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*is paper has made proposition of a nested array and an estimation algorithm for direction-of-arrival (DOA) of two-dimensional
(2D) coherently distributed (CD) sources. According to the difference coarray concept, double parallel hole-free virtual uniform
linear arrays are generated by virtue of vectorization operation on cross-correlation matrices of subarrays. Sensor coordinates of
virtual arrays are derived. Rational invariance relationships of virtual arrays are derived. According to the rotational invariance
relationships, matrices satisfying rotation invariance are constructed by extracting and regrouping the receive vectors of the
virtual arrays, and then an estimation of signal parameters via rotational invariance techniques- (ESPRIT-) like framework on
matrix reconstruction is deduced. Optimal configuration of the nested array as well as computational complexity are analyzed.
Without pair matching, the proposed method can resolve more sources than the sensor number. Simulation outcomes indicate
that the proposed method tends to have a better performance as compared to the traditional uniform arrays that have similar
number of sensors.

1. Introduction

Traditional direction-of-arrival (DOA) estimators consider a
target as a point source. In underwater acoustic detection,
with the reduction of the distance between the receive array
and a target, as many parts of the target reflect signals; a
point source model cannot describe the target effectively and
the supposed conditions of a point source model are invalid.
In this case, a distributed source model is proposed [1]. A
distributed source can be considered as an aggregation of
point sources within a spatial distribution, where the point
sources can be called scatterers.

Generally, distributed sources can be possibly catego-
rized as incoherent distributed (ID) and coherent distributed
(CD) sources according to the coherence of scatterers. *e
scatterers of an ID source can be assumed to be incoherent,
while scatterers of a CD source are coherent. Distributed
sources can be categorized into one-dimensional (1D) and

two-dimensional (2D) according to the spatial distribution
dimension. *e 2D distributed sources with the assumption
that scatterers of a distributed source and the receive array
are not in a same plane is more general and accordant with
practical circumstances. In this paper, we are concerned with
2D CD sources.

*e distributions of scatterers of CD sources can be
described by deterministic angular signal distribution
function (ASDF). ASDF of a source can be modeled as
Gaussian, uniform, or any other form of distribution based
on the geometric and surface characteristics of the source.
ASDF of a 1D CD source involves parameters which are
nominal angle and angular spread. ASDF of a 2D source is
described by nominal azimuth, nominal elevation, azimuth
spread, and elevation spread. Nominal azimuth as well as
nominal elevation are collectively called nominal angles
representing the target centers; these can also be possibly
presented as DOA. Azimuth spread and elevation spread are
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called angular spreads denoting the spatial extension of a
target.

Considering point sources, some important achieve-
ments of DOA estimation have been presented in a mixed
signal field andmultiangle estimation recently.*e 2DDOA
estimation problem for a mixture of circular and noncircular
signals is considered based on two parallel uniform linear
arrays (ULAs) [2] and the uniform rectangular array (URA)
[3]. In [4], authors have achieved estimating 2D DOA, 2D
direction-of-departure, 2D receive polarization angle, and
2D transmit polarization angle simultaneously under an
electromagnetic vector sensor (EMVS) MIMO system. A
dimensional reduction noncircular MUSIC algorithm with a
low computational complexity is proposed in [5] for DOA
and polarization estimation of circular and noncircular
mixture signals in a virtual MIMO system. As for ID sources,
2D DOA estimation of ID sources in massive multiple-input
multiple-output (MIMO) systems using URAs is proposed
in [6].

As for CD sources, based on spectral search, several
estimators have been provided from the classical point
source technique multiple signal classification (MUSIC)
such as distributed signal parameter estimator (DSPE) [1],
dispersed signal parametric estimation (DISPARE) [7], and
vec-multiple signal classification (vec-MUSIC) [8]. Shah-
bazpanahi et al. [9] have extended another classical point
sources technique estimation of signal parameters via ro-
tational invariance techniques (ESPRIT) to make an esti-
mation of the nominal angles of sources in the first place and
thereafter make calculations of the angular spreads by means
of spectral search. Zoubir et al. have explored a generalized
beamforming estimator in [10]. Xiong et al. [11] have an-
alyzed the performance of DSPE algorithm considering that
estimators for CD sources mostly approximate conclusions
made on assumptions of small angular spreads. All these
estimators are concerned on 1D CD sources where scatterers
and receive arrays are in the same plane. However, scatterers
and arrays are in three-dimensional space generally, which
should be modeled as 2D CD sources.

Involving more parameters, estimators for 2D CD
sources have higher computational complexity. Extended
form DSPE for 1D CD sources, Zhang et al. [12] have
proposed a spectral search approach for 2D CD sources with
L-shape arrays. Utilizing double parallel linear arrays
(DPLA), treble parallel linear arrays (TPLA), and conformal
arrays, several low-complexity algorithms have been opined
in [13–18], where estimations of DOAs are performed under
ESPRIT or propagator framework based on approximate
rotational invariance relationships of steering vectors. Lee
et al. [19] have proposed a sequential one-dimensional
searching algorithm based on double uniform circular arrays
(DUCA). In [20], DOAs can be estimated from proposed
symmetric properties of a centrosymmetric crossed array.
Considering CD sources are correlated with each other, Wu
et al. [21] havemade a proposition of a 2D estimator utilizing
DPLA. Based on L-shaped arrays, Wu et al,[22] have ex-
plored the estimation of a 2D nonsymmetric CD source,
where nonsymmetric ASDF is established by a Gaussian
mixture model.

Aforementioned methods mostly are proposed based on
uniform arrays where the separations between sensors are
limited to the value no more than half proportion of the
wavelength of impinging signal. In the context of point
source estimation, in order to achieve the greatest levels of
accuracy as well as to have more sources resolved, larger
apertures should be used; consequently, a larger number of
sensors are required. Although point sources and distributed
sources are different targets, the traditional estimators for
distributed source also requires the separations between
sensors not greater than half wavelength, and the estimation
accuracy is closely related to the aperture size. *e nested
arrays which have been proposed in [23] tend to have greater
degree of freedoms (DOFs) as well as huge apertures.
Aiming at point sources, DOA estimators with diverse types
of nested arrays have been explored in [24–29]. In [29],
Zheng et al. have presented an estimator resolving near-field
(NF) and far-field (FF) point sources simultaneously using a
symmetric double nested array (SDNA). Zheng andMu [30]
have proposed a 2D DOA estimator using two parallel
nested arrays where an augmented covariance matrix is
constructed to reduce computational complexity. *e
coprime arrays composed of ULAs with sensor spacing
related by a cprime integer have been proposed in [31]. Shi
et al. [32] have presented 2D DOA estimation with coprime
planar arrays (CPPAs) which achieve a great increase of
aperture and reduce computational complexity by virtue of
iterative scheme for transforming 2D grids searching into
1D searching during sparse representation. In [33], Zheng
et al. have proposed a new sparse array called configuration
maximum interelement spacing constraint (MISC) array
where the array structure is designed in terms of the
interelement spacing set, which is given in a closed-form
expression as a function of the number of sensors.

Compared with estimators for a point source model, the
researches of estimators for distributed sources under sparse
arrays are relatively few and most of these studies deal with
1D distributed source. Estimators for 1D exponential dis-
tributed sources based on the linear nested array have been
presented in [34] with a prior knowledge of angular spreads
and without the prior knowledge in [35]. Considering 2D ID
sources, Wu et al. [36] have developed a sparse represen-
tation method under nested array, where computational
complexity is extremely high.

In this paper, based on a proposed nested array con-
taining double parallel linear subarrays, a DOA estimator for
2D CD sources is presented. By means of vectorization
operation on the cross-correlation matrices, double hole-
free virtual uniform linear arrays are realized and the closed
expressions of virtual sensor coordinates are deduced based
on the difference coarray concept. Next, rotational invari-
ance relationships of virtual arrays are deduced. Based on
rotational invariance relationships, matrices satisfying ro-
tation invariance are constructed by extracting and
regrouping the receive vectors of the virtual arrays. *en, an
ESPRIT-like framework based on matrix reconstruction is
proposed. *e proposed method can detect 2D CD sources
more than sensors without angles matching and without
prior knowledge of ASDF. Lastly, the effectiveness of the
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proposed method is investigated through simulations. To
show the contributions of this paper clearly, the main dif-
ferences between the state-of-the-art methods and our work
are listed as follows:

(i) *ough DOA estimations for 2D CD sources are
presented in [12–22], the arrays are all uniform. In
[27, 28, 30, 32], DOA estimators for 2D sources
using sparse arrays are considered, which aim at
point sources. In [34, 35], estimators for 1D ex-
ponential distributed sources based on nested arrays
are established, while 2D distributed sources are
more general and accordant with practical cir-
cumstances. In this paper, estimation for 2D CD
sources with the nested array is considered.

(ii) A nested array used for 2D sources is proposed.
Configuration of virtual arrays containing close
form of virtual sensor positions, maximum DOF,
and the optimal parameters get deduced. Compared
with uniform linear arrays for 2D sources, the
nested array proposed has larger aperture as well as
more DOFs.

(iii) A matrix reconstruction algorithm is detailed based
on an ESPRIT-like framework on matrices which is
constructed by extracting receive vectors of the
virtual arrays. Without angles matching and with-
out prior knowledge of ASDF, the algorithm pro-
posed has less computation complexity than
existing methods using uniform arrays.

Notations. Scalar variables are denoted by italic letters, and
vectors and matrices are denoted by bold letters. (•)−1, (•)∗,
(•)T, and (•)H mean inverse, complex conjugate, transpose,
and Hermitian transpose of a matrix. E[•], (./), vec(•), ⊙ and
(•)+ denote expectation, element-wise division, vectoriza-
tion, Khatri–Rao product and pseudoinverse operation. [•]k
is the kth element of a vector. diag[•] means diagonal matrix.
arg(•) is the phase of a complex number.

2. The Nested Array and Source Model

As illustrated in Figure 1, double parallel uniform subarrays
A1 andA2 on the xoz plane constitute a nested array. Parallel
to x-axis, A1 is made up of a middle sensor on z-axis andM1
sensors are separated by dmeters on both sides. Subarray A2
is on x-axis containingM2 sensors located on both semiaxes
with sensor spacing D� (2M1 + 1)d. *e interval of the two
subarrays equals d/2. q 2D CD sources with wavelength λ
and nominal angles (θi, φi) (i� 1, 2, . . ., q) in the far field are
set to be estimated, θi ∈ [0, π], φi ∈ [0, π]. θi is a denotation
of the spatial nominal azimuth that exists between x positive
semiaxes and the propagation path of the ith source. φi is the
nominal elevation of the source. *e consideration of noise
is the Gaussian white zero mean which is an additive as well
as uncorrelated with sensors.

*e sensor coordinate set of subarrays A1 and A2 can be
expressed, respectively, as

C1 � lmd, 0, 0.5d( 􏼁 lm � −M1,− M1 −1( 􏼁, . . . , M1 −1( 􏼁, M1
􏼌􏼌􏼌􏼌􏽮 􏽯,

(1)

C2 � ln +0.5( 􏼁D,0,0􏼁 ln � −M2,− M2 −1( 􏼁, . . . , M2 −1( 􏼁
􏼌􏼌􏼌􏼌􏽮 􏽯.

(2)

Receive vectors of subarrays A1 and A2 have the fol-
lowing expressions:

x1(t) � 􏽘

q

i�1
Bη1(θ,φ)si(θ,φ, t)dθdφ + nx1(t), (3)

x2(t) � 􏽘

q

i�1
Bη2(θ,φ)si(θ,φ, t)dθdφ + nx2(t), (4)

where nx1(t)and nx2(t) are noise vectors. η1(θ,φ) and η2(θ,φ)
denote the steering vectors of subarrays A1 and A2, which
have the following expressions:

η1(θ, ϕ) � e
jπ d cosϕ/λ

e
−j2πM1d cos θ/λ

, e
− j2π M1− 1( )d cosθ/λ

, . . . , 1, . . . , e
j2π M1− 1( )dcosθ/λ

, e
j2πM1d cos θ/λ

􏼔 􏼕
T

. (5)

η2(θ, ϕ) � e
− j2π M2− 0.5( )D cosθ/λ

, e
− j2π M2− 1.5( )D cosθ/λ

, . . . , e
j2π M2− 1.5( )D cosθ/λ

, e
j2π M2− 0.5( )D cosθ/λ

􏼔 􏼕
T

. (6)

si(θ, φ, t) in equations (3) and (4) represents angular
signal density function of the ith 2D CD source. Based on the
assumption of the CD source, si(θ, φ, t) can be written as

si(θ, φ, t) � si(t)g θ,φ; ui( 􏼁, (7)

where si(t) reflects time behavior of the ith source.
gi(θ,φ; ui) represents deterministic ASDF of the ith source
reflecting spatial distribution of scatterers with respect to the
ith source. A 2D deterministic ASDF is generally charac-
terized by the parameter vector ui � [θi, φi, σθi, σφi]Twith four

elements which are nominal azimuth θi, nominal elevation φi,
azimuth angular spread σθi, and elevation angular spread σφi.

Deterministic ASDF of a Gaussian CD source has the
following expression:

g θ,φ; ui( 􏼁 �
1

2πσθiσϕi

exp −0.5
θ − θi

σθi

􏼠 􏼡

2

+
ϕ − ϕi

σϕi

􏼠 􏼡

2
⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭.

(8)

Deterministic ASDF of a uniform CD source have the
following expression:
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g θ,φ; ui( 􏼁 �

1
4σθiσϕi

, θ − θi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ σθi and ϕ − ϕi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ σϕi,

0, θ − θi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ σθi or ϕ − ϕi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ σϕi.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(9)

3. Proposed Method

*is part is composed of four portions. Firstly, double
parallel virtual uniform linear arrays are realized through
difference operation. *en, the rotational invariance rela-
tionship of virtual arrays gets deduced. Afterwards, matrices
satisfying rotation invariance are constructed using the
receive vectors of the virtual arrays and a matrix

reconstruction algorithm based on an ESPRIT-like frame-
work is proposed. *e procedure of computation gets
summarized as well as the analysis of the complexity is
performed by comparing other methods with traditional
uniform arrays.

3.1. Description of Virtual Arrays. *e nested array increases
DOFs by forming virtual arrays through difference opera-
tion between sensor coordinates of subarrays. (2M1 + 1)×
2M2 dimensional matrix R1 is denoted as the cross-corre-
lation matrix of subarrays A1 and A2 and the
2M2 × (2M1 + 1) dimensional matrix R2 as the cross-corre-
lation matrix of subarrays A2 and A1. As different CD
sources are uncorrelated, R1 and R2 can be expressed as
follows:

R1 � E x1(t)xH
2 (t)􏽨 􏽩 � 􏽘

q

i�1
σ2i 􏽚 􏽚 η1(θ,φ)g θ, φ; ui( 􏼁g θ, φ; ui( 􏼁ηH

2 (θ, φ)dθdφ, (10)

R2 � E x2(t)xH
1 (t)􏽨 􏽩 � 􏽘

q

i�1
σ2i 􏽚 􏽚 η2(θ,φ)g θ, φ; ui( 􏼁g θ, φ; ui( 􏼁ηH

1 (θ, φ)dθdφ, (11)

where σ2i � E[|si(t)|2] is the power of the ith source. Vec-
torizing R1 and R2 by the Khatri–Rao product, we have

r1 � vec R1( 􏼁 � 􏽘

q

i�1
σ2i 􏽚 􏽚 η∗2(θ, φ)⊙ η1(θ,φ)g θ,φ; ui( 􏼁g θ, φ; ui( 􏼁dθdφ, (12)

r2 � vec R2( 􏼁 � 􏽘

q

i�1
σ2i 􏽚 􏽚 η∗1(θ, φ)⊙ η2(θ,φ)g θ,φ; ui( 􏼁g θ,φ; ui( 􏼁dθdφ. (13)

θ
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X

o

The subarray A1

The subarray A2

ϕ

(a)

The subarray A1

z
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o
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d/2
M1 M1

M2 M2D

(b)

Figure 1: (a) Configuration of the nested array proposed; (b) illustration of the array proposed on the xoz plane.
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Double parallel virtual uniform linear arrays can be
obtained by vectorization of cross-correlation matrices R1
and R2 which is illustrated in Figure 2. *rough difference
operation between sensor coordinates of subarrays A1 and
A2, virtual arrays VA and VB can be realized with sensor
coordinate sets CA and CB expressed as

CA � pi − pj pi ∈ C1,pj ∈ C2

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛, (14)

CB � pj − pi pi ∈ C1, pj ∈ C2

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛. (15)

From equations (1) and (2), we have sensor coordinate
sets of the virtual arrays CA and CB as

CA � [(n − 0.5)d, 0, 0.5 d] n � 1 − 2M1M2 + M2( 􏼁, 2 − 2M1M2 + M2( 􏼁, . . . , 2M1M2 + M2􏼁
􏼌􏼌􏼌􏼌􏽮 􏽯, (16)

CB � [(n − 0.5)d, 0, −0.5 d n � 1 − 2M1M2 + M2( 􏼁, 2 − 2M1M2 + M2( 􏼁, . . . , 2M1M2 + M2􏼁
􏼌􏼌􏼌􏼌􏽮 􏽯. (17)

Equations (16) and (17) show that each virtual array
contains L� 2(2M1M2 +M2) virtual sensors without repetitive
positions, which indicates both virtual arrays formed by nested
array are hole-free. It is worth noting that the element sequence
in r1 does not correspond to sensor orders of virtual array VA;
meanwhile, the element sequence in r2 does not correspond to
sensor orders of VB. rA is denoted as receive signal vector with
elements reflecting signal received from the virtual sensor
located on [(0.5− 2M1M2−M2)d, 0, 0.5d] to the sensor located
on [(2M1M2 +M2− 0.5)d, 0, 0.5d] and rB as receive signal
vector with elements reflecting signal received from the virtual
sensor located on [(0.5− 2M1M2−M2)d, 0,−0.5d] to the sensor

located on [(2M1M2 +M2− 0.5)d, 0, −0.5d]. After reordering
r1 and r2, rA and rB can be expressed as

rA � 􏽘

q

i�1
σ2i 􏽚 􏽚 a(θ,φ)g θ,φ; ui( 􏼁g θ, φ; ui( 􏼁dθdφ, (18)

rB � 􏽘

q

i�1
σ2i 􏽚 􏽚 b(θ, φ)g θ,φ; ui( 􏼁g θ,φ; ui( 􏼁dθdφ, (19)

where a(θ, φ) and b(θ, φ) denote the L× 1 dimensional
steering vector of virtual arrays VA and VB, which have the
following expressions:

a(θ, φ) � e
jπdcosφ/λ

e
− j2π 2M1M2+M2− 0.5( )dcosθ/λ

, e
− j2π 2M1M2+M2− 1.5( )dcosθ/λ

, . . . , e
j2π 2M1M2+M2− 0.5( )dcosθ/λ

􏼔 􏼕
T

, (20)

b(θ,φ) � e
− jπdcosφ/λ

e
− j2π 2M1M2+M2− 0.5( )dcosθ/λ

, e
− j2π 2M1M2+M2− 1.5( )dcosθ/λ

, . . . , e
j2π 2M1M2+M2− 0.5( )dcosθ/λ

􏼔 􏼕
T

. (21)

In the process of estimation, the sample of covariancematrix
with N snapshots can be substituted for R1 and R2 as follows:

􏽢R1 �
1
N

􏽘

N

t�1
x1(t)xH

2 (t)􏽨 􏽩,

􏽢R2 �
1
N

􏽘

N

t�1
x2(t)xH

1 (t)􏽨 􏽩.

(22)

3.2. Rotational Invariance Relationships of Virtual Arrays.
Representing response of arrays to the ith distributed source,
generalized steering vectors are defined in [10]. *e gener-
alized steering vector αi reflects response of array VA to the
ith CD source while the generalized steering vector βi reflects
response of array VB to the source. αi and βi can be written as

αi � Ba(θ, φ)g θ, φ; ui( 􏼁g θ, φ; ui( 􏼁dθdφ, (23)

βi � Bb(θ, φ)g θ, φ; ui( 􏼁g θ, φ; ui( 􏼁dθdφ. (24)

Each element of αi or βi represents the response of corre-
sponding virtual sensor of VA and VB to the ith CD source.
Representing response of arrays to all distributed sources,A and
B are defined as L× q dimensional generalized steering matrices
of the virtual arrays VA and VB, which can be written as

A � α1, α2, . . . , αq􏽨 􏽩, (25)

B � β1, β2, . . . , βq􏽨 􏽩. (26)

σ is denoted as a power vector of CD sources, which can
be expressed as

σ � σ21, σ
2
2, . . . , σ2q􏽨 􏽩

T
. (27)

*us, rA and rB can be expressed as

rA � Aσ, (28)

rB � Bσ. (29)

If d/λ is set at 1/2, the following relationships can be
obtained under the condition that angular spreads of CD
sources are small (the proof can be seen in Appendix):
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αi􏼂 􏼃k+1 ≈ e
jπcosθi αi􏼂 􏼃k, (30)

βi􏼂 􏼃k+1 ≈ e
jπcosθi βi􏼂 􏼃k, (31)

αi􏼂 􏼃k ≈ e
jπcosφi βi􏼂 􏼃k. (32)

*erefore, rotational invariance relationships can be
drawn as follows:

[A]k+1 ≈ [A]kΦ, (33)

[B]k+1 ≈ [B]kΦ, (34)

[A]k ≈ [B]kΨ, (35)

where the rotational invariance operators Φ and Ψ can be
written as

Φ � diag e
jπ cos θ1 , e

jπ cos θ2 , . . . , e
jπ cos θq􏽨 􏽩, (36)

Ψ � diag e
jπ cosφ1 , e

jπ cosφ2 , . . . , e
jπ cosφq􏽨 􏽩. (37)

3.3. DOA Estimation via Matrix Reconstruction. Receive
vectors described by equations (28) and (29) can be con-
sidered q coherent power signals impinging into virtual
arrays VA and VB. In this paper, according to the concept of
ESPRIT, matrices satisfying rotation invariance are con-
structed by extracting and regrouping the receive vectors of
the virtual arrays.

Defining r1A as the receive vector of the first q elements of
rA and r1B as the receive vector of the first q elements of rB, we
have

r1A � A1σ, (38)

r1B � B1σ, (39)

where A1 and B1 are generalized steering matrices of r1A and
r1B. A1 and B1 can be expressed as

A1 � Iq×q 0q×(L−q)􏽨 􏽩A, (40)

B1 � Iq×q 0q×(L−q)􏽨 􏽩B, (41)

where Iq×q is the q× q dimensional identitymatrix and 0q×(L-−q)
is the q× (L− q) dimensional null matrix. *e operation
Iq×q 0q×(L−q)􏽨 􏽩 left multiply A or B can be considered as

extracting the first q rows of a matrix.

According to equations (33)–(35), a generalized steering
matrix of the receive vector of ith q elements of rA and rB can
be expressed as

Ai ≈ A1Φ
i− 1

, i � 1, 2, . . . , q + 1, (42)

Bi ≈ B1Φ
i− 1

, i � 1, 2, . . . , q + 1, (43)

B1 ≈ A1Ψ. (44)

*en, the receive vector of ith q elements of rA and rB can
be expressed as

ri
A � Aiσ ≈ A1Φ

i− 1σ, (45)

ri
B � Biσ ≈ B1Φ

i− 1σ. (46)

A q× q dimensional matrix RA′ is constructed in the way
that ri

A is converted into the ith column of RA′ . Another q× q
dimensional matrix RA″ is reconstructed in the way that ri+1

A
is converted into the ith columns of RA

″ . *us, RA′ and RA″
can be written as follows:

RA′ � 􏽐
q

i�1
ri

Ae
T
i � A1Λ 􏽐

q

i�1
Qi− 1eT

i � A1ΛAH
1 , (47)

RA″ � 􏽘

q+1

i�2
ri

Ae
T
i � A1Λ 􏽘

q+1

i�2
Qi− 1eT

i � A1ΦΛAH
1 , (48)

where Λ � diag[σ21, σ
2
2, . . . , σ2q] and Q � [ejπ cos θ1 , ejπ cos θ2 ,

. . . , ejπ cos θq ]T. ei � [0, . . . , 1, 0, . . .] is the q dimensional
vector with 1 as the ith element and 0 as others, which can be
seen as an operator transforming a vector into a column in a
matrix.

Similarly, RB′ is constructed in the way that ri
B is con-

verted into the ith column of the matrix.

RB′ � 􏽐
q

i�1
ri

BeT
i � B1Λ 􏽐

q

i�1
Qi− 1eT

i � B1ΛAH
1 � A1ΨΛAH

1 ,

(49)

where AH
1 is a Vandermonde full rank matrix and Λ is a

diagonal matrix. From equations (48) and (49), we have

RA′( 􏼁
+RA″ � A1ΦA−1

1 , (50)

RA′( 􏼁
+RB′ � A1ΨA−1

1 . (51)

(RA′)
+RA″ and (RA′)

+RB′ are denoted as Ω1 and Ω2, re-
spectively. *e rotational invariance operators Φ and Ψ are

z

x
o

Sensors of virtual array
Sensors of nested array

Virtual array VA

Virtual array VB

Figure 2: Virtual arrays formed by nested array.
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diagonal matrices. According to equations (50) and (51), the
eigenvectors corresponding to the elements in the same
position in the two diagonal matricesΦ andΨ are the same,
which means eigenvalue ejπ cos θi of Ω1 and eigenvalue
ejπ cosφi of Ω2 have a same eigenvector. *erefore, once we
obtain ejπ cos θi through eigendecomposition of Ω1, eigen-
vectors corresponding to ejπ cos θi can be substituted in (51) to
calculate the ejπ cosφi paired with ejπ cos θi .

We can obtain eigenvalue μi (i� 1, 2, . . ., q) ofΩ1 and its
corresponding eigenvectors ξi by means of eigendecompo-
sition. *en, we can obtain the nominal azimuth as follows:

θi � arc cos
arg μi( 􏼁

π
, i � 1, 2, . . . , q. (52)

As corresponding eigenvalues of Ω1 and Ω2 have the
same eigenvector, without angles matching, eigenvalue ofΩ2
can be obtained as follows:

]i �
1
q
11×q · Ω2ξi( 􏼁 · /ξi􏼂 􏼃, (53)

where 11×q is the 1× q dimensional vector with all elements
as 1 and (./) denotes element-wise division. (Ω2ξi) equals
viξi as the ith eigenvalue μi ofΩ1, and the ith eigenvalue vi of
Ω2 has the same eigenvector. *e operation of element-wise
division between (Ω2ξi) and ξi obtains a q× 1dimensional
vector with all elements equal to vi theoretically.

*en, we can obtain the nominal elevation as follows:

ϕi � arc cos
arg vi( 􏼁

π
, i � 1, 2, . . . , q. (54)

3.4. Analysis of the Nested Array. Based on the analysis of
Section 3.3, maximum number of unknown CD sources q
can achieve half of the virtual sensors of each virtual arrays;
thus, DOF of the arrays proposed is (2M1M2 +M2); total
sensor number of the array is M� 2(M1 +M2) + 1. We can
draw the conclusion that DOF of the nested array proposed
can reach O(M2) and the DOF is far more than the total
sensor number. We examine the maximum DOF that can be
achieved, and the maximum goal under the given total
sensor number can be written as

max 2M1M2 + M2

subject to M � 2 M1 + M2( 􏼁 + 1.
(55)

We obtain
M

opt
1 �

M

4
−
1
2
,

M
opt
2 �

M

4
.

(56)

As M
opt
1 and M

opt
2 could be fractions,M1,M2, and (M− 1)/

2 are all integers, and optimal solutions should be modified.
Refer to the definition in [29], coarray aperture of the proposed
nested array is defined as physical length in x dimension
multiply physical length in z dimension of virtual arrays. Ta-
ble 1 shows maximum DOF and the coarray aperture of the
optimal configuration.

We analyze DOFs of the method proposed in com-
parison with representative existing methods for 2D CD
sources with the same sensor number M which are DSPE
using a L-shape array [12], modified propagator (MP) using
TPLA, [15] and SOS using DUCA [19]. According to the
optimal configuration described in Table 1, DOFs of the
method proposed are shown in Figure 3. It can be seen that
the nested arrays proposed have a larger number of DOFs
than uniform arrays with the same sensor number.

*e algorithm proposed can be performed according to
Table 2.

We analyze the computational complexity of the method
proposed in comparison with representative existing methods
for 2D CD sources based on uniform arrays with the same
sensor numberMwhich are DSPE using a L-shape array [12],
Modified Propagator (MP) using TPLA [15], and SOS using
DUCA [19]. Computational cost of DSPE using a L-shape
array [12] mainly lies in computing the sample covariance
matrix O(NM2), pseudoinverse operation of the covariance
matrix O(M3), and four-dimensional searching O(M3K4),
where K denotes search points of unknown parameters.
Computational cost of MP using TPLA [15] mainly lies in
computing the modified propagatorO(NM2) and inversion as
well as eigendecomposition of the sample covariance matrix
O(M3), obtaining rotational invariance matrices O(q3). SOS
using DUCA [19] is an algorithm based on 1D searching;
computational cost mainly lies in computing the sample
covariance matrix O(NM2) and inversion as well as eigen-
decomposition of the sample covariance matrix O(M3), one-
dimensional searching O(M3K). *e computational cost of
the method proposed mostly lie in computing the sample
covariance matrix O(NM2), calculation of pseudoinversion of
RA′ which is O(q3), and eigendecomposition of Ω1 and Ω2
which is O(q3). As M >q, the computation complexity of the
proposed method is far less than existing methods for 2D CD
sources using uniform arrays.

Remark 1. *e advantages of the proposed method lies in
that the proposed arrays have larger aperture as well as more
DOFs compared with traditional estimators for CD sources
based on uniform arrays with similar number of sensors.
Compared with existing estimators for CD sources based on
nested arrays, the proposed method can estimate 2D CD
sources and the estimation can be performed without prior
knowledge of ASDF of sources as well as spectral searching.

Remark 2. *e method proposed is not suitable for 2D CD
sources which are coherent with each other. A CD source is
defined as the scatterers of a source which are coherent;
meanwhile, the sources are incoherent. In other words
signals emitted from scatterers within a source are coherent
while signals from scatterers from different sources are
incoherent. Under the condition that CD sources are in-
coherent, we can obtain R1 and R2 in the forms of (10) and
(11) which are the basis of vectorization to obtain the virtual
receive vector of virtual arrays.

Remark 3. Although the array structure proposed achieves
aperture expansion in both the elevation and azimuth
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dimensions, the aperture expansion in the elevation direc-
tion is limited. In addition, rotational invariance relationship
is an approximate resolution under small angular spread
assumption; when the sensor number is bigger, later sensors
in the virtual array are a result of more transitive rela-
tionships. *e abovementioned two factors indicate that the
proposed method can improve the estimation accuracy of
DOA of 2D CD sources to a certain extent.

4. Results and Discussion

*ree numerical simulation experiments are carried out to
investigate the effectiveness of the proposed algorithm in this
section. *e root mean squared error (RMSE) of the ith
source with regard to DOA can be written as

RMSEθi
�

��������������

1
Mc

􏽘

Mc

ζ

􏽢θ
ζ
i − θi􏼒 􏼓

2

􏽶
􏽴

, (57)

RMSEφi
�

��������������

1
Mc

􏽘

Mc

ζ

􏽢φζ
i − φi􏼐 􏼑

2

􏽶
􏽴

, (58)

where 􏽢θ
ς
i and 􏽢φς

i are the estimated nominal azimuth and
elevation of the ith source where ςmeans the estimated value
in the ςth Monte Carlo run. Mc is the total number of Monte
Carlo simulations.*e signal-to-noise ratio (SNR) is defined
as 10log(1/σ2) where the noise is assumed to be the Gaussian
white zero mean with variance σ2.

In the first example, we investigate the performance of
the method proposed, considering the underdetermined
scenario. Figure 4(a) demonstrates that 16 2D CD sources
distributed uniformly from diamond area from (30°, 81°),
(72°, 40°) to (114°, 81°), (72°, 122°) are set to be estimated.*e
nested array is set with M1 � 2, M2 � 3, M� 11, and d� λ/2.
Angular spreads are 2°, SNR� 5 dB, the number of snapshots
equal to 300, and Mc� 100. An indicator reflecting the
number of sources detected is needed to measure the

Table 1: Maximum DOF and the coarray aperture of the optimal configuration.

N (n is an integer) M1 M2 DOF Coarray aperture
4n+ 1 N n 2n2 + n (4n2 + 2n− 1)d× d
4n+ 3 N n +1 2n2 + 3n+ 2 (4n2 + 6n+ 1)d× d

4 6 8 10 12 14 16 18
Number of sensors

0

5

10

15

20

25

30

35

40

45

D
O

F

The proposed algorithm
DSPE with L-shape [12]

MP with TPLA [15]
SOS with DUCA [19]

Figure 3: DOFs of different methods.

Table 2: Summary of the proposed method.

Input: N snapshots of receive vectors of the subarrays A1 and A2 array x1(t)􏼈 􏼉
N

t�1 and x2(t)􏼈 􏼉
N

t�1
Output: nominal angles of q 2D CD sources (θi, φi) (i� 1, 2, . . ., q).

(1) Computing the sample cross-correlation matrix of subarrays R1 and R2 from equations (22).
(2) Vectorizing R1 and R2 from equations (12) and (13) and reordering sequences of elements in vectors r1 and r2 to obtain rA and rB.
(3) Extracting the elements of vectors rA and rB to get ri

A and ri
B and constructing RA′ , RA″ , and RB′ form equations (47)–(49).

(4) Calculation and eigendecomposition of Ω1 and Ω2.
(5) Computing nominal elevation θi from equation (52) and nominal elevation φi from equation (54).
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performance of different estimators. In the first trial, all 16
sources are Gaussian while in the second trial are uniform.
Detection probability is defined as Nd/16 where Nd is the
number of sources estimated effectively. Estimation is
regarded as effective when the estimated angles satisfy
[(􏽢θi − θi)

2 + (􏽢ϕi − ϕi)
2]0.5 ≤ 5∘. Figure 4(b) exhibits the de-

tection probability with change of SNR. As can be seen from
Figure 4(b), all the 2DCD sources can be detected when SNR
exceeds 5 dB whether sources are Gaussian or uniform.
Detection probability decreases as SNR decreases. *e dif-
ference of detection probability between the two types of CD
sources is not significant. *is example demonstrated that
the nested array and algorithm proposed can resolve 2D CD
sources in undermining circumstances.

In the second example, we investigate the performance
of the method proposed with regard to angular spreads of
sources. Based on the assumption that angular spreads of
sources are small rotational invariance relationships that get
deduced, the influence of angular spreads on the estimation
should be investigated. Both Gaussian and uniform sources
are considered, respectively. Experiments are set with
M1 � 1,M2 �1,M� 5, d� λ/2, Mc� 100, SNR� 5 dB, and the
number of snapshots equal to 300. Nominal angles of
sources are (35°, 35°) and (145°, 145°). Angular spreads of
sources are set from 0° to 10°. RMSE is replaced by the mean
values of RMSEθi

and RMSEφi
of two sources. As shown in

Figure 5, RMSE reaches 0.58° when angular spreads are 10°
for Gaussian sources, while RMSE reaches 0.73° when an-
gular spreads reach 10° for uniform sources. It is obvious that
estimated results deteriorate for both kinds of sources as the
angular spreads increase. *e estimation performance is still
satisfactory within 10°. *e method proposed exhibits ro-
bustness under the condition of small angular spreads.
Estimation of the method proposed can be conducted
without prior knowledge of ASDF and can also be
demonstrated.

In the third example, we investigate the performance of
the method proposed versus SNR and the number of
snapshots. Gaussian CD sources with centers (35°, 35°) and
(145°, 145°) are set to be estimated. Angular spreads are 2°.
Nested array configuration is the same as example 2,
Mc� 100. RMSE takes mean values of sources. Experiments
are conducted in comparison with existing methods for 2D
CD sources based on the L-shape array [12] with 5 sensors,
MP using TPLA [15] with 7 sensors, and SOS using DUCA
[19] with 6 sensors, respectively. Figure 6(a) shows simu-
lation results as well as the Cramer–Rao bound (CRB) [37]
while SNR is ranging from −5 dB to −30 dB with the number
of snapshots set at 300. Figure 6(b) shows simulation results
as well as CRB with the number of snapshots ranging from
200 to 1000 while SNR is fixed at 5 dB. Figure 6 shows that
RMSE of all methods decrease with either SNR increase or
number of snapshots increase, and the method proposed has
lower RMSE than others. *e method proposed illustrates
greater performance than the traditional methods with
similar sensor number under the same experimental con-
ditions. *e reason probably lies in that the nested array
possesses larger aperture than uniform arrays with similar
number of sensors.

In the fourth example, we investigate the performance of
the proposed method versus sensor number M. *e sensor
number of subarrays A1 and A2 is set according to the
optimal configuration described in Table 1. Both Gaussian
and uniform sources are considered, respectively. *e
sources to be estimated in the first trial are Gaussian with
nominal angles (35°, 35°) and (145°, 145°) while in the second
trial are uniform with the same nominal angles as the first
trail. RMSE takes the mean values of sources. Figure 7 shows
simulation results with the number of total sensors ranging
from 5 to 19 while SNR is fixed at 5 dB and the number of
snapshots fixed at 300. Angular spreads are 2°, d� λ/2. It can
be concluded that the proposed method provides better
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Figure 4: (a) Location of 2D CD sources to be estimated; (b) detection probability versus SNR.
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performance for both kinds of 2D CD sources as the
sensor number increases, but RMSE changes slightly when
the total sensor number increases to a certain extent. *e
reason mainly lies in that the rotational invariance rela-
tionship is an approximate resolution under small angular
spreads assumption. When the sensor number is bigger,

on one hand, the coarray aperture increases which is
advantageous to the estimation performance; on the other
hand, later sensors in the virtual array is a result of more
transitive relationships, which means the proposed
method can improve the estimation accuracy to a certain
extent.
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Figure 5: RMSE estimated for 2D CD sources versus angular spreads.
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Figure 6: (a) Estimation of the method proposed versus SNR; (b) estimation of the method proposed versus number of snapshots.
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5. Conclusion

Aiming at DOA of 2D CD sources, a 2D nested array as well
as an estimation algorithm is proposed in this paper.
According to the difference coarray concept, double parallel
hole-free virtual uniform linear arrays are obtained by
vectorization operation on cross-correlation matrices of
subarrays. Configuration of virtual arrays containing close
form of sensor coordinates, maximumDOF, and the optimal
parameters get deduced. Rotational invariance relationships
of virtual arrays are derived under the condition that angular
spreads of sources are small. A matrix reconstruction al-
gorithm is detailed based on an ESPRIT-like framework on
matrices constructed by extracting and regrouping the re-
ceive vectors of the virtual arrays. Numerical simulations

considering underdetermined scenario, angular spread, the
influence of experiment, and total sensor number are
conducted. Outcomes illustrated that the method proposed
can deal with more sources than sensors without prior
knowledge of ASDF as well as exhibit higher accuracy than
uniform arrays under the same experimental conditions.

Appendix

Checking [αi]k and [αi]k+1 of equation (30), d/λ is set at 1/2.
Replacing variables (θi + 􏽥θ) with θ and (ϕi + 􏽥ϕ) with φ,
where 􏽥θ and 􏽥φ are the small deviations of θi and ϕi, cosθ and
cosφ can be approximated by the first term in the Taylor
series expansions. [αi]k and [αi]k+1 can be respectively
expressed as follows:

αi􏼂 􏼃k �Be
j0.5πcosφ

e
−jπ 2M1M2+M2−k+0.5( )cosθg θ,φ;ui( 􏼁g θ,φ;ui( 􏼁dθdφ

�Be
j0.5π cosφi−sinφi􏽥φ( )e

−jπ 2M1M2+M2−k+0.5( ) cosθi−sinθi
􏽥θ( 􏼁

g θi + 􏽥θ,φi + 􏽥φ;ui􏼐 􏼑􏽨 􏽩
2
d􏽥θd􏽥φ

� e
j0.5π cosφi e

−jπ 2M1M2+M2−k+0.5( )cosθiBe
−j0.5π sinφi􏽥φe

jπ 2M1M2+M2−k+0.5( )sinθi
􏽥θ

g θi + 􏽥θ,φi + 􏽥φ;ui􏼐 􏼑􏽨 􏽩
2
d􏽥θd􏽥φ, (A.1)

αi􏼂 􏼃k+1 �Be
j0.5πcosφ

e
−jπ 2M1M2+M2−k−0.5( )cosθg θ,φ;ui( 􏼁g θ,φ;ui( 􏼁dθdφ

�Be
j0.5π cosφi−sinφi􏽥φ( )e

−jπ 2M1M2+M2−k−0.5( ) cosθi−sinθi
􏽥θ( 􏼁

g θi + 􏽥θ,φi + 􏽥φ;ui􏼐 􏼑􏽨 􏽩
2
d􏽥θd􏽥φ

� e
j0.5πdcosφi e

−jπ 2M1M2+M2−k−0.5( )cosθiBe
−j0.5π sinφi􏽥φe

jπ 2M1M2+M2−k+0.5( )sinθi
􏽥θ
e

−jπ sinθi
􏽥θ

g θi + 􏽥θ,φi + 􏽥φ;ui􏼐 􏼑􏽨 􏽩
2􏽥θd􏽥φ. (A.2)
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Figure 7: Estimation of the method proposed versus the total sensor number M.
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Under the assumption of small angular spreads, it fol-
lows that e− jπ sin θi

􏽥θ ≈ 1, so [αi]k+1 can be written as

αi􏼂 􏼃k+1 ≈ e
jπ cos θi αi􏼂 􏼃k. (A.3)

*e proof of equation (31) is similar to equation (30).
Considering equation (32),

βi􏼂 􏼃k � Be
− j0.5π cosφ

e
− jπ 2M1M2+M2− k+0.5( )cos θg θ,φ; ui( 􏼁g θ,φ; ui( 􏼁dθdφ

� Be
− j0.5π cosφi− sinφi􏽥φ( )e

− jπ 2M1M2+M2− k+0.5( ) cos θi− sin θi
􏽥θ( 􏼁

g θi + 􏽥θ,φi + 􏽥φ; ui􏼐 􏼑􏽨 􏽩
2
d􏽥θd􏽥φ

� e
− j0.5π cosφi e

− jπ 2M1M2+M2− k+0.5( )cos θiBe
j0.5π sinφi􏽥φe

jπ 2M1M2+M2− k+0.5( )sin θi
􏽥θ

g θi + 􏽥θ, φi + 􏽥φ; ui􏼐 􏼑􏽨 􏽩
2
d􏽥θd􏽥φ. (A.4)

Under the assumption of small angular spreads, it fol-
lows that e− jπ sinφi􏽥φ ≈ 1, so [αi]k can be written as

αi􏼂 􏼃k ≈ e
jπ cosφi βi􏼂 􏼃k. (A.5)
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