<br>0.138<br>0.149<br>1.387<br>0.956<br>0.138<br>0.149<br>1.387<br>0.956<br>0.138<br>0.149<br>1.387<br>0.956<br>0.138<br>0.1955<br>0.054<br>0.0956<br>0.138<br>0.1955<br>0.054<br>0.0956<br>0.138<br>0.0950<br>0.094<br>0.055<br>0.054<br>0.055<br>0.054<br>0.0956<br>0.138<br>0.129<br>1.387<br>0.955<br>0.054<br>0.0956<br>0.138<br>0.0950<br>0.094<br>0.055<br>0.054<br>0.0956<br>0.138<br>0.0950<br>0.0956<br>0.138<br>0.0950<br>0.0956<br>0.138<br>0.0950<br>0.0956<br>0.138<br>0.0950<br>0.0956<br>0.138<br>0.0950<br>0.0956<br>0.0956<br>0.138<br>0.0950<br>0.0956<br>0.0956<br>0.0956<br>0.0956<br>0.0956<br>0.0956<br>0.0956<br>0.0956<br>0.0956<br>0.0956<br>0.0956<br>0.0956<br>0.0956<br>0.0956<br>0.0956<br>0.054<br>0.862<br>0.9566<br>0.174<br>0.367<br>2.248<br>0.958<br>0.137<br>0.249<br>1.876<br>0.137<br>0.955<br>0.174<br>0.367<br>2.248<br>0.958<br>0.137<br>0.249<br>1.876<br>0.956<br>0.137<br>0.249<br>1.876<br>0.956 |
|                                                                                                                                                                                                                                   |               | CP      | 0.948 | 0.969     | 0.944     | 0.965     | 0.945    | 0.963   | 0.927                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   |               | ABias   | 0.065 | 0.086     | 0.122     | 0.135     | 0.045    | 0.062   | 0.104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   | n - 70        | MSE     | 0.029 | 0.055     | 0.115     | 0.119     | 0.027    | 0.053   | 0.105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   | n = 70        | CW (CL) | 0.620 | 0.894     | 1.240     | 1.256     | 0.606    | 0.856   | 1.188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   |               | СР      | 0.927 | 0.950     | 0.957     | 0.967     | 0.933    | 0.945   | 0.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   |               | ABias   | 0.284 | 0.245     | 0.298     | 0.133     | 0.106    | 0.264   | 0.240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   |               | MSE     | 0.494 | 0.456     | 0.508     | 0.098     | 0.093    | 0.463   | 0.441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   | n = 50        | CW (CL) | 2.520 | 2.466     | 2.538     | 1.108     | 1.110    | 2.424   | 2.366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{ccccc} 0.950 & 0.950 \\ 0.240 & 0.209 \\ 0.441 & 0.410 \\ 2.366 & 2.340 \\ 0.954 & 0.950 \\ 0.200 & 0.132 \\ 0.257 & 0.219 \\ 1.804 & 1.751 \\ 0.925 & 0.955 \\ 0.139 & 0.117 \\ 0.165 & 0.156 \\ 1.481 & 1.469 \\ 0.950 & 0.956 \\ \hline 0.141 & 0.138 \\ 0.149 & 0.149 \\ 1.388 & 1.387 \\ 0.955 & 0.950 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                   |               | CP      | 0.967 | 0.973     | 0.967     | 0.934     | 0.943    | 0.948   | 0.954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   |               | ABias   | 0.184 | 0.204     | 0.198     | 0.095     | 0.070    | 0.156   | 0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\alpha = 24\beta = 24\beta = 24\beta = 24\beta = 24$                                                                                                                                                                             | n = 50        | MSE     | 0.251 | 0.254     | 0.260     | 0.056     | 0.052    | 0.232   | 0.257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\alpha = 2.4, p_1 = 2.4, p_2 = 2.4, p_3 = 2.4$                                                                                                                                                                                   | n = 50        | CW (CL) | 1.826 | 1.856     | 1.842     | 0.850     | 0.846    | 1.779   | 1.804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   |               | CP      | 0.975 | 0.952     | 0.964     | 0.952     | 0.955    | 0.966   | 0.925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   |               | ABias   | 0.146 | 0.136     | 0.157     | 0.070     | 0.059    | 0.149   | 0.139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   | n - 70        | MSE     | 0.170 | 0.166     | 0.176     | 0.038     | 0.037    | 0.168   | 0.165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   | n = 70        | CW (CL) | 1.514 | 1.508     | 1.524     | 0.712     | 0.713    | 1.491   | 5         0.103         0.136           1         1.481         1.469           8         0.950         0.956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   |               | СР      | 0.944 | 0.952     | 0.962     | 0.939     | 0.938    | 0.928   | 0.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   |               | ABias   | 0.168 | 0.168     | 0.151     | 0.175     | 0.146    | 0.151   | 0.141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   | <i>n</i> = 30 | MSE     | 0.135 | 0.173     | 0.163     | 0.177     | 0.124    | 0.155   | 0.149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   |               | CW (CL) | 1.282 | 1.492     | 1.466     | 1.498     | 1.240    | 1.408   | 1.388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   |               | CP      | 0.931 | 0.961     | 0.979     | 0.963     | 0.919    | 0.943   | 0.149 0.14<br>1.388 1.38<br>0.955 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   |               | ABias   | 0.125 | 0.120     | 0.119     | 0.125     | 0.096    | 0.102   | 0.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\alpha = 25\beta = 15\beta = 15\beta = 15\beta$                                                                                                                                                                                  | n - 50        | MSE     | 0.078 | 0.092     | 0.115     | 0.095     | 0.069    | 0.083   | 0.152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1000.1301.4811.4690.9500.9560.1410.1380.1490.1491.3881.3870.9550.9500.1020.0940.1520.0821.0431.0440.9230.953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\alpha = 2.5, \beta_1 = 1.5, \beta_2 = 1.5, \beta_3 = 1.5$                                                                                                                                                                       | n = 50        | CW (CL) | 0.976 | 1.094     | 1.102     | 1.102     | 0.947    | 1.047   | 1.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\alpha = 2, \beta_1 = 1.5, \beta_2 = 2, \beta_3 = 2$ $\alpha = 2.4, \beta_1 = 2.4, \beta_2 = 2.4, \beta_3 = 2.4$ $\alpha = 2.5, \beta_1 = 1.5, \beta_2 = 1.5, \beta_3 = 1.5$ $\alpha = 3, \beta_1 = 3, \beta_2 = 3, \beta_3 = 3$ |               | CP      | 0.946 | 0.969     | 0.952     | 0.966     | 0.949    | 0.956   | 0.923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   |               | ABias   | 0.092 | 0.100     | 0.094     | 0.094     | 0.086    | 0.092   | 0.105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   | n = 70        | MSE     | 0.051 | 0.064     | 0.062     | 0.062     | 0.050    | 0.060   | 0.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   | n = 70        | CW (CL) | 0.812 | 0.910     | 0.902     | 0.902     | 0.799    | 0.876   | 0.878                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   |               | СР      | 0.913 | 0.942     | 0.950     | 0.971     | 0.927    | 0.949   | 0.921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   |               | ABias   | 0.157 | 0.377     | 0.318     | 0.374     | 0.117    | 0.361   | 0.293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   | m = 30        | MSE     | 0.141 | 0.837     | 0.795     | 0.833     | 0.131    | 0.796   | 0.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   | n = 50        | CW (CL) | 1.336 | 3.268     | 3.180     | 3.264     | 1.328    | 3.150   | 3.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   |               | CP      | 0.936 | 0.966     | 0.974     | 0.969     | 0.944    | 0.932   | 0.961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   |               | ABias   | 0.121 | 0.242     | 0.283     | 0.258     | 0.096    | 0.214   | 0.281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\alpha = 3 \beta = 3 \beta = 3 \beta = 3 \beta = 3$                                                                                                                                                                              | n - 50        | MSE     | 0.083 | 0.420     | 0.456     | 0.434     | 0.079    | 0.397   | $\begin{array}{cccccc} 0.927 & 0.954 \\ 0.104 & 0.097 \\ 0.105 & 0.104 \\ 1.188 & 1.189 \\ 0.950 & 0.950 \\ 0.240 & 0.209 \\ 0.441 & 0.410 \\ 2.366 & 2.340 \\ 0.954 & 0.950 \\ 0.200 & 0.132 \\ 0.257 & 0.219 \\ 1.804 & 1.751 \\ 0.925 & 0.955 \\ 0.139 & 0.117 \\ 0.165 & 0.156 \\ 1.481 & 1.469 \\ 0.950 & 0.956 \\ 0.141 & 0.138 \\ 0.149 & 0.149 \\ 1.388 & 1.387 \\ 0.955 & 0.950 \\ 0.102 & 0.094 \\ 0.152 & 0.082 \\ 1.043 & 1.044 \\ 0.923 & 0.953 \\ 0.105 & 0.062 \\ 0.063 & 0.054 \\ 0.878 & 0.862 \\ 0.921 & 0.966 \\ 0.293 & 0.249 \\ 0.716 & 0.658 \\ 3.025 & 2.975 \\ 0.961 & 0.956 \\ 0.281 & 0.174 \\ 0.451 & 0.367 \\ 2.345 & 2.248 \\ 0.929 & 0.958 \\ 0.158 & 0.137 \\ 0.264 & 0.249 \\ 1.892 & 1.876 \\ 0.948 & 0.956 \\ \end{array}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\alpha = 3, p_1 = 3, p_2 = 3, p_3 = 3$                                                                                                                                                                                           | n = 50        | CW (CL) | 1.022 | 2.356     | 2.404     | 2.374     | 1.024    | 2.306   | 2.345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   |               | CP      | 0.941 | 0.975     | 0.951     | 0.963     | 0.939    | 0.962   | 0.929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   |               | ABias   | 0.074 | 0.165     | 0.159     | 0.188     | 0.058    | 0.150   | 0.158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   | n - 70        | MSE     | 0.052 | 0.269     | 0.266     | 0.281     | 0.051    | 0.259   | 0.264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9         0.196           0         0.286           0         1.924           2         0.945           7         0.124           5         0.154           4         1.435           7         0.954           4         0.097           5         0.104           8         1.189           0         0.950           0         0.209           1         0.410           6         2.340           4         0.950           0         0.132           7         0.219           4         1.751           5         0.955           9         0.117           5         0.956           1         0.138           9         0.149           8         1.387           5         0.950           2         0.082           3         0.044           3         0.953           5         0.062           3         0.0249           6         0.658           5         2.975           6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                   | n = 70        | CW (CL) | 0.850 | 1.928     | 1.924     | 1.944     | 0.855    | 1.893   | 1.892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                   |               | CP      | 0.937 | 0.951     | 0.961     | 0.963     | 0.943    | 0.938   | 0.948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

TABLE 9: Continued.

|                                                                                                                                                 |               |         | MLE   |                |                | Bayesian       |       |           |           |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|-------|----------------|----------------|----------------|-------|-----------|-----------|-----------|
|                                                                                                                                                 |               |         | α     | $eta_1$        | $\beta_2$      | $\beta_3$      | α     | $\beta_1$ | $\beta_2$ | $\beta_3$ |
|                                                                                                                                                 |               | ABias   | 0.154 | 0.339          | 0.283          | 0.455          | 0.103 | 0.284     | 0.243     | 0.257     |
|                                                                                                                                                 | n - 30        | MSE     | 0.139 | 0.700          | 0.633          | 1.221          | 0.126 | 0.621     | 0.582     | 0.896     |
|                                                                                                                                                 | n = 50        | CW (CL) | 1.330 | 2.998          | 2.916          | 3.948          | 1.314 | 2.834     | 2.755     | 3.513     |
|                                                                                                                                                 |               | CP      | 0.937 | 0.964          | 0.977          | 0.970          | 0.864 | 0.938     | 0.847     | 0.914     |
|                                                                                                                                                 |               | ABias   | 0.121 | 0.218          | 0.252          | 0.324          | 0.087 | 0.169     | 0.233     | 0.210     |
| $\alpha = 3, \beta_1 = 2, 8, \beta_2 = 2, 8, \beta_2 = 3, 5$                                                                                    | n = 50        | MSE     | 0.083 | 0.354          | 0.381          | 0.642          | 0.076 | 0.320     | 0.362     | 0.529     |
| <i>ii c</i> , <i>p</i> <sub>1</sub> <i>2</i> , <i>c</i> , <i>p</i> <sub>2</sub> <i>2</i> , <i>c</i> , <i>p</i> <sub>3</sub> <i>c</i> , <i>c</i> |               | CW (CL) | 1.022 | 2.168          | 2.208          | 2.872          | 1.018 | 2.098     | 2.136     | 2.697     |
|                                                                                                                                                 |               | CP      | 0.947 | 0.973          | 0.955          | 0.965          | 0.805 | 0.974     | 0.797     | 0.857     |
|                                                                                                                                                 |               | ABias   | 0.081 | 0.156          | 0.148          | 0.238          | 0.053 | 0.121     | 0.133     | 0.137     |
|                                                                                                                                                 | n = 70        | MSE     | 0.054 | 0.230          | 0.227          | 0.414          | 0.050 | 0.211     | 0.217     | 0.344     |
|                                                                                                                                                 |               | CW (CL) | 0.850 | 1./80          | 1.//4          | 2.342          | 0.849 | 1./26     | 1./33     | 2.220     |
|                                                                                                                                                 |               | CP      | 0.955 | 0.951          | 0.965          | 0.965          | 0.800 | 0.947     | 0.706     | 0.839     |
|                                                                                                                                                 |               | ABias   | 0.154 | 0.374          | 0.477          | 0.370          | 0.109 | 0.327     | 0.455     | 0.230     |
|                                                                                                                                                 | <i>n</i> = 30 | MSE     | 0.136 | 0.827          | 1.558          | 0.822          | 0.120 | 0./26     | 1.441     | 0.61/     |
|                                                                                                                                                 |               | CW (CL) | 1.312 | 5.250<br>0.062 | 4.520          | 3.244<br>0.071 | 1.284 | 5.048     | 4.307     | 2.914     |
|                                                                                                                                                 |               | APian   | 0.957 | 0.905          | 0.975          | 0.971          | 0.941 | 0.951     | 0.970     | 0.905     |
|                                                                                                                                                 |               | MSE     | 0.110 | 0.232          | 0.400          | 0.230          | 0.073 | 0.200     | 0.388     | 0.171     |
| $\alpha = 3, \beta_1 = 3, \beta_2 = 4, \beta_3 = 3$                                                                                             | <i>n</i> = 50 | CW(CI)  | 1 008 | 2 336          | 3 394          | 2 366          | 0.075 | 2 254     | 3 254     | 2 213     |
|                                                                                                                                                 |               | CP CP   | 0.942 | 0.973          | 0.960          | 0.965          | 0.942 | 0.953     | 0.965     | 0.952     |
|                                                                                                                                                 |               | ABias   | 0.074 | 0.163          | 0.234          | 0.182          | 0.058 | 0.156     | 0.228     | 0.123     |
|                                                                                                                                                 |               | MSE     | 0.051 | 0.266          | 0.530          | 0.276          | 0.049 | 0.257     | 0.513     | 0.241     |
|                                                                                                                                                 | n = 70        | CW (CL) | 0.840 | 1.916          | 2.702          | 1.932          | 0.834 | 1.869     | 2.636     | 1.847     |
|                                                                                                                                                 |               | CP      | 0.943 | 0.956          | 0.960          | 0.960          | 0.955 | 0.965     | 0.967     | 0.958     |
|                                                                                                                                                 |               | ABias   | 0.171 | 0.450          | 0.378          | 0.536          | 0.100 | 0.402     | 0.389     | 0.238     |
|                                                                                                                                                 | 20            | MSE     | 0.176 | 1.190          | 1.074          | 1.666          | 0.157 | 1.095     | 1.071     | 1.149     |
|                                                                                                                                                 | n = 30        | CW (CL) | 1.502 | 3.894          | 3.782          | 4.604          | 1.486 | 3.702     | 3.660     | 4.027     |
|                                                                                                                                                 |               | СР      | 0.939 | 0.963          | 0.975          | 0.969          | 0.949 | 0.952     | 0.931     | 0.937     |
|                                                                                                                                                 |               | ABias   | 0.132 | 0.281          | 0.330          | 0.371          | 0.080 | 0.253     | 0.268     | 0.166     |
| $\alpha = 35 \beta = 35 \beta = 35 \beta = 4$                                                                                                   | m = 50        | MSE     | 0.104 | 0.587          | 0.639          | 0.859          | 0.093 | 0.562     | 0.573     | 0.653     |
| $a = 5.5, p_1 = 5.5, p_2 = 5.5, p_3 = 4$                                                                                                        | n = 50        | CW (CL) | 1.156 | 2.794          | 2.854          | 3.328          | 1.146 | 2.739     | 2.715     | 3.059     |
|                                                                                                                                                 |               | CP      | 0.944 | 0.972          | 0.959          | 0.966          | 0.936 | 0.961     | 0.900     | 0.903     |
|                                                                                                                                                 |               | ABias   | 0.085 | 0.197          | 0.185          | 0.261          | 0.055 | 0.145     | 0.194     | 0.159     |
|                                                                                                                                                 | n = 70        | MSE     | 0.068 | 0.381          | 0.372          | 0.545          | 0.065 | 0.351     | 0.378     | 0.465     |
|                                                                                                                                                 |               | CW (CL) | 0.968 | 2.292          | 2.280          | 2.708          | 0.967 | 2.230     | 2.258     | 2.583     |
|                                                                                                                                                 |               | СР      | 0.940 | 0.952          | 0.963          | 0.970          | 0.950 | 0.959     | 0.871     | 0.864     |
|                                                                                                                                                 |               | ABias   | 0.172 | 0.450          | 0.378          | 0.445          | 0.107 | 0.369     | 0.323     | 0.250     |
|                                                                                                                                                 | <i>n</i> = 30 | MSE     | 0.179 | 1.194          | 1.079          | 1.188          | 0.162 | 1.056     | 0.992     | 0.885     |
|                                                                                                                                                 |               | CW (CL) | 1.514 | 3.902          | 3./92<br>0.075 | 3.900          | 1.503 | 3.689     | 3.593     | 3.488     |
|                                                                                                                                                 |               | APian   | 0.941 | 0.900          | 0.9/5          | 0.971          | 0.955 | 0.945     | 0.959     | 0.955     |
|                                                                                                                                                 |               | MSE     | 0.155 | 0.204          | 0.551          | 0.508          | 0.100 | 0.203     | 0.508     | 0.199     |
| $\alpha = 3.5, \beta_1 = 3.5, \beta_2 = 3.5, \beta_3 = 3.5$                                                                                     | <i>n</i> = 50 | CW (CL) | 1 162 | 2 383          | 2.862          | 2.832          | 1 160 | 2 755     | 2 755     | 2.665     |
|                                                                                                                                                 |               | CP      | 0.946 | 0.971          | 0.959          | 0.965          | 0.946 | 0.964     | 0.929     | 0.949     |
|                                                                                                                                                 |               | ABias   | 0.087 | 0.204          | 0.186          | 0.224          | 0.059 | 0.163     | 0.182     | 0.144     |
|                                                                                                                                                 | =0            | MSE     | 0.069 | 0.387          | 0.375          | 0.398          | 0.066 | 0.362     | 0.374     | 0.346     |
|                                                                                                                                                 | n = 70        | CW (CL) | 0.968 | 2.302          | 2.286          | 2.312          | 0.978 | 2.252     | 2.259     | 2.220     |
|                                                                                                                                                 |               | CP      | 0.937 | 0.954          | 0.963          | 0.963          | 0.941 | 0.951     | 0.956     | 0.956     |
|                                                                                                                                                 |               | ABias   | 0.234 | 0.152          | 0.199          | 0.330          | 0.177 | 0.143     | 0.185     | 0.236     |
|                                                                                                                                                 |               | MSE     | 0.351 | 0.162          | 0.302          | 0.590          | 0.272 | 0.155     | 0.284     | 0.474     |
|                                                                                                                                                 | n = 30        | CW (CL) | 1.928 | 1.462          | 2.006          | 2.722          | 1.906 | 1.415     | 1.912     | 2.486     |
|                                                                                                                                                 |               | CP      | 0.932 | 0.963          | 0.974          | 0.971          | 0.950 | 0.941     | 0.945     | 0.954     |
|                                                                                                                                                 |               | ABias   | 0.178 | 0.100          | 0.167          | 0.231          | 0.141 | 0.092     | 0.155     | 0.167     |
| $\alpha = 4, \beta_1 = 1.5, \beta_2 = 2, \beta_3 = 2.5$                                                                                         | n = 50        | MSE     | 0.173 | 0.085          | 0.177          | 0.306          | 0.162 | 0.083     | 0.169     | 0.260     |
| $p_1 = 1.5, p_2 = 2, p_1 = 2.5$                                                                                                                 | n - 50        | CW (CL) | 1.472 | 1.074          | 1.514          | 1.972          | 1.468 | 1.059     | 1.468     | 1.871     |
|                                                                                                                                                 |               | СР      | 0.944 | 0.972          | 0.950          | 0.963          | 0.960 | 0.958     | 0.953     | 0.929     |
|                                                                                                                                                 |               | ABias   | 0.136 | 0.082          | 0.120          | 0.193          | 0.121 | 0.073     | 0.137     | 0.126     |
|                                                                                                                                                 | n = 70        | MSE     | 0.117 | 0.059          | 0.113          | 0.209          | 0.116 | 0.057     | 0.120     | 0.177     |
|                                                                                                                                                 |               | CW (CL) | 1.234 | 0.894          | 1.234          | 1.626          | 1.241 | 0.883     | 1.236     | 1.559     |
|                                                                                                                                                 |               | CP      | 0.929 | 0.950          | 0.962          | 0.971          | 0.943 | 0.939     | 0.946     | 0.935     |



FIGURE 4: MSE of (a)  $\alpha$  = 3.5, (b)  $\beta_1$  = 3.5, (c)  $\beta_2$  = 3.5, and (d)  $\beta_3$  = 3.5.

using R package with 1000 replications and three different sample sizes n = 30, 50, and 70. Different initial values of the parameters are arbitrarily chosen, varying between small and large values to cover different cases of the distribution. The parameter  $\beta_4$  is assumed known for simplicity. The following twelve populations are considered.

(i) 
$$\alpha = 0.9, \beta_1 = 0.9, \beta_2 = 0.9, \beta_3 = 0.9.$$
  
(ii)  $\alpha = 1.8, \beta_1 = 0.8, \beta_2 = 1.8, \beta_3 = 0.8.$   
(iii)  $\alpha = 1.8, \beta_1 = 1.8, \beta_2 = 1.8, \beta_3 = 1.8.$   
(iv)  $\alpha = 2, \beta_1 = 1.5, \beta_2 = 2, \beta_3 = 2.$   
(v)  $\alpha = 2.4, \beta_1 = 2.4, \beta_2 = 2.4, \beta_3 = 2.4.$   
(vi)  $\alpha = 2.5, \beta_1 = 1.5, \beta_2 = 1.5, \beta_3 = 1.5.$   
(vii)  $\alpha = 3, \beta_1 = 3, \beta_2 = 3, \beta_3 = 3.$   
(viii)  $\alpha = 3, \beta_1 = 2.8, \beta_2 = 2.8, \beta_3 = 3.5.$   
(ix)  $\alpha = 3, \beta_1 = 3, \beta_2 = 4, \beta_3 = 3.$   
(x)  $\alpha = 3.5, \beta_1 = 3.5, \beta_2 = 3.5, \beta_3 = 4.$   
(xi)  $\alpha = 4, \beta_1 = 1.5, \beta_2 = 2, \beta_3 = 2.5.$ 

To check the behavior of the estimates, ABias, MSE, CW, and CP are computed in Table 9. The algorithm is explained in detail in Appendix B.2.

(2) Bayesian Approach. Similar to the bivariate case, MCMC simulation is used to obtain the posterior mean numerically. Absolute bias (ABias), mean square error (MSE), confidence length (CL), and coverage probability (CP) are obtained and presented in Table 9. The algorithm is explained in detail in Appendix B.2.

From Table 9, it can be seen that for different combinations of the parameters and for different sample sizes, ABias and MSE are relatively small. This indicates that both Bayesian and ML approaches work efficiently in estimating the parameters of MIK.

Comparing ML and Bayesian estimates, it is found that Bayesian estimates have less than or equal mean square error (MSE) than ML ones as seen from Figure 4. Also, for the majority of cases, Bayesian estimates have smaller ABias than ML ones.

Also, it can be seen that as the sample size (n) increases, the ABias, MSE, CW, and CL decrease for both ML and



FIGURE 5: (a) MSE and (b) ABias for  $\alpha$ .

|  | TABLE 10: ( | $(W^*)$ : | and ( | $(A^*)$ | for | IK, | IW, | and | E. |
|--|-------------|-----------|-------|---------|-----|-----|-----|-----|----|
|--|-------------|-----------|-------|---------|-----|-----|-----|-----|----|

| N  | Iodel                                         | $X_1$                                                    | $X_2$                                                    | $X_3$                                                    | $\max(X_1, X_2)$                                         |
|----|-----------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| IK | $\begin{array}{c} A^* \\ W^* \end{array}$     | 0.31 (0.93)<br>0.04 (0.94)                               | 0.43 (0.82)<br>0.07 (0.76)                               | 0.49 (0.76)<br>0.08 (0.68)                               | $0.50 (0.75) \\ 0.08 (0.72)$                             |
| IW | $\begin{array}{c} A^* \\ W^* \end{array}$     | 13.60 $(7 \times 10^{-6})$<br>2.79 $(2 \times 10^{-7})$  | 14.48 $(7 \times 10^{-6})$<br>2.99 $(5 \times 10^{-8})$  | 15.80 $(7 \times 10^{-6})$<br>3.30 $(9 \times 10^{-9})$  | 14.20 $(7 \times 10^{-6})$<br>2.91 $(7 \times 10^{-8})$  |
| Е  | $\begin{array}{c} A^{*} \\ W^{*} \end{array}$ | 23.95 $(7 \times 10^{-6})$<br>5.06 $(2 \times 10^{-16})$ | 24.18 $(7 \times 10^{-6})$<br>5.12 $(2 \times 10^{-16})$ | 24.75 $(7 \times 10^{-6})$<br>5.26 $(2 \times 10^{-16})$ | 24.29 $(7 \times 10^{-6})$<br>5.14 $(2 \times 10^{-16})$ |

TABLE 11: The estimates based on ML and Bayesian approaches.

| Approach |                           | α      | $\beta_1$ | $\beta_2$ | $\beta_3$ |
|----------|---------------------------|--------|-----------|-----------|-----------|
| MI       | MLE                       | 46.949 | 264.199   | 245.852   | 245.519   |
| ML       | Confidence interval width | 8.126  | 269.684   | 256.424   | 263.866   |
| Bayesian | Posterior mean            | 48.697 | 270.528   | 226.877   | 257.231   |
|          | Credible interval length  | 4.270  | 69.215    | 61.110    | 64.305    |

Bayesian as seen from Figure 5. Moreover, it can be seen that for most cases, the CP is around 0.95.

6.2.2. A Real Dataset. Here, we analyze a real dataset to show the applicability of MIK. The dataset has been obtained from Bland and Altman [28]. It represents a set of systolic blood pressure measurement for 85 patients made by a semiautomatic blood pressure monitor; three readings were made for each patient. The variables are as follows:

 $X_1$ : first systolic blood pressure measurement.

 $X_2$ : second systolic blood pressure measurement.

 $X_3$ : third systolic blood pressure measurement.

All data points have been divided by 1000. This is not going to make any difference in the statistical inference. We applied GOF tests in order to check if the fit based on IK, IW, and E distributions is reasonable in this case. We computed the modified Cramér–von Mises statistic ( $W^*$ ) and Anderson–Darling statistic ( $A^*$ ). The values of these statistics and the corresponding p values (in brackets) for  $X_1$ ,  $X_2$ ,  $X_3$ , and max( $X_1$ ,  $X_2$ ,  $X_3$ ) are illustrated in Table 10.

Based on the values of these statistics and the corresponding p values, only IK distribution can be used for modeling the marginals and the maximum. Hence, only

MIK can be used for modeling these data. In Table 11, the ML estimates and the posterior mean using gamma priors are obtained for the parameters of MIK ( $\beta_4$  is considered known for simplicity). Also, credible interval length and confidence width are illustrated.

#### 7. Conclusion

In this paper, bivariate inverted Kumaraswamy (BIK) distribution is derived as a new member of bivariate Marshall–Olkin family. Its properties are also studied. Estimation is performed using both maximum likelihood (ML) and Bayesian approaches. To see the applicability of BIK distribution, three real datasets in different fields like sports, engineering, and biology have been analyzed. It is observed that the BIK model provides the best fit. Due to the wide applicability and great performance of the BIK model, a generalization to multivariate inverted Kumaraswamy (MIK) distribution is performed. To the best of our knowledge, estimation of multivariate Marshall–Olkin family was not studied before. Here, estimation of MIK is performed using both ML and Bayesian approaches. A very convenient algorithm is proposed for both approaches. This algorithm could be applied for any multivariate Marshall–Olkin distributions. Finally, a real dataset has been analyzed to illustrate the applicability of MIK distribution, and it is observed that the MIK model provides good fit, while multivariate inverse Weibull and multivariate exponential distributions failed to fit this dataset.

#### Appendix

# A

#### A.1. Proofs of Propositions 1 to 5

A.1.1. Proposition 1. The first two cases  $X_1 < X_2$  and  $X_1 > X_2$  are easily obtained by taking  $\delta^2 F_{X_1,X_2}(x_1,x_2)/\delta x_1 \delta x_2$ . Now, to get  $f_3(x)$ , we use the fact that

$$\int_{0}^{\infty} \int_{0}^{x_{2}} f_{1}(x_{1}, x_{2}) dx_{1} dx_{2} + \int_{0}^{\infty} \int_{0}^{x_{1}} f_{2}(x_{1}, x_{2}) dx_{2} dx_{1} + \int_{0}^{\infty} f_{3}(x) dx = 1.$$
(A.1)

But  $\int_0^\infty \int_0^{x_2} f_1(x_1, x_2) dx_1 dx_2 = \beta_2 / \beta_1 + \beta_2 + \beta_3$ , and  $\int_0^\infty \int_0^{x_1} f_2(x_1, x_2) dx_2 dx_1 = \beta_1 / \beta_1 + \beta_2 + \beta_3$ .

Hence, we have  $\int_0^\infty f_3(x) dx = \beta_3/\beta_1 + \beta_2 + \beta_3$ . Therefore,

 $f_{3}(x) = \beta_{3}/\beta_{1} + \beta_{2} + \beta_{3} f_{IK}(x, \beta_{1} + \beta_{2} + \beta_{3}, \alpha).$ 

A.1.2. Proposition 2. Let A be the following event:

$$A = \{ U_1 < U_3 \} \cap \{ U_2 < U_3 \}.$$
 (A.2)

Then,  $P(A) = \beta_3/\beta_1 + \beta_2 + \beta_3$  and  $p(A) = \beta_1 + \beta_2/\beta_1 + \beta_2 + \beta_3$ .

Therefore,  $F_{X_1,X_2}(x_1,x_2) = P(X_1 \le x_1, X_2 \le x_2 | A)P(A) + P(X_1 \le x_1, X_2 \le x_2 | A)P(A).$ 

For  $z = \min(x_1, x_2)$ ,  $P(X_1 \le x_1, X_2 \le x_2 | A) = [1 - (1 + z)^{-\alpha}]^{\beta_1 + \beta_2 + \beta_3}$  and  $P(X_1 \le x_1, X_2 \le x_2 | A)$  can be obtained by subtraction.

It can be seen that  $[1 - (1 + z)^{-\alpha}]^{\beta_1 + \beta_2 + \beta_3}$  is the singular part as its second partial derivative is zero when  $x_1 \neq x_2$ . Thus,  $P(X_1 \le x_1, X_2 \le x_2 | A) P(A)$  is the absolutely continuous part as its mixed partial derivative is a density function.

#### A.1.3. Proposition 3

(a) 
$$F_{X_1, X_2}(x_1, x_2) = F_{\text{IK}}(x_1, \beta_1, \alpha) F_{\text{IK}}(x_2, \beta_2, \alpha) F_{\text{IK}}$$
 (z.  $\beta_3, \alpha$ )

where  $z = \min(x_1, x_2)$ .

$$\lim_{x_2 \longrightarrow 0} F_{X_1, X_2}(x_1, x_2) = (1 - (1 + x_1)^{-\alpha})^{\beta_1 + \beta_3},$$
  
$$\lim_{x_1 \longrightarrow 0} F_{X_1, X_2}(x_1, x_2) = (1 - (1 + x_2)^{-\alpha})^{\beta_2 + \beta_3}.$$
 (A.3)

- (b)  $P(\max{X_1, X_2} \le x) = P(X_1 \le x, X_2 \le x) = P(U_1 \le x, U_2 \le x, U_3 \le x) = (1 (1 + x)^{-\alpha})^{\beta_1 + \beta_2 + \beta_3}.$
- (c) Conditional distribution of  $X_1$  given  $X_2 \le x_2$  is given by

$$F_{X_{1}|X_{2} \leq x_{2}}(x_{1}) = \begin{cases} \frac{F_{\mathrm{IK}}(x_{1},\beta_{1}+\beta_{3},\alpha)F_{\mathrm{IK}}(x_{2},\beta_{2},\alpha)}{F_{\mathrm{IK}}(x_{2},\beta_{2}+\beta_{3},\alpha)} & \text{if } x_{1} \leq x_{2} \\ & & , \\ F_{\mathrm{IK}}(x_{1},\beta_{1},\alpha) & \text{if } x_{2} < x_{1} \end{cases}$$

$$(A.4)$$

that is,

$$F_{X_1|X_2 \le x_2}(x_1) = \begin{cases} (1 - (1 + x_1)^{-\alpha})^{\beta_1 + \beta_3} (1 - (1 + x_2)^{-\alpha})^{-\beta_3} & \text{if } x_1 \le x_2 \\ (1 - (1 + x_1)^{-\alpha})^{\beta_1} & \text{if } x_2 < x_1 \\ (A.5) \end{cases}$$

A.1.4. Proposition 4. Starting with

$$M(t_1, t_2) = E(e^{t_1 x_1 + t_2 x_2}) = \iint_{\text{all } x_1, x_2} f(x_1, x_2) e^{t_1 x_1 + t_2 x_2} dx_1 dx_2,$$
(A.6)

substituting for  $f(x_1, x_2)$  by the corresponding formula, and then using change of variable technique and the following facts, the formula is derived.

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}, (p+q)^{n} = \sum_{i=0}^{n} {n \choose i} p^{i} q^{n-i}, B_{x}(\alpha,\beta) = \frac{x^{\alpha}}{\alpha} F_{1}(\alpha,1-\beta;\alpha+1;x) \text{ and}$$

$$\cdot \int_{0}^{1} u^{\alpha-1} (1-u)^{\beta-1} F_{1}(c,d;h;u) = B(\alpha,\beta)_{3} F_{1}(\alpha,c,d;h,\alpha+\beta;1).$$
(A.7)

A.1.5. Proposition 5. Starting with

$$E(x_1^s x_2^r) = \iint_{\text{all } x_1, x_2} f(x_1, x_2) x_1^s x_2^r dx_1 dx_2, \quad r, s = 1, 2, 3, \dots,$$
(A.8)

substituting for  $f(x_1, x_2)$  by corresponding formula, and then applying change of variable technique and the following facts, the formula is derived.

$$(p+q)^{n} = \sum_{i=0}^{n} \binom{n}{i} p^{i} q^{n-i}, B_{x}(\alpha,\beta) = \frac{x^{\alpha}}{\alpha_{2}} F_{2}(\alpha,1-\beta;\alpha+1;x) \int_{0}^{1} u^{\alpha-1} (1-u)^{\beta-1} {}_{2}F_{1}(c,d;h;u) du = B(\alpha,\beta)_{3}F_{2}(\alpha,c,d;h,\alpha+\beta;1).$$
(A.9)

#### A.2. Maximum Likelihood Estimators for BIK

$$\begin{aligned} \frac{\partial \log L}{\partial \beta_1} &= \frac{n_1}{\beta_1 + \beta_3} + \frac{n_2}{\beta_1} + \sum_{i \in I_1 \cup I_2} \log(1 - (1 + x_{1i})^{-\alpha}) + \sum_{i \in I_3} \log(1 - (1 + x_i)^{-\alpha}) = 0, \\ \frac{\partial \log L}{\partial \beta_2} &= \frac{n_1}{\beta_2} + \frac{n_2}{\beta_2 + \beta_3} + \sum_{i \in I_1 \cup I_2} \log(1 - (1 + x_{2i})^{-\alpha}) + \sum_{i \in I_3} \log(1 - (1 + x_i)^{-\alpha}) = 0, \\ \frac{\partial \log L}{\partial \beta_3} &= \frac{n_1}{\beta_1 + \beta_3} + \frac{n_2}{\beta_2 + \beta_3} + \frac{n_1}{\beta_3} + \sum_{i \in I_1} \log(1 - (1 + x_{1i})^{-\alpha}) + \sum_{i \in I_2} \log(1 - (1 + x_{2i})^{-\alpha}) + \sum_{i \in I_3} \log(1 - (1 + x_{2i})^{-\alpha}) = 0, \\ \frac{\partial \log L}{\partial \alpha} &= \frac{2n_1 + 2n_2 + n_3}{\alpha} - \left[\sum_{i \in I_1 \cup I_2} \log(1 + x_{1i}) + \sum_{i \in I_1 \cup I_2} \log(1 + x_{2i}) + \sum_{i \in I_3} \log(1 + x_{i})\right] \\ &+ (\beta_1 + \beta_3 - 1) \sum_{i \in I_1} \frac{(1 + x_{1i})^{-\alpha} \log(1 + x_{1i})}{1 - (1 + x_{1i})^{-\alpha}} + (\beta_2 - 1) \sum_{i \in I_1} \frac{(1 + x_{2i})^{-\alpha} \log(1 + x_{2i})}{1 - (1 + x_{2i})^{-\alpha}} \\ &+ (\beta_1 - 1) \sum_{i \in I_2} \frac{(1 + x_{1i})^{-\alpha} \log(1 + x_{1i})}{1 - (1 + x_{1i})^{-\alpha}} = 0. \end{aligned}$$
(A.10)

The MLEs  $\underline{\hat{\theta}} = (\hat{\alpha}, \hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3)$  of  $\underline{\theta} = (\alpha, \beta_1, \beta_2, \beta_3)$  are obtained by solving the above nonlinear system of equations. The solutions are numerically obtained in Section 6.

The asymptotic variance covariance matrix is given by

$$I(\alpha, \beta_1, \beta_2, \beta_3)|_{\widehat{\alpha}, \widehat{\beta}_1, \widehat{\beta}_2, \widehat{\beta}_3} = \begin{bmatrix} I_{11} & 0 & I_{13} & I_{14} \\ 0 & I_{22} & I_{23} & I_{24} \\ I_{13} & I_{23} & I_{33} & I_{34} \\ I_{14} & I_{24} & I_{34} & I_{44} \end{bmatrix}, \quad (A.11)$$

where

$$\begin{split} I_{11} &= -\frac{\partial^2 \log L}{\partial \beta_1^2} \bigg|_{\vec{\beta}_1,\vec{\beta}_2} = \frac{n_1}{(\vec{\beta}_1 + \vec{\beta}_2)^2} + \frac{n_2}{\vec{\beta}_1^2}, \\ I_{13} &= -\frac{\partial^2 \log L}{\partial \beta_1 \partial \beta_3} \bigg|_{\vec{\beta}_1,\vec{\beta}_3} = \frac{n_1}{(\vec{\beta}_1 + \vec{\beta}_3)^2}, \\ I_{14} &= -\frac{\partial^2 \log L}{\partial \beta_1 \partial \alpha} \bigg|_{\vec{\alpha}} = -\sum_{i \in I_1} \frac{(1 + x_{1i})^{-\hat{\alpha}} \log(1 + x_{1i})}{1 - (1 + x_{1i})^{-\hat{\alpha}}} - \sum_{i \in I_2} \frac{(1 + x_{1i})^{-\hat{\alpha}} \log(1 + x_{1i})}{1 - (1 + x_{1i})^{-\hat{\alpha}}}, \\ I_{22} &= -\frac{\partial^2 \log L}{\partial \beta_2^2} \bigg|_{\vec{\beta}_2,\vec{\beta}_3} = \frac{n_1}{\vec{\beta}_2^2} + \frac{n_2}{(\vec{\beta}_2 + \vec{\beta}_3)^2}, \\ I_{23} &= -\frac{\partial^2 \log L}{\partial \beta_2 \partial \beta_3} \bigg|_{\vec{\beta}_2,\vec{\beta}_3} = \frac{n_2}{(\vec{\beta}_2 + \vec{\beta}_3)^2}, \\ I_{24} &= -\frac{\partial^2 \log L}{\partial \beta_2 \partial \alpha} \bigg|_{\vec{\alpha}} = -\sum_{i \in I_1} \frac{(1 + x_{2i})^{-\hat{\alpha}} \log(1 + x_{2i})}{1 - (1 + x_{2i})^{-\hat{\alpha}}} - \sum_{i \in I_2} \frac{(1 + x_{2i})^{-\hat{\alpha}} \log(1 + x_{2i})}{1 - (1 + x_{2i})^{-\hat{\alpha}}} - \sum_{i \in I_3} \frac{(1 + x_i)^{-\hat{\alpha}} \log(1 + x_i)}{1 - (1 + x_i)^{-\hat{\alpha}}}, \\ I_{33} &= -\frac{\partial^2 \log L}{\partial \beta_2^2} \bigg|_{\vec{\beta}_1,\vec{\beta}_2,\vec{\beta}_3} = \frac{n_3}{\vec{\beta}_3^2} + \frac{n_1}{(\vec{\beta}_1 + \vec{\beta}_3)^2} + \frac{n_2}{(\vec{\beta}_2 + \vec{\beta}_3)^2}, \\ I_{34} &= -\frac{\partial^2 \log L}{\partial \beta_3 \partial \alpha} \bigg|_{\vec{\alpha}} = -\sum_{i \in I_1} \frac{(1 + x_{1i})^{-\hat{\alpha}} \log(1 + x_{1i})}{1 - (1 + x_{1i})^{-\hat{\alpha}}} - \sum_{i \in I_2} \frac{(1 + x_{2i})^{-\hat{\alpha}} \log(1 + x_{2i})}{1 - (1 + x_{2i})^{-\hat{\alpha}}} - \sum_{i \in I_3} \frac{(1 + x_i)^{-\hat{\alpha}} \log(1 + x_i)}{1 - (1 + x_i)^{-\hat{\alpha}}}, \\ I_{34} &= -\frac{\partial^2 \log L}{\partial \beta_3 \partial \alpha} \bigg|_{\vec{\alpha}} = -\sum_{i \in I_1} \frac{(1 + x_{1i})^{-\hat{\alpha}} \log(1 + x_{1i})}{1 - (1 + x_{1i})^{-\hat{\alpha}}} - \sum_{i \in I_2} \frac{(1 + x_{2i})^{-\hat{\alpha}} \log(1 + x_{2i})}{1 - (1 + x_{2i})^{-\hat{\alpha}}}} - \sum_{i \in I_3} \frac{(1 + x_i)^{-\hat{\alpha}} \log(1 + x_i)}{1 - (1 + x_i)^{-\hat{\alpha}}}}, \\ I_{44} &= -\frac{\partial^2 \log L}{\partial \beta_3 \partial \alpha} \bigg|_{\vec{\alpha}} = \sum_{i = 1} \frac{\beta_i}{H_i}, \end{aligned}$$

where

$$\begin{split} H_{1} &= \frac{2n_{1} + 2n_{2} + n_{3}}{\widehat{\alpha}^{2}}, \\ H_{2} &= \left(\widehat{\beta}_{1} + \widehat{\beta}_{3} - 1\right) \sum_{i \in I_{1}} \frac{\left(1 + x_{1i}\right)^{-\widehat{\alpha}} \left[\log\left(1 + x_{1i}\right)\right]^{2}}{\left(1 - \left(1 + x_{1i}\right)^{-\widehat{\alpha}}\right)^{2}}, \\ H_{3} &= \left(\widehat{\beta}_{2} - 1\right) \sum_{i \in I_{1}} \frac{\left(1 + x_{2i}\right)^{-\widehat{\alpha}} \left[\log\left(1 + x_{2i}\right)\right]^{2}}{\left(1 - \left(1 + x_{2i}\right)^{-\widehat{\alpha}}\right)^{2}}, \\ H_{4} &= \left(\widehat{\beta}_{1} - 1\right) \sum_{i \in I_{2}} \frac{\left(1 + x_{1i}\right)^{-\widehat{\alpha}} \left[\log\left(1 + x_{1i}\right)\right]^{2}}{\left(1 - \left(1 + x_{1i}\right)^{-\widehat{\alpha}}\right)^{2}}, \\ H_{5} &= \left(\widehat{\beta}_{2} + \widehat{\beta}_{3} - 1\right) \sum_{i \in I_{2}} \frac{\left(1 + x_{2i}\right)^{-\widehat{\alpha}} \left[\log\left(1 + x_{2i}\right)\right]^{2}}{\left(1 - \left(1 + x_{2i}\right)^{-\widehat{\alpha}}\right)^{2}}, \\ H_{6} &= \left(\widehat{\beta}_{1} + \widehat{\beta}_{2} + \widehat{\beta}_{3} - 1\right) \sum_{i \in I_{3}} \frac{\left(1 + x_{i}\right)^{-\widehat{\alpha}} \left[\log\left(1 + x_{i}\right)\right]^{2}}{\left(1 - \left(1 + x_{i}\right)^{-\widehat{\alpha}}\right)^{2}}. \end{split}$$
(A.13)

Using the asymptotic distribution of the MLEs, the confidence intervals can be obtained as

$$\underline{\widehat{\theta}} \pm z_{\gamma/2} \sqrt{\widehat{\operatorname{var}}(\underline{\widehat{\theta}})}, \qquad (A.14)$$

where  $\underline{\hat{\theta}} = (\hat{\alpha}, \hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3)$ ,  $\widehat{var}(\underline{\hat{\theta}})$  is the estimated variance, and  $z_{\gamma/2}$  is the upper  $\gamma^{th}/2$  percentile of the standard normal table.

# B

#### B.1. Algorithms for BIK

B.1.1. Monte Carlo Simulation Algorithm for BIK. The following algorithm is used to perform Monte Carlo simulation study using R package and get ML estimates for BIK distribution.

Step 1: *n* independent samples  $(X_1, X_2)$  from BIK distribution are generated as follows:

- (a) Generate  $U_1$ ,  $U_2$ , and  $U_3$  from uniform (0, 1). (b) Compute  $T_1 = (1 U_1^{1/\beta_1})^{1/\alpha}$ ,  $T_2 = (1 U_2^{1/\beta_2})^{1/\alpha}$ , and  $T_3 = (1 U_3^{1/\beta_3})^{1/\alpha}$ . (c) Define  $Z_1 = 1/T_1 1$ ,  $Z_2 = 1/T_2 1$ , and  $Z_3 = 1/T_3 1$ . (d) Obtain  $X_1 = max(Z_1, Z_2)$ ,  $X_2 = max(Z_2, Z_3)$ .
- (d) Obtain  $X_1 = \max(Z_1, Z_3), X_2 = \max(Z_2, Z_3).$

ABias = MSE = CW =

(B.3)

Step 2: the maximum likelihood estimates (MLEs) and the corresponding variance (Var) are obtained and stored.

Step 3: lower (L) and upper (U) bounds for 95% confidence interval (CI) are calculated (i.e.,  $L(U) = MLE - (+)1.96 * \sqrt{Var}$  and stored.

Step 4: the three previous steps are repeated 1000 times. Step 5: for converged datasets (this is obtained from R using optim function), the average of MLE, variance, and CI is obtained as follows:

$$average of MLE (AMLE) = \frac{\sum_{i=1}^{number of converged datasets} MLE_i}{number of converged datasets},$$

$$average of Var (AVar) = \frac{\sum_{i=1}^{number of converged datasets} Var_i}{number of converged datasets},$$

$$average of CI (ACI) = \frac{\sum_{i=1}^{number of converged datasets} CI_i}{number of converged datasets}.$$

$$Step 6: absolute bias (ABias), mean square error (MSE),$$
and confidence width (CW) are obtained as follows:
$$Bias = |AMLE - intial value|,$$

$$MSE = AVar + Bias^2, \qquad (B.2)$$

$$CW = upper limit of ACI - lower limit of ACI.$$

number of times the intial value falls inside the converged samples' CI CP =number of converged samples

B.1.2. MCMC Simulation Algorithm for BIK. The following algorithm is used to perform Markov Chain Monte Carlo (MCMC) simulation study using R and WinBugs packages and get Bayesian estimates for BIK distribution.

Step 1: using R package: n independent samples  $(X_1, X_2)$  from BIK distribution are generated using the same procedure in Appendix B.1.1.

Step 2: the generated dataset is sent to WinBugs package and gamma priors are defined.

Step 3: WinBugs is used with 1000 replications to generate the sequence of Markov chain.

Step 4: WinBugs provides posterior mean (PM), standard deviation (SD), and credible interval (CI). Step 5: results are sent back to R package and stored. Step 6: the five previous steps are repeated 1000 times. Step 7: for converged datasets (i.e., Geweke test results <1.96, it is obtained using coda function in R package), the average of posterior mean (PM), variance (Var), and credible interval (CI) is obtained as follows:

average of posterior means (APM) = 
$$\frac{\sum_{i=1}^{\text{number of converged datasets}} PM_i}{\text{number of converged datasets}},$$

$$\text{average of Var (AVar)} = \frac{\sum_{i=1}^{\text{number of converged datasets}} (SD_i)^2}{\text{number of converged datasets}},$$

$$\text{average of CI (ACI)} = \frac{\sum_{i=1}^{\text{number of converged datasets}} CI_i}{\text{number of converged datasets}}.$$
(B.4)

Step 8: absolute bias (ABias), mean square error (MSE), and credible length (CL) are obtained as follows:

$$ABias = |APM - initial value|.$$
(B.5)

MSE and CL are the same as in Appendix B.1.1.

Step 9: the coverage probability (CP) is the same as step 7 in Appendix B.1.1.

#### B.2. Algorithms for MIK

*B.2.1. Monte Carlo Simulation Algorithm for MIK.* The following algorithm is used to perform Monte Carlo simulation study using R package and get ML estimates for MIK distribution.

Step 1: *n* independent samples  $(X_1, X_2, X_3)$  from MIK distribution are generated as follows:

- (a) Generate  $U_1, U_2, U_3$ , and  $U_4$  from uniform (0, 1).
- (b) Compute  $T_1 = (1 U_1^{1/\beta_1})^{1/\alpha}$ ,  $T_2 = (1 U_2^{1/\beta_2})^{1/\alpha}$ ,  $T_3 = (1 U_3^{1/\beta_3})^{1/\alpha}$ , and  $T_4 = (1 U_4^{1/\beta_4})^{1/\alpha}$ .
- (c) Define  $Z_1 = 1/T_1 1, Z_2 = 1/T_2 1, Z_3 = 1/T_3$ -1,and  $Z_4 = 1/T_4 - 1.$
- -1,and  $Z_4 = 1/T_4 1$ . (d) Obtain  $X_1 = \max(Z_1, Z_4)$ ,  $X_2 = \max(Z_2, Z_4)$ , and  $X_3 = \max(Z_3, Z_4)$

Steps 2 till 7 are the same as in Appendix B.1.1.

*B.2.2. MCMC Simulation Algorithm for MIK.* The following algorithm is used to perform Markov Chain Monte Carlo (MCMC) simulation study using R and WinBugs packages and get Bayesian estimates for MIK distribution.

Step 1: using R package: *n* independent samples  $(X_1, X_2, X_3)$  from MIK distribution are generated using the same procedure in Appendix B.2.1.

Steps 2 till 9 are the same as in Appendix B.1.2.

## **Data Availability**

The datasets used in the example application are available at [23, 26–28].

#### **Conflicts of Interest**

The authors declare that they have no conflicts of interest.

#### References

- A. W. Marshall and I. Olkin, "A multivariate exponential distribution," *Journal of the American Statistical Association*, vol. 62, no. 317, pp. 30–44, 1967.
- [2] D. Kundu and A. K. Dey, "Estimating the parameters of the Marshall-Olkin bivariate Weibull distribution by EM algorithm," *Computational Statistics & Data Analysis*, vol. 53, no. 4, pp. 956–965, 2009.
- [3] W. B. Bareto-Souza and A. J. Lemonte, "Bivariate Kumaraswamy distribution: properties and a new method to

generate bivariate classes," *Journal of Theoretical and Applied Statistics*, vol. 47, no. 6, pp. 1321–1342, 2013.

- [4] H. Z. Muhammed, "Bivariate generalized Burr and related distributions: properties and estimation," *Journal of Data Science*, vol. 17, no. 3, pp. 535–550, 2019.
- [5] F. A. Alqallaf and D. Kundu, "A bivariate inverse generalized exponential distribution and its applications in dependent competing risks model," *International Journal of Mathematical and Computational Sciences*, vol. 14, no. 4, 2020.
- [6] D. Kundu and R. D. Gupta, "Bivariate generalized exponential distribution," *Journal of Multivariate Analysis*, vol. 100, no. 4, pp. 581–593, 2009.
- [7] D. Kundu and R. D. Gupta, "Modified Sarhan-Balakrishnan singular bivariate distribution," *Journal of Statistical Planning* and Inference, vol. 140, no. 2, pp. 526–538, 2010.
- [8] A. M. Sarhan, D. C. Hamilton, B. Smith, and D. Kundu, "The bivariate generalized linear failure rate distribution and its multivariate extension," *Computational Statistics & Data Analysis*, vol. 55, no. 1, pp. 644–654, 2011.
- [9] H. Z. Muhammed, "Bivariate inverse Weibull distribution," *Journal of Statistical Computation and Simulation*, vol. 86, no. 12, pp. 2335–2345, 2016.
- [10] C. Li and X. Li, "Aging and ordering properties of multivariate lifetimes with archimedean dependence structures," *Communications in Statistics-Theory and Methods*, vol. 46, no. 2, pp. 874–891, 2017.
- [11] D. Kundu and A. K. Gupta, "On bivariate inverse Weibull distribution," *Brazilian Journal of Probability and Statistics*, vol. 31, no. 2, pp. 275–302, 2017.
- [12] H. M. Aly, H. Z. Muhammed, and O. A. Abuelamayem, "Estimation of the bivariate Kumaraswamy lifetime distribution under progressive type-I censoring," *Journal of Data Science*, 2020.
- [13] M. S. Eliwa and M. El-Morshedy, "Bivariate Odd Weibull-G family of distributions: properties, Bayesian and non-Bayesian estimation with Bootstrap confidence intervals and application," *Journal of Taibah University for Science*, vol. 14, no. 1, pp. 331–345, 2020.
- [14] M. El-Morshedy, Z. A. Alhussain, D. Atta, E. M. Almetwally, and M. S. Eliwa, "Bivariate Burr X generator of distributions: properties and estimation methods with applications to complete and type-II censored samples," *Mathematics*, vol. 8, no. 2, pp. 264–277, 2020.
- [15] A. Sarhan, "The bivariate generalized Rayleigh distribution," *Journal of Mathematical Sciences and Modelling*, vol. 2, no. 2, pp. 99–111, 2019.
- [16] D. D. Hanagal and K. A. Ahmadi, "Bayesian estimation of the parameters of bivariate exponential distributions," *Communications in Statistics - Simulation and Computation*, vol. 38, no. 7, pp. 1391–1413, 2009.
- [17] D. Kundu and A. K. Gupta, "Bayes estimation for the Marshall-Olkin bivariate Weibull distribution," *Computational Statistics & Data Analysis*, vol. 57, no. 1, pp. 271-281, 2013.
- [18] Y.-J. Lin, Y. L. Lio, and H. K. T. Ng, "Bayes estimation of Moran-downton bivariate exponential distribution based on censored samples," *Journal of Statistical Computation and Simulation*, vol. 83, no. 5, pp. 837–852, 2013.
- [19] A. M. Abd Al-Fattah, A. A. El-Helbawy, and G. R. Al-Dayian, "Inverted Kumaraswamy distribution: properties and estimation," *Pakistan Journal of Statistics*, vol. 33, no. 1, pp. 37–61, 2017.
- [20] B. Abdul Hammed, A. N. Salman, and B. A. Khalaf, "On the estimation of  $P(Y_1 < X < Y_2)$  in cased inverted

Kumaraswamy distribution," *Iraqi Journal of Science*, vol. 61, no. 4, pp. 845–853, 2020.

- [21] E. A. Gupta and A. K. Gupta, "Bayes estimation for the Marshall-Olkin exponential distribution," *Journal of the Royal Statistical Society: Series B (Methodological)*, vol. 52, no. 2, pp. 379–389, 1990.
- [22] K. A. Angali, S. M. Latifi, and D. D. Hanagal, "Bayesian estimation of bivariate exponential distributions based on linex and quadratic loss functions: a Survival approach with censored samples," *Communications in Statistics-Simulation and Computation*, vol. 43, no. 1, pp. 31–44, 2014.
- [23] S. G. Meintanis, "Test of fit for Marshall-Olkin distributions with applications," *Journal of Statistical Planning and Inference*, vol. 137, no. 12, pp. 3954–3963, 2007.
- [24] R. D'Agostnio and M. Stephens, Goodness of Fit Techniques, Marcel Dekker, Inc., New York, NY, USA, 1986.
- [25] S. I. Vrieze, "Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)," *Psychological Methods*, vol. 17, no. 2, pp. 228–243, 2012.
- [26] ReliaSoft, "Using QALT models to analyze system configurations with load sharing," *Reliability Edge*, vol. 3, no. 3, pp. 1–4, 2003.
- [27] S. Csorgo and A. H. Welsh, *Testing for Exponential and Marshall-Olkin Distributions*, National Science Foundation, Technical report no. 222, 1985.
- [28] J. M. Bland and D. G. Altman, "Measuring agreement in method comparison studies," *Statistical Methods in Medical Research*, vol. 8, no. 2, pp. 130–160, 1999.